Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks
Mohamed Amine Najahi

To cite this version:

HAL Id: lirmm-01277374
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01277374
Submitted on 22 Feb 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks

Amine Najahi

Univ. Perpignan Via Domitia, DALI project-team
Univ. Montpellier 2, LIRMM, UMR 5506
CNRS, LIRMM, UMR 5506
Which arithmetic for computational tasks?

<table>
<thead>
<tr>
<th>Floating-point computations</th>
<th>Fixed-point computations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Easy and fast to implement</td>
<td>Requires dedicated hardware</td>
</tr>
<tr>
<td>Easily portable</td>
<td>Slow if emulated in software</td>
</tr>
<tr>
<td>IEEE754</td>
<td>§</td>
</tr>
</tbody>
</table>

Floating-point computations are easy and fast to implement and easily portable, but they require dedicated hardware and can be slow if emulated in software. On the other hand, fixed-point computations might be tedious and time-consuming to implement, with more than 50% of design time required according to [Wil98]. Fixed-point computations rely only on integer instructions and are efficient for embedded systems, such as µ-controllers, DSPs, and FPGAs, which have efficient integer instructions. However, making fixed-point arithmetic easy, fast, and numerically safe to use by non-expert programmers remains a challenge.
Which arithmetic for computational tasks?

<table>
<thead>
<tr>
<th>Floating-point computations</th>
<th>Fixed-point computations</th>
</tr>
</thead>
<tbody>
<tr>
<td>😊 Easy and fast to implement</td>
<td>😞 Tedious and time consuming to implement</td>
</tr>
<tr>
<td>😊 Easily portable [IEEE754]</td>
<td>• > 50% of design time [Wil98]</td>
</tr>
</tbody>
</table>
Which arithmetic for computational tasks?

<table>
<thead>
<tr>
<th>Floating-point computations</th>
<th>Fixed-point computations</th>
</tr>
</thead>
<tbody>
<tr>
<td>😊 Easy and fast to implement</td>
<td>😞 Tedious and time consuming to implement</td>
</tr>
<tr>
<td>😊 Easily portable [IEEE754]</td>
<td>• > 50% of design time [Wil98]</td>
</tr>
<tr>
<td>😞 Requires dedicated hardware</td>
<td>😊 Relies only on integer instructions</td>
</tr>
<tr>
<td>😞 Slow if emulated in software</td>
<td>😊 Efficient</td>
</tr>
</tbody>
</table>

[IEEE754] refers to the Institute of Electrical and Electronics Engineers' standard for floating-point arithmetic. [Wil98] refers to the work of Wilfried.
Which arithmetic for computational tasks?

Floating-point computations
- Easy and fast to implement
- Easily portable [IEEE754]
- Requires dedicated hardware
- Slow if emulated in software

Fixed-point computations
- Tedious and time consuming to implement
 - > 50% of design time [Wil98]
- Relies only on integer instructions
- Efficient

Embedded systems targets
- μ-controllers
- DSPs
- FPGAs

→ have efficient integer instructions

- Fixed-point arithmetic is well suited for embedded systems
Which arithmetic for computational tasks?

<table>
<thead>
<tr>
<th>Floating-point computations</th>
<th>Fixed-point computations</th>
</tr>
</thead>
<tbody>
<tr>
<td>😊 Easy and fast to implement</td>
<td>😊 Tedious and time consuming to implement</td>
</tr>
<tr>
<td>😊 Easily portable [IEEE754]</td>
<td>🔴 > 50% of design time [Wil98]</td>
</tr>
<tr>
<td>😞 Requires dedicated hardware</td>
<td>😊 Relies only on integer instructions</td>
</tr>
<tr>
<td>😞 Slow if emulated in software</td>
<td>😊 Efficient</td>
</tr>
</tbody>
</table>

Embedded systems targets

- µ-controllers
- DSPs
- FPGAs

→ have efficient integer instructions

- Fixed-point arithmetic is well suited for embedded systems

But, how to make it easy, fast, and numerically safe to use by non-expert programmers?
The DEFIS approach

DEFIS (ANR, 2011-2015)

Goal: develop techniques and tools to automate fixed-point programming
The DEFIS approach

- **DEFIS (ANR, 2011-2015)**

 Goal: develop techniques and tools to automate fixed-point programming

- Combines conversion and IP block synthesis

 - Ménard *et al.* (CAIRN, Univ. Rennes) [MCCS02]:
 - automatic float-to-fix conversion

 - Didier *et al.* (PEQUAN, Univ. Paris) [LHD14]:
 - code generation for the linear filter IP block
The DEFIS approach

- **DEFIS** (ANR, 2011-2015)

 Goal: develop techniques and tools to automate fixed-point programming

- Combines conversion and IP block synthesis

 - Ménard *et al.* (CAIRN, Univ. Rennes) [MCCS02]:
 - automatic float-to-fix conversion

 - Didier *et al.* (PEQUAN, Univ. Paris) [LHD14]:
 - code generation for the linear filter IP block

 - Our approach (DALI, Univ. Perpignan):
 - certified fixed-point synthesis for:
 - **Fine grained IP blocks:** dot-products, polynomials, ...
 - **High level IP blocks:** matrix multiplication, triangular matrix inversion, Cholesky decomposition

