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NS
Which arithmetic for computational tasks?

Floating-point computations Fixed-point computations
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NS
Which arithmetic for computational tasks?

Floating-point computations Fixed-point computations
© Easy and fast to implement © Tedious and time consuming to implement
© Easily portable [IEEE754] e >50% of design time [Wil98]
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NS
Which arithmetic for computational tasks?

Floating-point computations
© Easy and fast to implement
© Easily portable [IEEE754]
© Requires dedicated hardware
© Slow if emulated in software

Fixed-point computations

© Tedious and time consuming to implement
e >50% of design time [Wil98]

© Relies only on integer instructions

© Efficient
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NS
Which arithmetic for computational tasks?

Floating-point computations Fixed-point computations

© Easy and fast to implement @ Tedious and time consuming to implement
© Easily portable [IEEE754] e >50% of design time [Wil98]

© Requires dedicated hardware © Relies only on integer instructions

© Slow if emulated in software © Efficient

Embedded systems targets

— have efficient integer instructions

¢

p-controllers DSPs FPGAs

m Fixed-point arithmetic is well suited for embedded systems
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NS
Which arithmetic for computational tasks?

Floating-point computations Fixed-point computations

© Easy and fast to implement @ Tedious and time consuming to implement
© Easily portable [IEEE754] e >50% of design time [Wil98]

© Requires dedicated hardware © Relies only on integer instructions

© Slow if emulated in software © Efficient

Embedded systems targets

— have efficient integer instructions

¢

p-controllers DSPs FPGAs

m Fixed-point arithmetic is well suited for embedded systems

But, how to make it easy, fast, and numerically safe to use by non-expert programmers?
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BN
The DEFIS approach

m DEFIS (ANR, 2011-2015)

Goal: develop techniques and tools to automate
fixed-point programming
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The DEFIS approach | e

m DEFIS (ANR, 2011-2015)

Goal: develop techniques and tools to automate
fixed-point programming

m Combines conversion and IP block synthesis

> Ménard et al. (CAIRN, Univ. Rennes) [MCCS02]:
* automatic float-to-fix conversion pecaracy

constraint

IWL Determination
Dynamic Range
evaluation

> Didier et al. (PEQUAN, Univ. Paris) [LHD14]: e
* code generation for the linear filter IP block

FWL Determination

Validation &

] Accuracy,
Optimization

evaluation

swajsAs Juiod -paxyy J0 USISap ay3 40} auNPNJIseIU|

Fixed-point C code

P N 3
High level . z3
ot Compiler ]

g
g
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The DEFIS approach | e

= DEFIS (ANR, 2011-2015)
Goal: develop techniques and tools to automate
fixed-point programming
m Combines conversion and IP block synthesis

> Ménard et al. (CAIRN, Univ. Rennes) [MCCS02]:
* automatic float-to-fix conversion Aecaraey

> Didier et al. (PEQUAN, Univ. Paris) [LHD14]:
* code generation for the linear filter IP block

> Our approach (DAL, Univ. Perpignan):

IWL Determination
Dynamic Range
evaluation
constraint

FWL Determination

Validation &
Optimization

Accuracy,
evaluation

Back-end

* certified fixed-point synthesis for: \
« Fine grained IP blocks: dot-products, ‘ Fhed-pontc ode

polynomials, ... g N E
« High level IP blocks: matrix multiplication, {mﬂ.ﬁf;J Compiler §_'§
triangular matrix inversion, Cholesky decomposition N Flf’ ;=
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The DEFIS approach | e

m DEFIS (ANR, 2011-2015)

Goal: develop techniques and tools to automate
fixed-point programming

m Combines conversion and IP block synthesis

> Ménard et al. (CAIRN, Univ. Rennes) [MCCS02]:
* automatic float-to-fix conversion Aecaraey

constraint

IWL Determination
Dynamic Range
evaluation

> Didier et al. (PEQUAN, Univ. Paris) [LHD14]:
* code generation for the linear filter IP block

