Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks
Mohamed Amine Najahi

To cite this version:

HAL Id: lirmm-01277374
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01277374
Submitted on 22 Feb 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks

Amine Najahi

Univ. Perpignan Via Domitia, DALI project-team
Univ. Montpellier 2, LIRMM, UMR 5506
CNRS, LIRMM, UMR 5506
Which arithmetic for computational tasks?

<table>
<thead>
<tr>
<th>Floating-point computations</th>
<th>Fixed-point computations</th>
</tr>
</thead>
</table>

Floating-point computations

- Easy and fast to implement
- Easily portable
- Requires dedicated hardware
- Slow if emulated in software

Fixed-point computations

- Tedious and time consuming to implement
- Relies only on integer instructions
- Efficient

For embedded systems targets: µ-controllers, DSPs, FPGAs → have efficient integer instructions

Fixed-point arithmetic is well suited for embedded systems.

But, how to make it easy, fast, and numerically safe to use by non-expert programmers?

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS)

Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks
Which arithmetic for computational tasks?

<table>
<thead>
<tr>
<th>Floating-point computations</th>
<th>Fixed-point computations</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑️ Easy and fast to implement</td>
<td>☹️ Tedious and time consuming to implement</td>
</tr>
<tr>
<td>☑️ Easily portable [IEEE754]</td>
<td>• > 50% of design time [Wil98]</td>
</tr>
</tbody>
</table>

Floating-point computations are easy and fast to implement, and easily portable, but require dedicated hardware. They can be slow if emulated in software.

Fixed-point computations are tedious and time consuming to implement, but rely only on integer instructions, making them efficient. They are well suited for embedded systems such as µ-controllers, DSPs, and FPGAs, which have efficient integer instructions.

However, making fixed-point arithmetic easy, fast, and numerically safe to use by non-expert programmers remains a challenge.
<table>
<thead>
<tr>
<th>Floating-point computations</th>
<th>Fixed-point computations</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑️ Easy and fast to implement</td>
<td>☐️ Tedious and time consuming to implement</td>
</tr>
<tr>
<td>☑️ Easily portable [IEEE754]</td>
<td>☑️ > 50% of design time [Wil98]</td>
</tr>
<tr>
<td>☹️ Requires dedicated hardware</td>
<td>☑️ Relies only on integer instructions</td>
</tr>
<tr>
<td>☹️ Slow if emulated in software</td>
<td>☑️ Efficient</td>
</tr>
</tbody>
</table>
Which arithmetic for computational tasks?

Floating-point computations

- Easy and fast to implement
- Easily portable [IEEE754]
- Requires dedicated hardware
- Slow if emulated in software

Fixed-point computations

- Tedious and time consuming to implement
 - > 50% of design time [Wil98]
- Relies only on integer instructions
- Efficient

Embedded systems targets

- µ-controllers
- DSPs
- FPGAs

→ have efficient integer instructions

- Fixed-point arithmetic is well suited for embedded systems
Which arithmetic for computational tasks?

<table>
<thead>
<tr>
<th>Floating-point computations</th>
<th>Fixed-point computations</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑ Easy and fast to implement</td>
<td>☑ Tedious and time consuming to implement</td>
</tr>
<tr>
<td>☑ Easily portable [IEEE754]</td>
<td>• > 50% of design time [Wil98]</td>
</tr>
<tr>
<td>☹ Requires dedicated hardware</td>
<td>☑ Relies only on integer instructions</td>
</tr>
<tr>
<td>☹ Slow if emulated in software</td>
<td>☑ Efficient</td>
</tr>
</tbody>
</table>

Embedded systems targets

- µ-controllers
- DSPs
- FPGAs

→ have efficient integer instructions

- Fixed-point arithmetic is well suited for embedded systems

But, how to make it easy, fast, and numerically safe to use by non-expert programmers?
The DEFIS approach

DEFIS (ANR, 2011-2015)

Goal: develop techniques and tools to automate fixed-point programming
The DEFIS approach