Implementation tools

Infrastructure for the design of fixed-point systems

- **Algorithm level optimization**
 - IWL Determination
 - Dynamic Range evaluation
 - FWL Determination

- **System level optimization**
 - S2S transformation
 - Specific block generation

- **Back-end**
 - Fixed-point C code

- **Application description**
 - Floating-point C code
 - Parameterized IP blocks

Accuracy constraint

Architecture model

- Validation & Optimization
- Accuracy evaluation

High level Synthesis

- Compiler

Parameterized IP blocks

Architecture
The DEFIS approach

- DEFIS (ANR, 2011-2015)

 Goal: develop techniques and tools to automate fixed-point programming

- Combines conversion and IP block synthesis

 ▶ Ménard *et al.* (CAIRN, Univ. Rennes) [MCCS02]:
 - automatic float-to-fix conversion

 ▶ Didier *et al.* (PEQUAN, Univ. Paris) [LHD14]:
 - code generation for the linear filter IP block

 ▶ Our approach (DALI, Univ. Perpignan):
 - certified fixed-point synthesis for:
 - **Fine grained IP blocks:** dot-products, polynomials, ...
 - **High level IP blocks:** matrix multiplication, triangular matrix inversion, Cholesky decomposition

- **Long term objective:** code synthesis for matrix inversion
Our road-map

How to generate certified fixed-point code for matrix inversion?
Our road-map

How to generate certified fixed-point code for matrix inversion?

1. Specify an arithmetic model
 ▶ Contributions:
 • formalization of √ and /

2. Build a synthesis tool, CGPE, for fine grained IP blocks:
 ▶ Contributions:
 • implementation of the arithmetic model

3. Build a second synthesis tool, FPLA, for algorithmic IP blocks:
 ▶ it generates code using CGPE
 • trade-off implementations for matrix multiplication
 • code synthesis for Cholesky decomposition and triangular matrix inversion
Our road-map

How to generate certified fixed-point code for matrix inversion?

1. Specify an arithmetic model
 ▶ Contributions:
 • formalization of \(\sqrt{}\) and \(/\)

2. Build a synthesis tool, CGPE, for fine grained IP blocks:
 ▶ it adheres to the arithmetic model
 ▶ Contributions:
 • implementation of the arithmetic model
Our road-map

How to generate certified fixed-point code for matrix inversion?

1. Specify an arithmetic model
 ▶ Contributions:
 • formalization of $\sqrt{}$ and $/$

2. Build a synthesis tool, CGPE, for fine grained IP blocks:
 ▶ it adheres to the arithmetic model
 ▶ Contributions:
 • implementation of the arithmetic model

3. Build a second synthesis tool, FPLA, for algorithmic IP blocks:
 ▶ it generates code using CGPE
 ▶ Contributions:
 • trade-off implementations for matrix multiplication
 • code synthesis for Cholesky decomposition and triangular matrix inversion
Outline of the talk

1. An arithmetic model for fixed-point code synthesis

2. An implementation of the arithmetic model: the CGPE tool

3. Fixed-point code synthesis for linear algebra basic blocks
Outline of the talk

1. An arithmetic model for fixed-point code synthesis

2. An implementation of the arithmetic model: the CGPE tool

3. Fixed-point code synthesis for linear algebra basic blocks
Fixed-point arithmetic numbers

A fixed-point number x is defined by two integers:

- X the k-bit integer representation of x
- f the implicit scaling factor of x

The value of x is given by:

$$x = \frac{X}{2^f} = \sum_{\ell=-f}^{k-1-f} X_{\ell+f} \cdot 2^\ell$$
Fixed-point arithmetic numbers

A fixed-point number x is defined by two integers:

- X the k-bit integer representation of x
- f the implicit scaling factor of x

The value of x is given by $x = \frac{X}{2^f} = \sum_{\ell=-f}^{k-1-f} X_{\ell+f} \cdot 2^\ell$

Notation

A fixed-point number with i bits of integer part and f bits of fraction part is in the $Q_{i,f}$ format
Fixed-point arithmetic numbers

A fixed-point number \(x \) is defined by two integers:

- \(X \) the \(k \)-bit integer representation of \(x \)
- \(f \) the implicit scaling factor of \(x \)

\[x = \frac{X}{2^f} = \sum_{\ell=-f}^{k-1-f} X_{\ell+f} \cdot 2^\ell \]

Notation

A fixed-point number with \(i \) bits of integer part and \(f \) bits of fraction part is in the \(Q_{i,f} \) format

Example:

- \(x \) in \(Q_{3,5} \) and \(X = (10011000)_2 = (152)_{10} \) \(\rightarrow \) \(x = (100.11000)_2 = (4.75)_{10} \)
Fixed-point arithmetic numbers

A fixed-point number x is defined by two integers:

- X the k-bit integer representation of x
- f the implicit scaling factor of x

The value of x is given by $x = \frac{X}{2^f} = \sum_{\ell = -f}^{k-1-f} X_{\ell+f} \cdot 2^{\ell}$

Notation

A fixed-point number with i bits of integer part and f bits of fraction part is in the $Q_{i,f}$ format.