FWL Determination

Validation &
Optimization

Accuracy,
evaluation

swajsAs Juiod -paxyy Jo uSisap ay3 40} auNNJIseIU|

> Our approach (DAL, Univ. Perpignan): -

* certified fixed-point synthesis for: \
« Fine grained IP blocks: dot-products, ‘ Fhed-pontc ode

polynomials, ... g N g
« High level IP blocks: matrix multiplication, {mﬂ.ﬁf;J Compiler g;
triangular matrix inversion, Cholesky decomposition N Flf’ ;=
m Long term objective: code synthesis for matrix inversion s
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Our road-map

How to generate certified fixed-point code for matrix inversion?
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NS
Our road-map
How to generate certified fixed-point code for matrix inversion?
1. Specify an arithmetic model

> Contributions:
* formalization of ,/and /

Aﬁhmetic

model
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NS
Our road-map

How to generate certified fixed-point code for matrix inversion?

1. Specify an arithmetic model
> Contributions:
* formalization of ,/and /

2. Build a synthesis tool, CGPE, for fine grained IP
blocks:
> it adheres to the arithmetic model
> Contributions:
* implementation of the arithmetic model \ model

Arithmetic
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NS
Our road-map

How to generate certified fixed-point code for matrix inversion?

1. Specify an arithmetic model
> Contributions:
* formalization of ,/ and /

2. Build a synthesis tool, CGPE, for fine grained IP
blocks:
> it adheres to the arithmetic model
> Contributions:
* implementation of the arithmetic model

3. Build a second synthesis tool, FPLA, for algorithmic
IP blocks:
> it generates code using CGPE
> Contributions:
* trade-off implementations for matrix multiplication
* code synthesis for Cholesky decomposition and
triangular matrix inversion
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.
Outline of the talk

1. An arithmetic model for fixed-point code synthesis

2. An implementation of the arithmetic model: the CGPE tool

3. Fixed-point code synthesis for linear algebra basic blocks
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Outline of the talk

1. An arithmetic model for fixed-point code synthesis
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Fixed-point arithmetic numbers

A fixed-point number x is defined by two integers:
k=8
> X the k-bit integer representation of x  —
X71 X1 X51 Xq1 X31 X01 X711 Xp
1 1 P 1 1 1 1

> f the implicit scaling factor of x

k—=1-f

~~ The value of x is given by x = > = [_Z_f Xg+f‘2[
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Fixed-point arithmetic numbers

A fixed-point number x is defined by two integers:
k=8
> X the k-bit integer representation of x  —
X710 Xg v X510 X4 1 X31 X0 1 X1 1 X
1 1 Py 1 1 1 1

> f the implicit scaling factor of x

i=3 f=5
k—=1-f

~~ The value of x is given by x = > = [;f Xg+f‘2l

Notation
A fixed-point number with / bits of integer part and f bits of fraction part is in the Q;; format

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks



Fixed-point arithmetic numbers

A fixed-point number x is defined by two integers:

k:
> X the k-bit integer representation of x —— |8 ——
N . 110101 111101010
> f the implicit scaling factor of x e ————
i=3 f=5

k—1-f
~~ The value of x is given byx=§= Z Xg+f‘2l

O=—f

Notation
A fixed-point number with / bits of integer part and f bits of fraction part is in the Q;; format

m Example:

> xinQgsand X = (10011000), = (152)19 —  Xx=(100.11000)5 = (4.75) 10
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Fixed-point arithmetic numbers

A fixed-point number x is defined by two integers:

k:
> X the k-bit integer representation of x —— |8 ——
. L . 110r0r11r1r01r010
> f the implicit scaling factor of x e ————
i=3 f=5

k—1-f
~~ The value of x is given byx=§= Z Xg+f‘2l

O=—f

Notation
A fixed-point number with / bits of integer part and f bits of fraction part is in the Q;; format

m Example:

> xinQgsand X = (10011000), = (152)19 —  Xx=(100.11000)5 = (4.75) 10

How to compute with fixed-point numbers?
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An interval arithmetic based model

m For each coefficient or variable v, we keep track of 2 intervals Val(v) and Err(v)
m Our model assumes a fixed word-length k

Val(v) is the range of v Err(v) encloses the
rounding error of
computing v
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An interval arithmetic based model

m For each coefficient or variable v, we keep track of 2 intervals Val(v) and Err(v)
m Our model assumes a fixed word-length k