- **DEFIS (ANR, 2011-2015)**

 Goal: develop techniques and tools to automate fixed-point programming

- Combines conversion and IP block synthesis

 - Ménard *et al.* (CAIRN, Univ. Rennes) [MCCS02]:
 - automatic float-to-fix conversion

 - Didier *et al.* (PEQUAN, Univ. Paris) [LHD14]:
 - code generation for the linear filter IP block
The DEFIS approach

DEFIS (ANR, 2011-2015)

Goal: develop techniques and tools to automate fixed-point programming

Combines conversion and IP block synthesis

- Ménard *et al.* (CAIRN, Univ. Rennes) [MCCS02]:
 - automatic float-to-fix conversion

- Didier *et al.* (PEQUAN, Univ. Paris) [LHD14]:
 - code generation for the linear filter IP block

- Our approach (DALI, Univ. Perpignan):
 - certified fixed-point synthesis for:
 - **Fine grained IP blocks:** dot-products, polynomials, ...
 - **High level IP blocks:** matrix multiplication, triangular matrix inversion, Cholesky decomposition

Long term objective: code synthesis for matrix inversion
The DEFIS approach

- **DEFIS (ANR, 2011-2015)**

 Goal: develop techniques and tools to automate fixed-point programming

- Combines conversion and IP block synthesis

 - Ménard *et al.* (CAIRN, Univ. Rennes) [MCCS02]:
 - automatic float-to-fix conversion

 - Didier *et al.* (PEQUAN, Univ. Paris) [LHD14]:
 - code generation for the linear filter IP block

 - Our approach (DALI, Univ. Perpignan):
 - certified fixed-point synthesis for:

 - **Fine grained IP blocks:** dot-products, polynomials, ...
 - **High level IP blocks:** matrix multiplication, triangular matrix inversion, Cholesky decomposition

- **Long term objective:** code synthesis for matrix inversion
Our road-map

How to generate certified fixed-point code for matrix inversion?

1. Specify an arithmetic model

 Contributions:
 • formalization of
 •

2. Build a synthesis tool, CGPE, for fine grained IP blocks:

 Contributions:
 • implementation of the arithmetic model

3. Build a second synthesis tool, FPLA, for algorithmic IP blocks:

 Contributions:
 • trade-off implementations for matrix multiplication
 • code synthesis for Cholesky decomposition and triangular matrix inversion

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS)
Our road-map

How to generate certified fixed-point code for matrix inversion?

1. Specify an arithmetic model
 ▶ Contributions:
 • formalization of √ and /

2. Build a synthesis tool, CGPE, for fine grained IP blocks:
 ▶ Contributions:
 • implementation of the arithmetic model

3. Build a second synthesis tool, FPLA, for algorithmic IP blocks:
 ▶ it generates code using CGPE
 ▶ Contributions:
 • trade-off implementations for matrix multiplication
 • code synthesis for Cholesky decomposition and triangular matrix inversion
Our road-map

How to generate certified fixed-point code for matrix inversion?

1. Specify an arithmetic model
 ▶ Contributions:
 • formalization of √ and /

2. Build a synthesis tool, CGPE, for fine grained IP blocks:
 ▶ it adheres to the arithmetic model
 ▶ Contributions:
 • implementation of the arithmetic model
Our road-map

How to generate certified fixed-point code for matrix inversion?

1. Specify an arithmetic model
 ▶ Contributions:
 • formalization of √ and /

2. Build a synthesis tool, CGPE, for fine grained IP blocks:
 ▶ it adheres to the arithmetic model
 ▶ Contributions:
 • implementation of the arithmetic model

3. Build a second synthesis tool, FPLA, for algorithmic IP blocks:
 ▶ it generates code using CGPE
 ▶ Contributions:
 • trade-off implementations for matrix multiplication
 • code synthesis for Cholesky decomposition and triangular matrix inversion
Outline of the talk