Example:

- x in $Q_{3,5}$ and $X = (10011000)_2 = (152)_{10}$ \rightarrow $x = (100.11000)_2 = (4.75)_{10}$

How to compute with fixed-point numbers?
An interval arithmetic based model

- For each coefficient or variable v, we keep track of 2 intervals $\text{Val}(v)$ and $\text{Err}(v)$
- Our model assumes a fixed word-length k

$\text{Val}(v)$ is the range of v

$\text{Err}(v)$ encloses the rounding error of computing v
An arithmetic model for fixed-point code synthesis

An interval arithmetic based model

- For each coefficient or variable v, we keep track of 2 intervals $Val(v)$ and $Err(v)$
- Our model assumes a fixed word-length k

$Val(v)$ is the range of v

- the format $Q_{i,f}$ of v is deduced from $Val(v) = [v, \bar{v}]$

- $i = \left\lfloor \log_2 (\max(|v|, |\bar{v}|)) \right\rfloor + \alpha$

- $f = k - i$

$Err(v)$ encloses the rounding error of computing v

- a bound ϵ on rounding errors is deduced from $Err(v) = [e, \bar{e}]$

- $\epsilon = \max(|e|, |\bar{e}|)$
An arithmetic model for fixed-point code synthesis

An interval arithmetic based model

- For each coefficient or variable \(v \), we keep track of 2 intervals \(\text{Val}(v) \) and \(\text{Err}(v) \)
- Our model assumes a fixed word-length \(k \)

\(\text{Val}(v) \) is the range of \(v \)

- the format \(Q_{i,f} \) of \(v \) is deduced from \(\text{Val}(v) = [\underline{v}, \overline{v}] \)

\[i = \left\lfloor \log_2 \left(\max(|\underline{v}|, |\overline{v}|) \right) \right\rfloor + \alpha \]

\[f = k - i \]

\[\alpha = \begin{cases}
1, & \text{if } \text{mod} \left(\log_2(\overline{v}), 1 \right) \neq 0, \\
2, & \text{otherwise}
\end{cases} \]

\(\text{Err}(v) \) encloses the rounding error of computing \(v \)

- a bound \(\epsilon \) on rounding errors is deduced from \(\text{Err}(v) = [\underline{e}, \overline{e}] \)

\[\epsilon = \max (|\underline{e}|, |\overline{e}|) \]
An arithmetic model for fixed-point code synthesis

An interval arithmetic based model

- For each coefficient or variable \(v \), we keep track of 2 intervals \(\text{Val}(v) \) and \(\text{Err}(v) \)
- Our model assumes a fixed word-length \(k \)

\text{Val}(v) \) is the range of \(v \)

- the format \(Q_{i,f} \) of \(v \) is deduced from
 \[\text{Val}(v) = [v, \bar{v}] \]
 - \(i = \left\lfloor \log_2 \left(\max(|v|, |\bar{v}|) \right) \right\rfloor + \alpha \)
 - \(f = k - i \)
 \[\alpha = \begin{cases}
 1, & \text{if } \text{mod} \left(\log_2(\bar{v}), 1 \right) \neq 0, \\
 2, & \text{otherwise}
 \end{cases} \]

\text{Err}(v) \) encloses the rounding error of computing \(v \)

- a bound \(\epsilon \) on rounding errors is deduced from
 \[\text{Err}(v) = [e, \bar{e}] \]
 - \(\epsilon = \max(|e|, |\bar{e}|) \)

How to propagate \(\text{Val}(v) \) and \(\text{Err}(v) \) for \(\diamond \in \{+, -, \times, \ll, \gg, \sqrt{}, /\} \)?
Fixed-point multiplication

- The output format of a $\mathbb{Q}_{i_1.f_1} \times \mathbb{Q}_{i_2.f_2}$ is $\mathbb{Q}_{i_1 + i_2.f_1 + f_2}$
Fixed-point multiplication

- The output format of a $Q_{i_1.f_1} \times Q_{i_2.f_2}$ is $Q_{i_1 + i_2.f_1 + f_2}$

\[
Val(v) = Val(v_1) \times Val(v_2) \\
Err(v) = Val(v_1) \times Err(v_2) + Val(v_2) \times Err(v_1) + Err(v_1) \times Err(v_2)
\]
Fixed-point multiplication

- The output format of a $Q_{i_1.f_1} \times Q_{i_2.f_2}$ is $Q_{i_1 + i_2.f_1 + f_2}$
- But, doubling the word-length is costly

\[\text{Err}_x = \left[0, 2^{-f_r} - 2^{-(f_1 + f_2)} \right] \]
Fixed-point multiplication

- The output format of a $\mathbb{Q}_{i_1,f_1} \times \mathbb{Q}_{i_2,f_2}$ is $\mathbb{Q}_{i_1 + i_2, f_1 + f_2}$
- But, doubling the word-length is costly

$$
\text{Discarded bits}
$$

$$
\text{Err}_x = \left[0, 2^{-f_r} - 2^{-(f_1 + f_2)} \right]
$$

- This multiplication is available on integer processors and DSPs

```c
int32_t mul (int32_t v1, int32_t v2){
    int64_t prod = ((int64_t) v1) * ((int64_t) v2);
    return (int32_t) (prod >> 32);
}
```
Our new fixed-point division