Val(v) is the range of v Err(v) encloses the
m the format Q,; of v is deduced from rounding error of
Val(v) = [v, V] computing v
. - e Pof ®m a bound e on rounding
i= [logz(max(|!|»|v|))] I f=k=i errors is deduced from

1. if mod (logo(¥),1) #0, Err(v) = [e €]
- 2, otherwise

> e =max(
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An interval arithmetic based model

m For each coefficient or variable v, we keep track of 2 intervals Val(v) and Err(v)
m Our model assumes a fixed word-length k

Val(v) is the range of v Err(v) encloses the
m the format Q,; of v is deduced from rounding error of
Val(v) = [v, V] computing v
. - e Pof ®m a bound e on rounding
i= [logz(max(|!|»|v|))] I f=k=i errors is deduced from

1. if mod (logo(¥),1) #0, Err(v) = [e €]
- 2, otherwise

> e =max(
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An interval arithmetic based model

m For each coefficient or variable v, we keep track of 2 intervals Val(v) and Err(v)
m Our model assumes a fixed word-length k

Val(v) is the range of v Err(v) encloses the
m the format Q;, of v is deduced from rounding error of
Val(v) = [v, V] computing v
> = ['092(max(|!|'|vl))] ra "=k : :::::}: Z::urcoeliing:g
e {1, it mod (logp(¥),1) #0, Err(v) = [e,€]
2, otherwise - e=max(e|,

0 ° B ‘{Val(v) = go(Val(v1), Val(v2), Err(vy), Err(v2))
Err(v) = ho(Val(vy), Val(v2), Err(vy), Err(v2))

A A
ag
Val Val
/ﬁi IRy O O%S [+t

How to propagate Val(v) and Err(v) for o € {+, -, x,<,>, /, /}?
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An arithmetic model for fixed-point code synthesis

Fixed-point multiplication
m The output format of a Q;, ;, x Qi,.1, 1S Qi iy 41
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An arithmetic model for fixed-point code synthesis

Fixed-point multiplication
m The output format of a Q;, ;, x Qi,.1, 1S Qi iy 41

val(v) = Val(vy ) x Val(vp)
— Err(v) = val(vy ) x Er(vp)
(i) < En(7)
— f +Err(vy) xErr(vp)
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An arithmetic model for fixed-point code synthesis

Fixed-point multiplication

m The output format of a Q;, ;, x Qi,.1, 1S Qi iy 41
m But, doubling the word-length is costly

ey h
e PR
X

Mt . fr_,
[T T T T T T T
e e T A s s 50 )

Discarded bits

m Err, = |0,27F —2-(fi+R)

Val(v) = Val(vy) x Val(vp ) — Errx
Err(v) =Errx
+Val(vy) x Err(vp)
+Val(vp) x Err(vq)
+Err(vy) xEr(vp)

val(vy) val(vp)
Er(vy) Err(v2)

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks



An arithmetic model for fixed-point code synthesis

Fixed-point multiplication

m The output format of a Q;, ;, x Qi,.1, 1S Qi iy 41
m But, doubling the word-length is costly

Val(v) = Val(vy) x Val(vp ) — Errx
Err(v) =Errx
—_ +Val(vy) x Err(vp)
+Val(vp) x Err(vq)
+Err(vy) xEr(vp)

Py —

e PR

W+ip __  fr
e T o T T T T T T
KOO Y2722z R rerered)

Discarded bits vai(vy) val(v)
Err(vq) Er(vp)

m Err, = |0,27F —2-(fi+R)

m This multiplication is available on integer processors and DSPs

int32_t mul (int32_t wvl, int32_t wv2){
int64_t prod = ((int64_t) vl) * ((int6d_t) v2);
return (int32_t) (prod >> 32);
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An arithmetic model for fixed-point code synthesis

Our new fixed-point division
m The output integer part of Q;, , / Q,,,, may be as large as i1 + f
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An arithmetic model for fixed-point code synthesis

Our new fixed-point division

m The output integer part of Q;, , / Q,,,, may be as large as i1 + f

P R |

P PN
/

My h+k _ [_oip+f ip+fy
OODOO DR = Erry = (-2, 28]

PRy PR /
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An arithmetic model for fixed-point code synthesis