1. An arithmetic model for fixed-point code synthesis

2. An implementation of the arithmetic model: the CGPE tool

3. Fixed-point code synthesis for linear algebra basic blocks
Outline of the talk

1. An arithmetic model for fixed-point code synthesis

2. An implementation of the arithmetic model: the CGPE tool

3. Fixed-point code synthesis for linear algebra basic blocks
Fixed-point arithmetic numbers

A fixed-point number x is defined by two integers:

- X the k-bit integer representation of x
- f the implicit scaling factor of x

The value of x is given by

$$x = \frac{X}{2^f} = \sum_{\ell = -f}^{k-1-f} X_{\ell+f} \cdot 2^\ell$$
Fixed-point arithmetic numbers

A fixed-point number x is defined by two integers:

- X the k-bit integer representation of x
- f the implicit scaling factor of x

The value of x is given by

$$x = \frac{X}{2^f} = \sum_{\ell = -f}^{k-1-f} X_{\ell+f} \cdot 2^\ell$$

Notation

A fixed-point number with i bits of integer part and f bits of fraction part is in the $Q_{i,f}$ format.
Fixed-point arithmetic numbers

A fixed-point number x is defined by two integers:

- X the k-bit integer representation of x
- f the implicit scaling factor of x

The value of x is given by $x = \frac{X}{2^f} = \sum_{\ell=-f}^{k-1-f} X_{\ell+f} \cdot 2^\ell$

Notation

A fixed-point number with i bits of integer part and f bits of fraction part is in the $Q_{i,f}$ format

Example:

- x in $Q_{3,5}$ and $X = (1001\,1000)_2 = (152)_{10}$ \rightarrow $x = (100.\,11000)_2 = (4.75)_{10}$
Fixed-point arithmetic numbers

A fixed-point number x is defined by two integers:

- X the k-bit integer representation of x
- f the implicit scaling factor of x

The value of x is given by $x = \frac{X}{2^f} = \sum_{\ell=-f}^{k-1-f} X_{\ell+f} \cdot 2^\ell$

Notation

A fixed-point number with i bits of integer part and f bits of fraction part is in the $Q_{i,f}$ format.

Example:

- x in $Q_{3,5}$ and $X = (1001 \ 1000)_2 = (152)_{10}$ \[x = (100.11000)_2 = (4.75)_{10} \]
An interval arithmetic based model

- For each coefficient or variable v, we keep track of 2 intervals $Val(v)$ and $Err(v)$
- Our model assumes a fixed word-length k

$Val(v)$ is the range of v

$Err(v)$ encloses the rounding error of computing v
An arithmetic model for fixed-point code synthesis

An interval arithmetic based model

- For each coefficient or variable v, we keep track of 2 intervals $Val(v)$ and $Err(v)$
- Our model assumes a fixed word-length k

$Val(v)$ is the range of v

- the format $Q_{i,f}$ of v is deduced from $Val(v) = [v, \bar{v}]$

 - $i = \left\lceil \log_2 (\max(|v|, |\bar{v}|)) \right\rceil + \alpha$
 - $f = k - i$

 $\alpha = \begin{cases}
 1, & \text{if } \text{mod}(\log_2(\bar{v}), 1) \neq 0, \\
 2, & \text{otherwise}
 \end{cases}$

$Err(v)$ encloses the rounding error of computing v

- a bound ϵ on rounding errors is deduced from $Err(v) = [e, \bar{e}]$

 - $\epsilon = \max(|e|, |\bar{e}|)$
An arithmetic model for fixed-point code synthesis

An interval arithmetic based model

- For each coefficient or variable \(v \), we keep track of 2 intervals \(\text{Val}(v) \) and \(\text{Err}(v) \)
- Our model assumes a fixed word-length \(k \)

\(\text{Val}(v) \) is the range of \(v \)

- the format \(Q_{i,f} \) of \(v \) is deduced from
 \[\text{Val}(v) = [v, \overline{v}] \]