- The output integer part of $Q_{i_1.f_1}/Q_{i_2.f_2}$ may be as large as $i_1 + f_2$.

\[\frac{i_1}{i_2} \]
Our new fixed-point division

- The output integer part of $Q_{i_1.f_1} / Q_{i_2.f_2}$ may be as large as $i_1 + f_2$

$$\text{Err}_/ = [-2^{i_2+f_1}, 2^{i_2+f_1}]$$
Our new fixed-point division

- The output integer part of $Q_{i_1.f_1}/Q_{i_2.f_2}$ may be as large as $i_1 + f_2$
- But, doubling the word-length is costly

$$\text{Err}/ = [-2^{f_r}, 2^{f_r}]$$
Our new fixed-point division

- The output integer part of $Q_{i_1.f_1}/Q_{i_2.f_2}$ may be as large as $i_1 + f_2$
- But, doubling the word-length is costly
- How to obtain sharper error bounds on $Err/\$?

$$Err/ = [-2^{f_r}, 2^{f_r}]$$

- sharper bound
- risk of overflow at run-time
Our new fixed-point division

- The output integer part of $Q_{i_1.f_1}/Q_{i_2.f_2}$ may be as large as $i_1 + f_2$
- But, doubling the word-length is costly
- How to obtain sharper error bounds on $Err_/$?

$Err_/ = [-2^{f_r}, 2^{f_r}]$

- sharper bound
- risk of overflow at run-time

How to decide on the output format of division?

- A large integer part
 - ✓ prevents overflow
 - ☒ loose error bounds and loss of precision

- A small integer part
 - ☒ may cause overflow
 - ✓ sharp error bounds and more accurate computations
The propagation rule and implementation of division

- Once the output format decided $Q_{ir,fr}$

\[
\text{Val}(v) = \text{Range}(Q_{ir,fr}) = [-2^{ir-1}, 2^{ir-1} - 2^{fr}].
\]

\[
\text{Err}(v) = \frac{\text{Val}(v_2) \cdot \text{Err}(v_1) - \text{Val}(v_1) \cdot \text{Err}(v_2)}{\text{Val}(v_2) \cdot (\text{Val}(v_2) + \text{Err}(v_2))} + \text{Err}/Val(v_1) \text{Err}(v_1) \text{Val}(v_2) \text{Err}(v_2)
\]

- $\text{Val}(v_2) = \frac{\text{Val}(v_1)}{\text{Val}(v) + \text{Err}/} \cap \text{Val}(v_2)$ and $\text{Val}(v) = [-2^{ir-1}, -2^{fr}] \cup [2^{-fr}, 2^{ir-1} - 2^{fr}]$
The propagation rule and implementation of division

Once the output format decided $Q_{ir.fr}$

\[
\text{Val}(v) = \text{Range}(Q_{ir.fr}) = [-2^{ir-1}, 2^{ir-1} - 2^{fr}].
\]

\[
\text{Err}(v) = \frac{\text{Val}(v_2) \cdot \text{Err}(v_1) - \text{Val}(v_1) \cdot \text{Err}(v_2)}{\text{Val}(v_2) \cdot (\text{Val}(v_2) + \text{Err}(v_2))} + \text{Err}/\text{Val}(v_1) \cdot \text{Err}(v_1) \cdot \text{Val}(v_2) \cdot \text{Err}(v_2)
\]

\[
\text{Val}(v_2) = \frac{\text{Val}(v_1)}{\text{Val}(v) + \text{Err}/\text{Val}(v_2)} \cap \text{Val}(v_2) \text{ and } \text{Val}(v) = [-2^{ir-1}, -2^{-fr}] \cup [2^{-fr}, 2^{ir-1} - 2^{fr}]
\]

```c
int32_t div (int32_t V1, int32_t V2, uint16_t eta)
{
    int64_t t1 = ((int64_t)V1) << eta;
    int64_t V = t1 / V2;

    return (int32_t) V;
}
```
The propagation rule and implementation of division

- Once the output format decided $Q_{ir,fr}$

- $\text{Val}(v) = \text{Range}(Q_{ir,fr}) = [-2^{ir-1}, 2^{ir-1} - 2^{fr}]$.

- $\text{Err}(v) = \frac{\text{Val}(v_2) \cdot \text{Err}(v_1) - \text{Val}(v_1) \cdot \text{Err}(v_2)}{\text{Val}(v_2) \cdot (\text{Val}(v_2) + \text{Err}(v_2))} + \text{Err}/\text{Val}(v_1) \text{Err}(v_1)$

- $\text{Val}(v_2) = \frac{\text{Val}(v_1)}{\text{Val}(v) + \text{Err}} \cap \text{Val}(v_2)$ and $\text{Val}(v) = [-2^{ir-1}, -2^{-fr}] \cup [2^{-fr}, 2^{ir-1} - 2^{fr}]$

```c
int32_t div (int32_t V1, int32_t V2, uint16_t eta)
{
    int64_t t1 = ((int64_t) V1) << eta;
    int64_t V = t1 / V2;
    CGPE_ASSERT(((V & 0xFFFFFFFF80000000ll) == 0xFFFFFFFF80000000ll)
        || ((V & 0xFFFFFFFF80000000ll) == 0));
    return (int32_t) V;
}
```

- Additional code to check for run-time overflows
The division format trade-off: case of inverting 2×2 matrices

Consider $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $a, b, c, d \in [-1, 1]$ in the format $\mathbb{Q}_{2.30}$.
The division format trade-off: case of inverting 2×2 matrices

- Consider $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $a, b, c, d \in [-1, 1]$ in the format $\mathbb{Q}_{2.30}$

- Cramer’s rule: if $\Delta = ad - bc \neq 0$ then $A^{-1} = \begin{pmatrix} d/\Delta & -b/\Delta \\ -c/\Delta & a/\Delta \end{pmatrix}$
The division format trade-off: case of inverting 2×2 matrices

Consider $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $a, b, c, d \in [−1, 1]$ in the format $\mathbb{Q}_{2.30}$.