Our new fixed-point division

m The output integer part of Q;, , / Q,,,, may be as large as i1 + f
m But, doubling the word-length is costly

P R |

P PN
/ 2k
Kk )
i 1+ f. nof,
s
= . m Err,=[-2",2"]
[slegerererereiejfoj0j07070707 070", / ’
e R
+ Che
el el e T T T T Ty ”2-9/.9/.1/«//.//.//49”3
~ 1 1 1 1 1 1 ’y NILAL L QLY 2V LN L
—=

ity =
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An arithmetic model for fixed-point code synthesis

Our new fixed-point division

m The output integer part of Q;, , / Q,,,, may be as large as i1 + f
m But, doubling the word-length is costly
= How to obtain sharper a error bounds on Err/?

P R |

P PN

, — . = Err =[-2",2"]
PN ]
[Feieiei-r+r-T+]foTol0t0l0t 00t © sharper bound
e B, O risk of overflow at run-time

- B e

E.)/.a,.a,.” LT T T |£ any)

T e

i == fr
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An arithmetic model for fixed-point code synthesis

Our new fixed-point division

m The output integer part of Q;, , / Q,,,, may be as large as i1 + f
m But, doubling the word-length is costly
= How to obtain sharper a error bounds on Err/?

P R |
P PN
/ Ererymerrer - e

_ [_of of

—— — N m Err, = [-2",2"]

[rel-ereTe-T-[0l0l0l0 00l 0 o © sharper bound
e R © risk of overflow at run-time

: Hocoonoong

E-)/-j/tj/v” T g .:.:. .|E .//47,.2'

2002922427 2002000000
Se— "

S

How to decide of the output format of division?

m A large integer part m A small integer part
v/ prevents overflow X may cause overflow
X loose error bounds and loss of v/ sharp error bounds and more
precision accurate computations
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An arithmetic model for fixed-point code synthesis

The propagation rule and implementation of division

m Once the output format decided Q

ir fr

val(v) = geange(Q;, 1, ) = [-2/ 1,2 =1 _2fr].
-——— Val(vo)-Err(vq)—Val(vq)-Err(vo)

Er(v) = \731(72)-(\7@+Err( VZ)) a4 Err/
— Val( v; — ; ;
m Val(v) = ~( ) nVal(vz) and Val(v) = [-2F1, —2= |y [27F, 21 — 2]
Val(v) +Err,
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An arithmetic model for fixed-point code synthesis

The propagation rule and implementation of division

m Once the output format decided Q

ir fr

val(v) = geange(Q;, 1, ) = [-2/ 1,2 =1 _2fr].
-——— _ Val(vp)-Err(vq)—Val(vq)-Err(vo)
Er(v) = — ————
Val(vp)-(Val(vp)+En(v2))

Val(vy) Val(v2)
Err(vy) Err(v2)

+Err/

_— Val — . .
u Val(vs) = —0)  Val(uy) and Val(v) = [-2/—1, 2] u 2, 201 —21]
Val(v) +Err,

int32_t div (int32_t V1, int32_t V2, uintl6_t eta)
{

int6d_t tl
int6d4_t V

((int6d_t)V1) << eta;
tl / Vv2;

return (int32_t) V;
}
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An arithmetic model for fixed-point code synthesis

The propagation rule and implementation of division

m Once the output format decided Q,, .

val(v) = geange(Q;, 1, ) = [-2/ 1,2 =1 _2fr].
-——— _ Val(vp)-Err(vq)-Val(vq)Err(vp)

Err(v) \731(72)-(\7@+En(v2)) +Err/
— Val( v; — ; ;
m Val(v) = ~( ) nVal(vz) and Val(v) = [-2F1, —2= |y [27F, 21 — 2]
Val(v) +Err,

int32_t div (int32_t V1, int32_t V2, uintl6_t eta)
{

int6d_t tl = ((int6d_t)V1) << eta;

int6d_t Vv = tl1 / V2;

CGPE_ASSERT ( (((V & OxFFFFFFFF8000000011) == OxFFFFFFFF8000000011)
|l ((V & OXFFFFFFFF8000000011) == 0)));

return (int32_t) V;

m Additional code to check for run-time overflows
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The division format trade-off: case of inverting 2 x 2 matrices

a
m Consider A= (

b
d) with a,b,¢,d € [-1,1] in the format Q3
c
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An arithmetic model for fixed-point code synthesis