 - \(i = \lceil \log_2 \left(\max(|v|, |\overline{v}|) \right) \rceil + \alpha \)
 - \(f = k - i \)

 \[\alpha = \begin{cases}
 1, & \text{if } \text{mod}(\log_2(\overline{v}), 1) \neq 0, \\
 2, & \text{otherwise}
 \end{cases} \]

\(\text{Err}(v) \) encloses the rounding error of computing \(v \)

- a bound \(\epsilon \) on rounding errors is deduced from
 \[\text{Err}(v) = [\epsilon, \overline{\epsilon}] \]

 - \(\epsilon = \max(|\epsilon|, |\overline{\epsilon}|) \)
An interval arithmetic based model

- For each coefficient or variable v, we keep track of 2 intervals $\text{Val}(v)$ and $\text{Err}(v)$
- Our model assumes a fixed word-length k

$\text{Val}(v)$ is the range of v

- the format $Q_{i,f}$ of v is deduced from $\text{Val}(v) = [v, \bar{v}]$

 $i = \left\lfloor \log_2 \left(\max(|v|, |\bar{v}|) \right) \right\rfloor + \alpha$

 $f = k - i$

 $\alpha = \begin{cases}
 1, & \text{if } \mod(\log_2(\bar{v}), 1) \neq 0, \\
 2, & \text{otherwise}
 \end{cases}$

$\text{Err}(v)$ encloses the rounding error of computing v

- a bound ϵ on rounding errors is deduced from $\text{Err}(v) = [\epsilon, \bar{\epsilon}]$

 $\epsilon = \max(|\epsilon|, |\bar{\epsilon}|)$

How to propagate $\text{Val}(v)$ and $\text{Err}(v)$ for $\diamond \in \{+, -, \times, \ll, \gg, \sqrt{}, /\}$?
Fixed-point multiplication

- The output format of a $Q_{i_1.f_1} \times Q_{i_2.f_2}$ is $Q_{i_1 + i_2.f_1 + f_2}$
Fixed-point multiplication

- The output format of a $\mathbb{Q}^{i_1.f_1} \times \mathbb{Q}^{i_2.f_2}$ is $\mathbb{Q}^{i_1 + i_2.f_1 + f_2}$
Fixed-point multiplication

- The output format of a $Q_{i_1.f_1} \times Q_{i_2.f_2}$ is $Q_{i_1+i_2.f_1+f_2}$
- But, doubling the word-length is costly

\[\text{Err}_x = \left[0, 2^{-f_r} - 2^{-(f_1+f_2)} \right] \]
Fixed-point multiplication

- The output format of a $Q_{i_1.f_1} \times Q_{i_2.f_2}$ is $Q_{i_1+i_2.f_1+f_2}$
- But, doubling the word-length is costly

$\text{Err}_x = \left[0, 2^{-f_r} - 2^{-(f_1+f_2)}\right]$

- This multiplication is available on integer processors and DSPs

```c
int32_t mul (int32_t v1, int32_t v2){
    int64_t prod = ((int64_t) v1) * ((int64_t) v2);
    return (int32_t) (prod >> 32);
}
```
Our new fixed-point division

- The output integer part of $Q_{i_1.f_1} / Q_{i_2.f_2}$ may be as large as $i_1 + f_2$
Our new fixed-point division

- The output integer part of \(Q_{i_1.f_1} / Q_{i_2.f_2} \) may be as large as \(i_1 + f_2 \)

\[
\text{Err} / = [-2^{i_2 + f_1}, 2^{i_2 + f_1}]
\]
Our new fixed-point division

- The output integer part of $Q_{i_1.f_1} / Q_{i_2.f_2}$ may be as large as $i_1 + f_2$
- But, doubling the word-length is costly

\[
\text{Err}/ = [-2^{f_r}, 2^{f_r}]
\]
Our new fixed-point division

- The output integer part of $Q_{i_1.f_1}/Q_{i_2.f_2}$ may be as large as $i_1 + f_2$
- But, doubling the word-length is costly
- How to obtain sharper error bounds on Err/?