Cramer’s rule: if $\Delta = ad - bc \neq 0$ then $A^{-1} = \begin{pmatrix} \frac{d}{\Delta} & \frac{-b}{\Delta} \\ \frac{-c}{\Delta} & \frac{a}{\Delta} \end{pmatrix}$.
The division format trade-off: case of inverting 2×2 matrices

- Consider $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $a, b, c, d \in [-1, 1]$ in the format $\mathbb{Q}_{2.30}$.

- Cramer's rule: if $\Delta = ad - bc \neq 0$ then $A^{-1} = \begin{pmatrix} \frac{d}{\Delta} & \frac{-b}{\Delta} \\ \frac{-c}{\Delta} & \frac{a}{\Delta} \end{pmatrix}$.

\[\begin{array}{c}
[{-1,1}] \\
[{-1,1}] \\
[{-1,1}] \\
[{-1,1}] \\
d \\
- \\
\times \\
\times \\
a & d & b & c
\end{array} \]
The division format trade-off: case of inverting 2×2 matrices

- Consider $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $a, b, c, d \in [-1, 1]$ in the format $Q_{2.30}$

- Cramer’s rule: if $\Delta = ad - bc \neq 0$ then $A^{-1} = \begin{pmatrix} d & -b \\ \Delta & \Delta \\ -c & a \\ \Delta & \Delta \end{pmatrix}$
The division format trade-off: case of inverting 2×2 matrices

- Consider $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $a, b, c, d \in [-1, 1]$ in the format $Q_{2.30}$

- Cramer's rule: if $\Delta = ad - bc \neq 0$ then $A^{-1} = \begin{pmatrix} d/\Delta & -b/\Delta \\ -c/\Delta & a/\Delta \end{pmatrix}$
The division format trade-off: case of inverting 2×2 matrices

Consider $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $a, b, c, d \in [-1, 1]$ in the format $Q_{2.30}$

Cramer’s rule: if $\Delta = ad - bc \neq 0$ then $A^{-1} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$

![Diagram showing division output format with maximum experimental error and overflow rate.](image-url)
The division format trade-off: case of inverting 2×2 matrices

- Consider $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $a, b, c, d \in [-1, 1]$ in the format $Q_{2.30}$

- Cramer's rule: if $\Delta = ad - bc \neq 0$ then $A^{-1} = \begin{pmatrix} d/\Delta & -b/\Delta \\ -c/\Delta & a/\Delta \end{pmatrix}$
The division format trade-off: case of inverting 2×2 matrices

- Consider $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $a, b, c, d \in [-1, 1]$ in the format $Q_{2.30}$

- Cramer’s rule: if $\Delta = ad - bc \neq 0$ then $A^{-1} = \begin{pmatrix} d/\Delta & -b/\Delta \\ -c/\Delta & a/\Delta \end{pmatrix}$
The division format trade-off: case of inverting 2×2 matrices

- Consider $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $a, b, c, d \in [-1, 1]$ in the format $Q_{2.30}$

- Cramer’s rule: if $\Delta = ad - bc \neq 0$ then $A^{-1} = \begin{pmatrix} d/\Delta & -b/\Delta \\ -c/\Delta & a/\Delta \end{pmatrix}$
The division format trade-off: case of inverting 2×2 matrices

- Consider $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $a, b, c, d \in [-1, 1]$ in the format $Q_{2.30}$.

- Cramer’s rule: if $\Delta = ad - bc \neq 0$ then $A^{-1} = \begin{pmatrix} d/\Delta & -b/\Delta \\ -c/\Delta & a/\Delta \end{pmatrix}$.
The division format trade-off: case of inverting 2×2 matrices

- Consider $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $a, b, c, d \in [-1, 1]$ in the format $Q_{2.30}$

- Cramer's rule: if $\Delta = ad - bc \neq 0$ then $A^{-1} = \begin{pmatrix} d/\Delta & -b/\Delta \\ -c/\Delta & a/\Delta \end{pmatrix}$
The division format trade-off: case of inverting 2×2 matrices

- Consider $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $a, b, c, d \in [-1, 1]$ in the format $Q_{2.30}$

- Cramer's rule: if $\Delta = ad - bc \neq 0$ then $A^{-1} = \begin{pmatrix} \frac{d}{\Delta} & \frac{-b}{\Delta} \\ \frac{-c}{\Delta} & \frac{a}{\Delta} \end{pmatrix}$
The division format trade-off: case of inverting 2×2 matrices