The division format trade-off: case of inverting 2 x 2 matrices

a
m Consider A= (
c

b
d) with a,b,¢,d € [-1,1] in the format Q3

|

m Cramer'srule: if A=ad—bc#0then A' = (

>l pla
Bl B
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An arithmetic model for fixed-point code synthesis

The division format trade-off: case of inverting 2 x 2 matrices

a
m Consider A= (
c

b
d) with a,b,¢,d € [-1,1] in the format Q3

|

m Cramer'srule: if A=ad—bc#0then A' = (

>l pla
Bl B
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The division format trade-off: case of inverting 2 x 2 matrices

a b
m Consider A= ( d) with a,b,¢,d € [-1,1] in the format Q3
c

|

m Cramer'srule: if A=ad—bc#0then A' = (

>l pla
Bl B
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The division format trade-off: case of inverting 2 x 2 matrices

a b
m Consider A= ( d) with a,b,¢,d € [-1,1] in the format Q3
c

|

m Cramer'srule: if A=ad—bc#0then A' = (

>l pla
Bl B
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The division format trade-off: case of inverting 2 x 2 matrices

a b
m Consider A= ( d) with a,b,¢,d € [-1,1] in the format Q3
c

|

m Cramer'srule: if A=ad—bc#0then A' = (

>l pla
Bl B

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS)

Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks



The division format trade-off: case of inverting 2 x 2 matrices

a b
m Consider A= J with a,b,¢,d € [-1,1] in the format Q3

Cc
d =b
m Cramersrule: if A=ad—bc#0Othen A~ =| 2 2
A A
100%
o-11 |
-180%
<]
5 o-16
= —e— Maximum error
S —=— Overflow rate -160%
£ 21 |
5 2
Qo
x
£ - 40%
x
©
=
ost | +20%
2736 | | | | | | | | |
0%
2, Qf&,,, % o‘«?@, % % % % '%330

3 %
DIVISION OUTPUT FORMAT
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The division format trade-off: case of inverting 2 x 2 matrices

a b
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Outline of the talk

2. An implementation of the arithmetic model: the CGPE tool
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An implementation of the arithmetic model: the CGPE tool

m CGPE (Code Generation for Polynomial Evaluation): initiated by Revy [MR11]
> synthesizes fixed-point code for polynomial evaluation
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An implementation of the arithmetic model: the CGPE tool

The CGPE tool

m CGPE (Code Generation for Polynomial Evaluation): initiated by Revy [MR11]
> synthesizes fixed-point code for polynomial evaluation
AN
I_ ) h
1

| Set of DAGs

v

1. Computation step ~- front-end
> computes evaluation schemes ~~ DAGs

Front-end
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An implementation of the arithmetic model: the CGPE tool

The CGPE tool

m CGPE (Code Generation for Polynomial Evaluation): initiated by Revy [MR11]
> synthesizes fixed-point code for polynomial evaluation

1. Computation step ~- front-end
» computes evaluation schemes ~~ DAGs

Front-end

2. Filtering step ~~ middle-end Middle-end | Setof DAGs

> applies the arithmetic model
> prunes the DAGs that do not satisfy different
criteria:

* latency ~+ scheduling filter
* accuracy ~~ numerical filter

L e e e e e e

i Decorated DAGs
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An implementation of the arithmetic model: the CGPE tool

The CGPE tool

m CGPE (Code Generation for Polynomial Evaluation): initiated by Revy [MR11]
> synthesizes fixed-point code for polynomial evaluation

1. Computation step ~- front-end
» computes evaluation schemes ~~ DAGs

Front-end

Set of DAGs

2. Filtering step ~~ middle-end Middle-end !

> applies the arithmetic model
> prunes the DAGs that do not satisfy different
criteria:

* latency ~+ scheduling filter
* accuracy ~~ numerical filter

L e e e e e e

Back-end \Decorated DAGs

3. Generation step ~+ back-end —
> generates C codes and Gappa accuracy
certificates m IG—apE VHDL

i
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Code synthesis for an IR filter using CGPE

m Low-pass Butterworth filter with cutoff frequency 0.3 - m:

yIK =53 o bi-ulk-11-53, aj-ylk~i]

