How to use floating-point programs on embedded systems? Two approaches to continue using numerical algorithms on these cores:

1. convert the entire numerical application from floating to fixed-point arithmetic 2. write a floating-point emulation library and link the numerical application against it A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation 4/25 The CGPE tool Global architecture of CGPE Input of CGPE 1. polynomial coefficients and variables: value intervals, fixed-point format, ... 2. set of criteria: maximum error bound and bound on latency (or the lowest)

3. some architectural constraints: operator cost, parallelism, ... < polynomial > < coefficient x="0" y="0" inf ="0 x00000020 " sup ="0 x00000020 " sign ="0" integer_part ="2" fraction_part =" 30 "/> < coefficient x="0" y="1" inf ="0 x80000000 " sup ="0 x80000000 " sign ="0" integer_part ="1" fraction_part =" 31 "/> < coefficient x="1" y="1" inf ="0 x40000000 " sup ="0 x40000000 " sign ="0" integer_part ="1" fraction_part =" 31 "/> < coefficient x="2" y="1" inf ="0 x10000000 " sup ="0 x10000000 " sign ="1" integer_part ="1" fraction_part =" 31 "/> < coefficient x="3" y="1" inf ="0 x07fe93e4 " sup ="0 x07fe93e4 " sign ="0" integer_part ="1" fraction_part =" 31 "/> < coefficient x="4" y="1" inf ="0 x04eef694 " sup ="0 x04eef694 " sign ="1" integer_part ="1" fraction_part =" 31 "/> < coefficient x="5" y="1" inf ="0 x032d6643 " sup ="0 x032d6643 " sign ="0" integer_part ="1" fraction_part =" 31 "/> < coefficient x="6" y="1" inf ="0 x01c6cebd " sup ="0 x01c6cebd " sign ="1" integer_part ="1" fraction_part =" 31 "/> < coefficient x="7" y="1" inf ="0 x00aebe7d " sup ="0 x00aebe7d " sign ="0" integer_part ="1" fraction_part =" 31 "/> < coefficient x="8" y="1" inf ="0 x00200000 " sup ="0 x00200000 " sign ="1" integer_part ="1" fraction_part =" 31 "/> < variable x="1" y="0" inf ="0 x00000000 " sup ="0 xfffffe00 " sign ="0" integer_part ="0" fraction_part =" 32 "/> < variable x="0" y="1" inf ="0 x80000000 " sup ="0 xb504f334 " sign ="0" integer_part ="1" fraction_part =" 31 "/> < absolute_evalerror value =" 25081373483158693012463053528118040380976733198921 b -191 " strict =" false "/> </ polynomial > cgpe --degree =" [8 ,1] " --xml -input = cgpe -test1 . xml --coefs =" [100000000111111111] " \ --latency = lowest --gappa -certificate --output \ --schedule =" [4 ,2] " --max -kept =5 --operators =" [111111111111111111:133333333111333331] " ... A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation 8/25 A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation 21/25

Fixed-point conversion

1. statistical methods: perform well, but provide no guarantees and may be slow.

2. analytical methods: usually quite pessimistic, but they are safer to use.

Floating-point emulation support:

a number of high quality emulation libraries exist: FLIP, SoftFloat,. . . more or less compliant with the IEEE-754 standard FLIP: relies on polynomial evaluation to evaluate division and square root

• a huge number of schemes for evaluating a given polynomial development of CGPE

• ≈ 50 % of FLIP's code was generated by CGPE.

Internals of CGPE CGPE proceeds in two steps:

1. Computation step:

computes evaluation schemes while reducing their latency on unbounded parallelism considers only two possible arithmetic operations: addition and multiplication produces DAGs that represent the computed efficient schemes Output of CGPE Output of CGPE There are 4 types of shifts to consider:

uint32_t func_d9_0 (uint32_t T , uint32_t S) { uint32_t r0 = T >> 2; // (+) Q [1.31] uint32_t r1 = 0 x80000000 + r0 ; // (+) Q [1.31] uint32_t r2 = mul (S , r1); // (+) Q [2.30] uint32_t r3 = 0 x00000020 + r2 ; // (+) Q [2.30] uint32_t r4 = mul (T , T); // (+) Q [0.32] uint32_t r5 = mul (S , r4); // (+) Q [1.31] uint32_t r6 = mul (T , 0 x07fe93e4); // (+) Q [1.31] uint32_t r7 = 0 x10000000 -r6 ; // (-) Q [1.31] uint32_t r8 = mul (r5 , r7); // (-) Q [2.30] uint32_t r9 = r3 -r8 ; // (+) Q [2.30] uint32_t r10 = mul (r4 , r4); // (+) Q [0.32] uint32_t r11 = mul (S , r10); // (+) Q [1.31] uint32_t r12 = mul (T , 0 x032d6643); // (+) Q [1.31] uint32_t r13 = 0 x04eef694 -r12 ; // (-) Q [1.31] uint32_t r14 = mul (T , 0 x00aebe7d); // (+) Q [1.31] uint32_t r15 = 0 x01c6cebd -r14 ; // (-) Q [1.31] uint32_t r16 = r4 >> 11; // (-) Q [1.31] uint32_t r17 = r15 + r16 ; // (-) Q [1.31] uint32_t r18 = mul (r4 , r17); // (-) Q [1.31] uint32_t r19 = r13 + r18 ; // (-) Q [1.31] uint32_t r20 = mul (r11 , r19); // (-) Q [2.30] uint32_t r21 = r9 -r20 ; // (+) Q [2.
uint32_t func_d9_0 (uint32_t T , uint32_t S) { uint32_t r0 = T >> 2; // (+) Q [1.31] uint32_t r1 = 0 x80000000 + r0 ; // (+) Q [1.31] uint32_t r2 = mul (S , r1); // (+) Q [2.30] uint32_t r3 = 0 x00000020 + r2 ; // (+) Q [2.30] uint32_t r4 = mul (T , T); // (+) Q [0.32] uint32_t r5 = mul (S , r4); // (+) Q [1.31] uint32_t r6 = mul (T , 0 x07fe93e4); // (+) Q [1.31] uint32_t r7 = 0 x10000000 -r6 ; // (-) Q [1.31] uint32_t r8 = mul (r5 , r7); // (-) Q [2.30] uint32_t r9 = r3 -r8 ; // (+) Q [2.30] uint32_t r10 = mul (r4 , r4); // (+) Q [0.32] uint32_t r11 = mul (S , r10); // (+) Q [1.31] uint32_t r12 = mul (T , 0 x032d6643); // (+) Q [1.31] uint32_t r13 = 0 x04eef694 -r12 ; // (-) Q [1.31] uint32_t r14 = mul (T , 0 x00aebe7d); // (+) Q [1.31] uint32_t r15 = 0 x01c6cebd -r14 ; // (-) Q [1.31] uint32_t r16 = r4 >> 11; // (-) Q [1.31] uint32_t r17 = r15 + r16 ; // (-) Q [1.31] uint32_t r18 = mul (r4 , r17); // (-) Q [1.31] uint32_t r19 = r13 + r18 ; // (-) Q [1.31] uint32_t r20 = mul (r11 , r19); // (-) Q [2.30] uint32_t r21 = r9 -r20 ; // (+) Q [2.
1. multiplication by a power of 2 shifts: allows to gain a few cycles

• shifting is usually less costly than multiplication 2. alignment shifts: used to align commas for an arithmetic operation

• addition of a Q[1.31] and a Q[2.30]
3. leading zeros' elimination shifts: used to gain some bits of precision Remark: to detect whether one of these shifts is needed, we rely on:

fixed-point arithmetic rules (for case 2) MPFI computations (for cases 1, 3 and 4).

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation 13/25

There are 4 types of shifts to consider:

1. multiplication by a power of 2 shifts: allows to gain a few cycles

• shifting is usually less costly than multiplication 2. alignment shifts: used to align commas for an arithmetic operation

• addition of a Q[1.31] and a Q[2.30]
3. leading zeros' elimination shifts: used to gain some bits of precision The problem of instruction selection A well known problem in compilation that was proven to be NP-complete on DAGs.

Usually solved using a tiling algorithm:

input:

• a DAG representing an arithmetic expression.

• a set of tiles, with a cost for each.

• a function that associates a cost to a subtree. output:

• a set of covering tiles that minimize the cost function.

+ 1 7 × 3 x1 x2 × 3 x3 x4 ((x 1 • x 2) + (x 3 • x 4)) FmaLeft 3 6 x1 x2 × 3 x3 x4 FmaLeft(x 1 , x 2 , (x 3 • x 4)) FmaRight 3 6 × 3 x1 x2 x3 x4
FmaRight((x 1 • x 2), x 3 , x 4)

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation 15/25

A well known problem in compilation that was proven to be NP-complete on DAGs.

Usually solved using a tiling algorithm:

input:

• a DAG representing an arithmetic expression.

• a set of tiles, with a cost for each.

• a function that associates a cost to a subtree. output:

• a set of covering tiles that minimize the cost function.

+ 1 4 × 3 x1 x2 × 3 x3 x4 ((x 1 • x 2) + (x 3 • x 4)) FmaLeft 3 6 x1 x2 × 3 x3 x4 FmaLeft(x 1 , x 2 , (x 3 • x 4)) FmaRight 3 6 × 3 x1 x2 x3 x4 FmaRight((x 1 • x 2), x 3 , x 4) A.