- Consider $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $a, b, c, d \in [-1, 1]$ in the format $\mathbb{Q}_{2.30}$

- Cramer's rule: if $\Delta = ad - bc \neq 0$ then $A^{-1} = \begin{pmatrix} d/\Delta & -b/\Delta \\ -c/\Delta & a/\Delta \end{pmatrix}$
Outline of the talk

1. An arithmetic model for fixed-point code synthesis

2. An implementation of the arithmetic model: the CGPE tool

3. Fixed-point code synthesis for linear algebra basic blocks
The CGPE tool

CGPE (Code Generation for Polynomial Evaluation): initiated by Revy [MR11]
- synthesizes fixed-point code for polynomial evaluation
The CGPE tool

- **CGPE** (*Code Generation for Polynomial Evaluation*): initiated by Revy [MR11]
 - synthesizes fixed-point code for polynomial evaluation

1. **Computation step** \rightarrow **front-end**
 - computes evaluation schemes \rightarrow **DAGs**
An implementation of the arithmetic model: the CGPE tool

The CGPE tool

- **CGPE** (*Code Generation for Polynomial Evaluation*): initiated by Revy [MR11]
 - synthesizes fixed-point code for polynomial evaluation

1. **Computation step** \rightsquigarrow **front-end**
 - computes evaluation schemes \rightsquigarrow DAGs

2. **Filtering step** \rightsquigarrow **middle-end**
 - applies the arithmetic model
 - prunes the DAGs that do not satisfy different criteria:
 - latency \rightsquigarrow scheduling filter
 - accuracy \rightsquigarrow numerical filter
 - ...

3. **Generation step** \rightsquigarrow **back-end**
 - generates C codes and Gappa accuracy certificates
The CGPE tool

- **CGPE (Code Generation for Polynomial Evaluation):** initiated by Revy [MR11]
 - synthesizes fixed-point code for polynomial evaluation

1. **Computation step** \rightarrow front-end
 - computes evaluation schemes \rightarrow DAGs

2. **Filtering step** \rightarrow middle-end
 - applies the arithmetic model
 - prunes the DAGs that do not satisfy different criteria:
 - latency \rightarrow scheduling filter
 - accuracy \rightarrow numerical filter
 - ...

3. **Generation step** \rightarrow back-end
 - generates C codes and Gappa accuracy certificates
Code synthesis for an IIR filter using CGPE

- Low-pass Butterworth filter with cutoff frequency $0.3 \cdot \pi$:

$$y[k] = \sum_{i=0}^{3} b_i \cdot u[k - i] - \sum_{i=1}^{3} a_i \cdot y[k - i]$$

```
<dotproduct inf="0xb1e91685" sup="0x4e16e97b" integer_width="6" fraction_width="26" width="32">
  <coefficient name="b0" value="0x65718e3b" integer_width="-3" fraction_width="35" width="32"/>
  ...
  <variable name="y3" inf="0xb1e91685" sup="0x4e16e97b" integer_width="6" fraction_width="26" width="32"/>
</dotproduct>
```
Code synthesis for an IIR filter using CGPE

- Low-pass Butterworth filter with cutoff frequency $0.3 \cdot \pi$:

$$y[k] = \sum_{i=0}^{3} b_i \cdot u[k - i] - \sum_{i=1}^{3} a_i \cdot y[k - i]$$

<dotproduct inf="0x1e91e95" sup="0xe16e97b" integer_width="6" fraction_width="26" width="32">
<coefficient name="b0" value="0x5718e3b" integer_width="-3" fraction_width="35" width="32"/>
...
<variable name="y3" inf="0x1e91685" sup="0xe16e97b" integer_width="6" fraction_width="26" width="32"/>
</dotproduct>

![Graph showing original signal and filtered signals in fixed-point and binary64 representations.](image)

- Amplitude vs. Time for original and filtered signals.
- Certified error bound comparisons between different implementations.
An implementation of the arithmetic model: the CGPE tool

Code synthesis for an IIR filter using CGPE

- Low-pass Butterworth filter with cutoff frequency $0.3 \cdot \pi$:

$$y[k] = \sum_{i=0}^{3} b_i \cdot u[k-i] - \sum_{i=1}^{3} a_i \cdot y[k-i]$$

\[\text{<dotproduct inf="0xb1e91685" sup="0xe65718e3b" integer_width="6" fraction_width="26" width="32">}
\text{<coefficient name="b0" value="0x65718e3b" integer_width="-3" fraction_width="35" width="32"/>}
\text{<variable name="y3" inf="0xb1e91685" sup="0xe65718e3b" integer_width="6" fraction_width="26" width="32"/>}
\text{</dotproduct>}

![Graph showing original signal and filtered signals using different formats](image)

![Graph showing log2 of error bound and error for different implementations](image)
Code synthesis for an IIR filter using CGPE