<dotproduct inf="0xble91685" sup="0x4el6e97b" integer_width="6" fraction_width="26" width="32">
<coefficient name="b0" value="0x65718e3b" integer_width= fraction_width="35" width="32"/>

<variable name="y3" inf="0xble91685" sup="0xdel6e37b" integer_width="6" fraction_width="26" width="32"/>
</dotproduct >
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Code synthesis for an IR filter using CGPE

m Low-pass Butterworth filter with cutoff frequency 0.3 - m:

yIK =53 o bi-ulk-11-53, aj-ylk~i]

<dotproduct inf="0xble91685" sup="0x4el6e97b" integer_width="6" fraction_width="26" width="32">
<coefficient name="b0" value="0x65718e3b" integer_width="-3" fraction_width="35" width="32"/>

<variable name="y3" inf="0xble91685" sup="0x4el6e97b" integer_width="6" fraction_width="26" width="32"/>

</dotproduct >

Original signal ——
Filtered in fixed-point using Sy
Filtered in binary64 e

Amplitude
=




Code synthesis for an IR filter using CGPE

m Low-pass Butterworth filter with cutoff frequency 0.3 - m:

yIK =53 o bi-ulk-11-53, aj-ylk~i]

6" fraction_width="26" width="32">

<dotproduct inf="0xble91685" sup="0x4el6e97b" integer_width="
35" widt 32"/>

<coefficient name="b0" value="0x65718e3b" integer_width="-3" fraction_width

<variable name="y3" inf="0xble91685" sup="0xdel6e97b" integer_width="6" fraction_width="26" width="32"/>
</dotproduct >

15 0
Original signal —— Certified error bound
Filtered in fixed-point using Sy Error of the fixed-point impl. using S -
10 Filtered in binary6 e -10 Error of the binary32 impl. -
Error of the binary64 impl. ——

-16.76

Amplitude
=
log, (Err)




An implementation of the arithmetic mod

Code synthesis for an IR filter using CGPE
m Low-pass Butterworth filter with cutoff frequency 0.3 - m:

yIK =53 o bi-ulk-11-53, aj-ylk~i]

int32_t filter( int32_t ul /*Q5.27*/ , int32_t ul 7208 AT
int32_t u2 I=@8 B1%) p AE3Z_ B3 A28 BT ¢
int32_t yl /*Q6.26*/ , int32_t y2 /*Q6.26%/ ,
int32_t y3 /*Q6.26%/ )
{ //Formats Err
int32_t mul (Ox4a5cdb26, yl); //Q8.24 [-2~{-24},0]
int32_t mul (Oxa6eb5908, y2); //Q7.25 [=8%(=25},0]
int32_t mul (0x4688a637, y3); //Q5.27 [-27{-27},0]
int32_t mul (0x65718e3b, ul); //Q2 .30 [-27{-30},0]
int32_t mul (0x65718e3b, u3); //Q2 .30 [-2~{-30},0]
int32_t r3 + ré4; //Q2.30 [-27{-29},0]
int32_t r5 >> 2; //Q4 .28 [-27{-27.6781},0]
int32_t mul (0Ox4cl52aad, ul); //Q4 .28 [-27{-28},0]
int32_t mul (Ox4cl52aad, u2); //Q4 .28 [-2~{-28},0]
int32_t r7 + r8; //Q4 .28 [=2%{=27)} ;0]
int32_t r6 + r9; //Q4.28 [-27{-26.2996},0]
int32_t rlo >> 1; //Q5.27 [-27{-25.9125},0]1
int32_t r2 + rll; //Q5.27 [=22{[=28,386i] , 0]
int32_t rl2 >> 2; //Q7.25 [-27{-24.3853},0]
int32_t rl + rl3; //Q7.25 [-27{-23.6601},0]
int32_t rld >> 1; //Q8 .24 [-2~{-23.1798},0]1
int32_t r0 + rl5; //Q8 .24 [-2~{-22.5324},0]
int32_t rlée << 2; //Q6.26 [-27{-22.5324},0]
return rl7;
}