→

 There is a need for the automation of both processes. A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation 3/25 Fixed-point conversion vs. floating-point emulation design Floating to fixed-point conversion tools: addressed by the ANR project DEFIS, with IRISA, LIP6, CEA, THALES, INPIXAL some tools are currently developed: ID.Fix, . . . two main approaches:

 and variables definition a0 = fixed < -30 , dn >(0 x00000020p -30) ; a1 = fixed < -31 , dn >(0 x80000000p -31) ; a2 = fixed < -31 , dn >(0 x40000000p -31) ; . . . a8 = fixed < -31 , dn >(0 x00aebe7dp -31) ; a9 = fixed < -31 , dn >(0 x00200000p -31) ; T = fixed < -32 , dn >(fixed < -23 , dn >(var0)); S = fixed < -31 , dn >(var1); (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation 10/25

 (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation 11/25 Features achieved by CGPE validated on the ST200 core so far, no ambushes were encountered for ex. no handling of advanced operators such as ST200 shift_and_add instruction) the only shifts handled correspond to the multiplication by a power of 2 hypotheses are made on the format of the input coefficients A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation 12/25 Features achieved by CGPE validated on the ST200 core so far, no ambushes were encountered for ex. no handling of advanced operators such as ST200 shift_and_add instruction) the only shifts handled correspond to the multiplication by a power of 2 hypotheses are made on the format of the input coefficients Problem: without hypotheses on the formats of the input coefficients, CGPE fails Solution: add the handling of multiple shifts to CGPE A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation 12/25

•

 0x40000000 in the Q[2.30] format 0x80000000 in the Q[1.31] format 4. overflow prevention shifts: used before an arithmetic operation to prevent it from overflowing • to prevent the addition of a Q[1.31] and a Q[1.31] from overflowing the Q[1.31] format, both operands are shifted to the Q[2.30] format Problem: shifts may affect the critical path, potentially increasing the latency of the DAG Solution: use more advanced instructions to help absorb this increase ex: shift-and-add instruction available on some fixed-point processors like the ST231 A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation 13(DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation 14/25 Instruction selection: an extension of CGPE

 Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation 15/25 Near-Optimal Instruction Selection algorithm (Koes and Goldstein in CGO-2008) by step of the tiling algorithm on the expression (a 2 0 + ((a 1 × a 2) + (a 3 α))) A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation Near-Optimal Instruction Selection algorithm (Koes and Goldstein in CGO-2008) by step of the tiling algorithm on the expression (a 2 0 + ((a 1 × a 2) + (a 3 α))) A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation Near-Optimal Instruction Selection algorithm (Koes and Goldstein in CGO-2008) by step of the tiling algorithm on the expression (a 2 0 + ((a 1 × a 2) + (a 3 α))) A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation Near-Optimal Instruction Selection algorithm (Koes and Goldstein in CGO-2008) by step of the tiling algorithm on the expression (a 2 0 + ((a 1 × a 2) + (a 3 α))) A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation Near-Optimal Instruction Selection algorithm (Koes and Goldstein in CGO-2008) by step of the tiling algorithm on the expression (a 2 0 + ((a 1 × a 2) + (a 3 α))) Near-Optimal Instruction Selection algorithm (Koes and Goldstein in CGO-2008) by step of the tiling algorithm on the expression (a 2 0 + ((a 1 × a 2) + (a 3 α)))

 selection: an extension of CGPE 3. Conclusion and perspectives A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation 22/25 Conclusion and perspectives Conclusion Code synthesis for fast and certified polynomial evaluation fast and certified C codes, in fixed point arithmetic tool to automate polynomial evaluation implementation, using at best architectural features implemented in the tool CGPE (Code Generation for Polynomial Evaluation) http://cgpe.gforge.inria.fr/ Extension of CGPE based on instruction selection: automatic handling of all input formats. better usage of the advanced architectural features (such as fma, add-3, shift-and-add, ...) using a tiling algorithm implies more modularity, as code generation is now an independant process. A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation 23instruction selection in CGPE make CGPE more general to tackle other problems, like matrix inversion and multiplication, ... A. Najahi (DALI UPVD/LIRMM, CNRS, UM2) Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation 24/25

Some work in the area

Voronenko and Püschel from the Spiral group (2004): Automatic Generation of Implementations for DSP Transforms on Fused Multiply-Add Architectures.

They provide a short proof of optimality in the case of trees.

Their method handles FMAs in DAGs but is not generic. We wish to integrate numerical verification in the process of instruction selection.

A. Najahi (DALI UPVD/LIRMM, CNRS, UM2)

Synthesis of fixed-point programs based on instruction selection: the case of polynomial evaluation 16/25

Instruction tiles considered in CGPE