Low-pass Butterworth filter with cutoff frequency $0.3 \cdot \pi$:

$$y[k] = \sum_{i=0}^{3} b_i \cdot u[k-i] - \sum_{i=1}^{3} a_i \cdot y[k-i]$$

```c
int32_t filter(int32_t u0 /*Q5.27*/, int32_t u1 /*Q5.27*/, int32_t u2 /*Q5.27*/, int32_t u3 /*Q5.27*/, int32_t y1 /*Q6.26*/, int32_t y2 /*Q6.26*/, int32_t y3 /*Q6.26*/)
{
    // Formats Err
    int32_t r0 = mul(0x4a5cdb26, y1); //Q8.24 [-2^{-24},0]
    int32_t r1 = mul(0xa6eb5908, y2); //Q7.25 [-2^{-25},0]
    int32_t r2 = mul(0x4688a637, y3); //Q5.27 [-2^{-27},0]
    int32_t r3 = mul(0x65718e3b, u0); //Q2.30 [-2^{-30},0]
    int32_t r4 = mul(0x65718e3b, u3); //Q2.30 [-2^{-30},0]
    int32_t r5 = r3 + r4; //Q2.30 [-2^{-29},0]
    int32_t r6 = r5 >> 2; //Q4.28 [-2^{-27.6781},0]
    int32_t r7 = mul(0x4c152aad, u1); //Q4.28 [-2^{-28},0]
    int32_t r8 = mul(0x4c152aad, u2); //Q4.28 [-2^{-28},0]
    int32_t r9 = r7 + r8; //Q4.28 [-2^{-27},0]
    int32_t r10 = r6 + r9; //Q4.28 [-2^{-26.2996},0]
    int32_t r11 = r10 >> 1; //Q5.27 [-2^{-25.9125},0]
    int32_t r12 = r2 + r11; //Q5.27 [-2^{-25.3561},0]
    int32_t r13 = r12 >> 2; //Q7.25 [-2^{-24.3853},0]
    int32_t r14 = r1 + r13; //Q7.25 [-2^{-23.6601},0]
    int32_t r15 = r14 >> 1; //Q8.24 [-2^{-23.1798},0]
    int32_t r16 = r0 + r15; //Q8.24 [-2^{-22.5324},0]
    int32_t r17 = r16 << 2; //Q6.26 [-2^{-22.5324},0]
    return r17;
}
```
Outline of the talk

1. An arithmetic model for fixed-point code synthesis

2. An implementation of the arithmetic model: the CGPE tool

3. Fixed-point code synthesis for linear algebra basic blocks
A strategy to synthesize code for matrix inversion

Let M be a matrix of fixed-point variables, to generate certified code that inverts $M' \in M$ a symmetric positive definite, we need to:

1. Generate certified code to compute B a lower triangular s.t. $M' = B \cdot B^T$
2. Generate certified code to compute $N = B^{-1}$
3. Generate certified code to compute $M'^{-1} = N^T \cdot N$
A strategy to synthesize code for matrix inversion

Let M be a matrix of fixed-point variables, to generate certified code that inverts $M' \in M$ a symmetric positive definite, we need to:

1. Generate certified code to compute B a lower triangular s.t. $M' = B \cdot B^T$
2. Generate certified code to compute $N = B^{-1}$
3. Generate certified code to compute $M'^{-1} = N^T \cdot N$

The basic blocks we need to include in our tool-chain

- Certified code synthesis for Cholesky decomposition
A strategy to synthesize code for matrix inversion

Let M be a matrix of fixed-point variables, to generate certified code that inverts $M' \in M$ a symmetric positive definite, we need to:

1. Generate certified code to compute B a lower triangular s.t. $M' = B \cdot B^T$
2. Generate certified code to compute $N = B^{-1}$
3. Generate certified code to compute $M'^{-1} = N^T \cdot N$

The basic blocks we need to include in our tool-chain

- Certified code synthesis for Cholesky decomposition
- Certified code synthesis for triangular matrix inversion
A strategy to synthesize code for matrix inversion

Let M be a matrix of fixed-point variables, to generate certified code that inverts $M' \in M$ a symmetric positive definite, we need to:

1. Generate certified code to compute B a lower triangular s.t. $M' = B \cdot B^T$
2. Generate certified code to compute $N = B^{-1}$
3. Generate certified code to compute $M'^{-1} = N^T \cdot N$

The basic blocks we need to include in our tool-chain

- Certified code synthesis for Cholesky decomposition
- Certified code synthesis for triangular matrix inversion
- Certified code synthesis for matrix multiplication
Linear algebra basic blocks

- Cholesky decomposition
- Triangular matrix inversion
- Matrix multiplication
Linear algebra basic blocks

- Cholesky decomposition
- Triangular matrix inversion
- Matrix multiplication
Cholesky decomposition and triangular matrix inversion

Cholesky decomposition

\[
b_{i,j} = \begin{cases}
\sqrt{c_{i,i}} & \text{if } i = j \\
c_{i,j} / b_{j,j} & \text{if } i \neq j
\end{cases}
\]

with \(c_{i,j} = m_{i,j} - \sum_{k=0}^{j-1} b_{i,k} \cdot b_{j,k} \)

Triangular matrix inversion

\[
n_{i,j} = \begin{cases}
1 / b_{i,i} & \text{if } i = j \\
-c_{i,j} / b_{i,i} & \text{if } i \neq j
\end{cases}
\]

where \(c_{i,j} = \sum_{k=j}^{i-1} b_{i,k} \cdot n_{k,j} \)
Cholesky decomposition and triangular matrix inversion