Najahi (DALI UPVD/LIRMM Synthesis of certified programs in fix oint arithmeti i o linear algebra basic blocks



Outline of the talk

3. Fixed-point code synthesis for linear algebra basic blocks
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A strategy to synthesize code for matrix inversion

Let M be a matrix of fixed-point variables,

to generate certified code that inverts M’ € M a symmetric positive definite, we need to:

1. Generate certified code to compute B a lower triangular s.t. M' = B-B'
2. Generate certified code to compute N = B~
3. Generate certified code to compute M'~'=NT-N
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A strategy to synthesize code for matrix inversion

Let M be a matrix of fixed-point variables,

to generate certified code that inverts M’ € M a symmetric positive definite, we need to:

1. Generate certified code to compute B a lower triangular s.t. M' = B-B'
2. Generate certified code to compute N = B~
3. Generate certified code to compute M'~'=NT-N

The basic blocks we need to include in our tool-chain

m Certified code synthesis for Cholesky decomposition

Cholesky

decomposition
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A strategy to synthesize code for matrix inversion

Let M be a matrix of fixed-point variables,

to generate certified code that inverts M’ € M a symmetric positive definite, we need to:

1. Generate certified code to compute B a lower triangular s.t. M' = B-B'
2. Generate certified code to compute N = B~
3. Generate certified code to compute M'~'=NT-N

The basic blocks we need to include in our tool-chain

m Certified code synthesis for Cholesky decomposition Triangular
- . . . . Cholesk
m Certified code synthesis for triangular matrix inversion ‘ matrix
decomposition
inversion
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A strategy to synthesize code for matrix inversion

Let M be a matrix of fixed-point variables,

to generate certified code that inverts M’ € M a symmetric positive definite, we need to:

1. Generate certified code to compute B a lower triangular s.t. M' = B-B'
2. Generate certified code to compute N = B~
3. Generate certified code to compute M'~'=NT-N

The basic blocks we need to include in our tool-chain

m Certified code synthesis for Cholesky decomposition Triangular
- . . . . Cholesk Matrix
m Certified code synthesis for triangular matrix inversion ! matrix

decomposition multiplication

m Certified code synthesis for matrix multiplication inversion
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Linear algebra basic blocks

Triangular
matrix
inversion

Cholesky Matrix

decomposition ultiplication
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Linear algebra basic blocks

Triangular
matrix
inversion

Cholesky Matrix

decomposition ultiplication|
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Cholesky decomposition and triangular matrix inversion

Cholesky decomposition Triangular matrix inversion
Ve iti=]j 1 j
_ bi i
bi,j = Cij . ni,j = —C,'j
o fi#] —L i)
bj,j bii #J
) = i1
with ¢jj = mj; - Z bi i - bj where ¢;j = Z bjk - Nk j
k=0 k=j
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Fixed-point code synthesis for linear algebra basic blocks

Cholesky decomposition and triangular matrix inversion

Cholesky decomposition Triangular matrix inversion
VGii ifi=j L ifi=j
_ bi i
bi,j - Cij . ni,j = —C,'j
o fi#] —L i)
bj,j bii #J
) = i1
with ¢j; = mj;— bik - bjk where ¢;j = Z bjk - Nk j
k=0 k=j

Dependencies of the coefficient by » in the decomposition and inversion of a 6 x 6 matrix.
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Fixed-point code synthesis for linear algebra basic blocks

FPLA (Fixed-Point Linear Algebra)

User options

Coefficients

and vari-
ables

Problem dispatcher

Dot-product solver

Matrix multipli-
cation solver

Triangular matrix
inversion solver

Cholesky decom-
position solver

90BUBIUI IdDD-V1dd

Certificates
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Fixed-point code synthesis for linear algebra basic blocks

Impact of the output format of division

Different functions to set the output format of division
1. f(iy,i2) =t, 3. f3(fy,ip) = max(it, i) + t,
2. f(ir, i) =min(iy,iz) +1, 4. fa(ir, i) = [(ih +i2) /2] + ¢,

iy and ix: integer parts of the numerator and denominator and t € [-2, 8]

? 2
20 20 H
ol
5 28 . 5 28
g g
g 210 g 10
z 1 ]
£ s Pre E yl5
g g
= =
2720 2720
525 225
230 ¥ 230
2 0 2 4 6 8 2 0 2 4 6 8
User defined parameter t User defined parameter t
(a) Cholesky 5 x 5. (b) Triangular 10 x 10.