Err$/ = [-2^{f_r}, 2^{f_r}]$
-Sharper bound
- Risk of overflow at run-time
Our new fixed-point division

- The output integer part of $Q_{i_1.f_1}/Q_{i_2.f_2}$ may be as large as $i_1 + f_2$
- But, doubling the word-length is costly
- How to obtain sharper a error bounds on $\text{Err}/$?

\[\text{Err}/ = [-2^{f_r}, 2^{f_r}]\]
-Sharper bound
- Risk of overflow at run-time

How to decide of the output format of division?

- **A large integer part**
 - **✅** prevents overflow
 - **❌** loose error bounds and loss of precision

- **A small integer part**
 - **❌** may cause overflow
 - **✅** sharp error bounds and more accurate computations
The propagation rule and implementation of division

- Once the output format decided $Q_{ir,fr}$

\[
\text{Val}(v) = \text{Range}(Q_{ir,fr}) = [-2^{ir-1}, 2^{ir-1} - 2^{fr}].
\]

\[
\text{Err}(v) = \frac{\text{Val}(v_2) \cdot \text{Err}(v_1) - \text{Val}(v_1) \cdot \text{Err}(v_2)}{\text{Val}(v_2) \cdot (\text{Val}(v_2) + \text{Err}(v_2))} + \text{Err}_/.
\]

- $\text{Val}(v_2) = \frac{\text{Val}(v_1)}{\text{Val}(v) + \text{Err}_/} \cap \text{Val}(v_2)$ and $\overline{\text{Val}(v)} = [-2^{ir-1}, -2^{fr}] \cup [2^{-fr}, 2^{ir-1} - 2^{fr}]$
The propagation rule and implementation of division

- Once the output format decided $Q_{ir,fr}$

\[
\text{Val}(v) = \text{Range}(Q_{ir,fr}) = [-2^{i_r-1}, 2^{i_r-1}-2^{fr}].
\]

\[
\text{Err}(v) = \frac{\text{Val}(v_2) \cdot \text{Err}(v_1) - \text{Val}(v_1) \cdot \text{Err}(v_2)}{\text{Val}(v_2) \cdot (\text{Val}(v_2) + \text{Err}(v_2))} + \frac{\text{Err}}{\text{Val}(v_1)}
\]

- $\text{Val}(v_2) = \frac{\text{Val}(v_1)}{\text{Val}(v) + \text{Err}} \cap \text{Val}(v_2)$ and $\text{Val}(v) = [-2^{i_r-1}, -2^{-fr}] \cup [2^{-fr}, 2^{i_r-1} - 2^{fr}]$

```c
int32_t div (int32_t V1, int32_t V2, uint16_t eta)
{
    int64_t t1 = ((int64_t)V1) << eta;  
    int64_t V = t1 / V2;

    return (int32_t)V;
}
```
The propagation rule and implementation of division

Once the output format decided $Q_{ir,fr}$

$$\text{Val}(v) = \text{Range}(Q_{ir,fr}) = [-2^{ir-1}, 2^{ir-1} - 2^{fr}].$$

$$\text{Err}(v) = \frac{\text{Val}(v_2) \cdot \text{Err}(v_1) - \text{Val}(v_1) \cdot \text{Err}(v_2)}{\text{Val}(v_2) \cdot \left(\text{Val}(v_2) + \text{Err}(v_2)\right)} + \text{Err} / \text{Val}(v_1) \text{Err}(v_1) \text{Val}(v_2) \text{Err}(v_2)$$

$$\text{Val}(v_2) = \frac{\text{Val}(v_1)}{\text{Val}(v) + \text{Err} / \text{Val}(v_2)}$$

and

$$\text{Val}(v) = [-2^{ir-1}, -2^{-fr}] \cup [2^{-fr}, 2^{ir-1} - 2^{fr}]$$

```c
int32_t div (int32_t V1, int32_t V2, uint16_t eta)
{
    int64_t t1 = ((int64_t)V1) << eta;
    int64_t V = t1 / V2;
    CGPE_ASSERT(((V & 0xFFFFFFFF80000000ll) == 0xFFFFFFFF80000000ll)
                 || ((V & 0xFFFFFFFF80000000ll) == 0));
    return (int32_t) V;
}
```

Additional code to check for run-time overflows
The division format trade-off: case of inverting 2×2 matrices

Consider $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $a, b, c, d \in [-1, 1]$ in the format $\mathbb{Q}_{2.30}$.
The division format trade-off: case of inverting 2×2 matrices

- Consider $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $a, b, c, d \in [-1, 1]$ in the format $\mathbb{Q}_{2.30}$.