Cholesky decomposition

\[
b_{i,j} = \begin{cases}
\sqrt{c_{i,i}} & \text{if } i = j \\
c_{i,j} / b_{j,j} & \text{if } i \neq j
\end{cases}
\]

with \(c_{i,j} = m_{i,j} - \sum_{k=0}^{j-1} b_{i,k} \cdot b_{j,k} \)

Triangular matrix inversion

\[
n_{i,j} = \begin{cases}
1 / b_{i,i} & \text{if } i = j \\
-c_{i,j} / b_{i,i} & \text{if } i \neq j
\end{cases}
\]

where \(c_{i,j} = \sum_{k=j}^{i-1} b_{i,k} \cdot n_{k,j} \)

Dependencies of the coefficient \(b_{4,2} \) in the decomposition and inversion of a 6 × 6 matrix.
FPLA (Fixed-Point Linear Algebra)
Impact of the output format of division

Different functions to set the output format of division

1. \(f_1(i_1, i_2) = t, \)
2. \(f_2(i_1, i_2) = \min(i_1, i_2) + t, \)
3. \(f_3(i_1, i_2) = \max(i_1, i_2) + t, \)
4. \(f_4(i_1, i_2) = \lfloor (i_1 + i_2)/2 \rfloor + t, \)

\(i_1 \) and \(i_2 \): integer parts of the numerator and denominator and \(t \in [-2, 8] \)

Maximum errors with various functions used to determine the output formats of division.

(a) Cholesky 5 × 5.

(b) Triangular 10 × 10.
How fast is generating triangular matrix inversion codes?

- We use \(f_4(i_1, i_2) = \lceil (i_1 + i_2) / 2 \rceil + 1 \) to set the output format of division.

Generation time for the inversion of triangular matrices of size 4 to 40.
How fast is generating triangular matrix inversion codes?

- We use $f_4(i_1, i_2) = \lfloor (i_1 + i_2)/2 \rfloor + 1$ to set the output format of division.

Error bounds and experimental errors for the inversion of triangular matrices of size 4 to 40.
Decomposing some well known matrices

- 2 ill-conditioned matrices: Hilbert and Cauchy
- 2 well-conditioned matrices: KMS and Lehmer
Decomposing some well known matrices

- 2 ill-conditioned matrices: Hilbert and Cauchy
- 2 well-conditioned matrices: KMS and Lehmer

Graphs:

- **Condition number**
 - KMS
 - Lehmer
 - Prolate
 - Hilbert
 - Cauchy

- **Maximum error**
 - Hilbert
 - KMS
 - Cauchy
 - Lehmer
 - Prolate

Points:

- Ill-conditioned matrices tend to overflow more often
 - Similar behaviour in floating-point arithmetic
- The decompositions of KMS and Lehmer are highly accurate
Conclusions and perspectives

Contributions

<table>
<thead>
<tr>
<th>Contribution</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formalization and implementation of an arithmetic model</td>
<td>allows certification handled √ and /</td>
</tr>
<tr>
<td>Adaptation of the CGPE tool to the model</td>
<td>generates code for fine grained expressions instruction selection</td>
</tr>
</tbody>
</table>

Development of FPLA:
- Automated and certified code synthesis for linear algebra basic blocks
 - Cholesky decomposition and triangular matrix inversion: study of divisions' impact

Perspectives
- Integrate the matrix inversion flow
Conclusions and perspectives

Contributions

<table>
<thead>
<tr>
<th>Contribution</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formalization and implementation of an arithmetic model</td>
<td>- allows certification</td>
</tr>
<tr>
<td>Adaptation of the CGPE tool to the model:</td>
<td>- handles $\sqrt{}$ and $/$</td>
</tr>
<tr>
<td></td>
<td>- generates code for fine grained expressions</td>
</tr>
<tr>
<td></td>
<td>- instruction selection</td>
</tr>
</tbody>
</table>

- Cholesky decomposition and triangular matrix inversion: study of divisions’ impact

- Integration of the matrix inversion flow
Conclusions and perspectives

Contributions

- Formalization and implementation of an arithmetic model
 - allows certification
 - handles $\sqrt{}$ and $/$

- Adaptation of the CGPE tool to the model:
 - generates code for fine grained expressions
 - instruction selection

- Development of FPLA:
 - automated and certified code synthesis for linear algebra basic block
 → Cholesky decomposition and triangular matrix inversion: study of divisions’ impact
Conclusions and perspectives

Contributions

- Formalization and implementation of an arithmetic model
 - allows certification
 - handles √ and /

- Adaptation of the CGPE tool to the model:
 - generates code for fine grained expressions
 - instruction selection

- Development of FPLA:
 - automated and certified code synthesis for linear algebra basic block
 → Cholesky decomposition and triangular matrix inversion: study of divisions’ impact

Perspectives

- Integrate the matrix inversion flow
Conclusions and perspectives

Contributions

- Formalization and implementation of an arithmetic model
 - allows certification
 - handles $\sqrt{}$ and $/$

- Adaptation of the CGPE tool to the model:
 - generates code for fine grained expressions
 - instruction selection

- Development of FPLA:
 - automated and certified code synthesis for linear algebra basic block
 - \rightarrow Cholesky decomposition and triangular matrix inversion: study of divisions’ impact

Perspectives

- Integrate the matrix inversion flow
M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 26/25