Maximum errors with various functions used to determine the output formats of division.
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How fast is generating triangular matrix inversion codes?

m We use f(is,i2) = [ (i1 +i2) /2] + 1 to set the output format of division

14

12 |

10 |

Time in seconds

5 10 15 20 25 30 35 40
Matrix size

Generation time for the inversion of triangular matrices of size 4 to 40.
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How fast is generating triangular matrix inversion codes?

m We use f(is,i2) = [ (i1 +i2) /2] + 1 to set the output format of division

25
‘ Certified error bound —=—
Maximum experimental error ----e---- P
20 /4
95 f\/—'
4 "_._4
9-10 e

'\-/ ,""‘/
v e
ad
2-20 JI/./J — ."‘ "

Error
)
|
L
5
»
Q
¥
e
Y
¥

5 10 15 20 25 30 35 40
Matrix size

Error bounds and experimental errors for the inversion of triangular matrices of size 4 to 40.
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Decomposing some well known matrices

m 2 ill-conditioned matrices: Hilbert and Cauchy
m 2 well-conditioned matrices: KMS and Lehmer

10'

KMS ——3
1016 || Lehmer oo
Prolate ez
101 || Hilbert zzzzz

10
1010 |
108 +
106 |

Condition number

10 +
102 |

100

Matrix size
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Decomposing some well known matrices

m 2 ill-conditioned matrices: Hilbert and Cauchy
m 2 well-conditioned matrices: KMS and Lehmer

108
KMS ——3
1016 || Lehmer oo
Prolate R
101 || Hilbert zzzzz
Cauchy o
g 102} 5
E 5
Z 100 E
g ol £
é 10° | >
10t ¢
102
10°
5 10 15
Matrix size Matrix size

m lll-conditioned matrices tend to overflow more often
> similar behaviour in floating-point arithmetic
m The decompositions of KMS and Lehmer are highly accurate
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Fixed-point code synthesis for linear algebra basic blocks

Conclusions and perspectives

Contributions
m Formalization and implementation of an arithmetic model
> allows certification > handles ,/and /
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Fixed-point code synthesis for linear algebra basic blocks

Conclusions and perspectives

Contributions
m Formalization and implementation of an arithmetic model
> allows certification > handles ,/and /

= Adaptation of the CGPE tool to the model:
> generates code for fine grained expressions > instruction selection
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Fixed-point code synthesis for linear algebra basic blocks

Conclusions and perspectives

Contributions
m Formalization and implementation of an arithmetic model
> allows certification > handles ,/and /

= Adaptation of the CGPE tool to the model:
> generates code for fine grained expressions > instruction selection

m Development of FPLA:
> automated and certified code synthesis for linear algebra basic block

— Cholesky decomposition and triangular matrix inversion: study of divisions’ impact
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Fixed-point code synthesis for linear algebra basic blocks

Conclusions and perspectives

Contributions
m Formalization and implementation of an arithmetic model
> allows certification > handles ,/and /

= Adaptation of the CGPE tool to the model:
> generates code for fine grained expressions > instruction selection

m Development of FPLA:
> automated and certified code synthesis for linear algebra basic block

— Cholesky decomposition and triangular matrix inversion: study of divisions’ impact

Perspectives
m Integrate the matrix inversion flow

Triangular
Cholesky Matrix
matrix
decomposition multiplication
inversion
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Fixed-point code synthesis for linear algebra basic blocks

Conclusions and perspectives

Contributions
m Formalization and implementation of an arithmetic model
> allows certification > handles ,/and /

= Adaptation of the CGPE tool to the model:
> generates code for fine grained expressions > instruction selection

m Development of FPLA:
> automated and certified code synthesis for linear algebra basic block

— Cholesky decomposition and triangular matrix inversion: study of divisions’ impact

Perspectives
m Integrate the matrix inversion flow

Triangular
Cholesky Matrix
matrix
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