- Cramer's rule: if $\Delta = ad - bc \neq 0$ then $A^{-1} = \begin{pmatrix} d & -b \\ -c & a \\ \Delta & \Delta \\ \Delta & \Delta \end{pmatrix}$.
The division format trade-off: case of inverting 2×2 matrices

- Consider $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $a, b, c, d \in [-1, 1]$ in the format $\mathbb{Q}_{2.30}$

- Cramer's rule: if $\Delta = ad - bc \neq 0$ then $A^{-1} = \begin{pmatrix} d/\Delta & -b/\Delta \\ -c/\Delta & a/\Delta \end{pmatrix}$
The division format trade-off: case of inverting 2×2 matrices

- Consider $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $a, b, c, d \in [-1, 1]$ in the format $\mathbb{Q}_{2.30}$.

- Cramer's rule: if $\Delta = ad - bc \neq 0$ then $A^{-1} = \begin{pmatrix} \frac{d}{\Delta} & \frac{-b}{\Delta} \\ \frac{-c}{\Delta} & \frac{a}{\Delta} \end{pmatrix}$.
The division format trade-off: case of inverting 2×2 matrices

Consider $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $a, b, c, d \in [-1, 1]$ in the format $\mathbb{Q}_{2.30}$.

Cramer's rule: if $\Delta = ad - bc \neq 0$ then $A^{-1} = \begin{pmatrix} d/\Delta & -b/\Delta \\ -c/\Delta & a/\Delta \end{pmatrix}$.
The division format trade-off: case of inverting 2×2 matrices

- Consider $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $a, b, c, d \in [-1, 1]$ in the format $\mathbb{Q}_{2.30}$

- Cramer’s rule: if $\Delta = ad - bc \neq 0$ then $A^{-1} = \begin{pmatrix} \frac{d}{\Delta} & -\frac{b}{\Delta} \\ -\frac{c}{\Delta} & \frac{a}{\Delta} \end{pmatrix}$
The division format trade-off: case of inverting 2×2 matrices

Consider $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $a, b, c, d \in [-1, 1]$ in the format $\mathbb{Q}_{2.30}$

Cramer’s rule: if $\Delta = ad - bc \neq 0$ then $A^{-1} = \begin{pmatrix} d/\Delta & -b/\Delta \\ -c/\Delta & a/\Delta \end{pmatrix}$
The division format trade-off: case of inverting 2×2 matrices

- Consider $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $a, b, c, d \in [-1, 1]$ in the format $Q_{2.30}$

- Cramer's rule: if $\Delta = ad - bc \neq 0$ then $A^{-1} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} / \Delta$
The division format trade-off: case of inverting 2×2 matrices

- Consider $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $a, b, c, d \in [-1, 1]$ in the format $\mathbb{Q}_{2.30}$

- Cramer's rule: if $\Delta = ad - bc \neq 0$ then $A^{-1} = \begin{pmatrix} \frac{d}{\Delta} & \frac{-b}{\Delta} \\ \frac{-c}{\Delta} & \frac{a}{\Delta} \end{pmatrix}$
The division format trade-off: case of inverting 2×2 matrices

- Consider $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $a, b, c, d \in [-1, 1]$ in the format $Q_{2.30}$

- Cramer’s rule: if $\Delta = ad - bc \neq 0$ then $A^{-1} = \begin{pmatrix} \frac{d}{\Delta} & \frac{-b}{\Delta} \\ \frac{-c}{\Delta} & \frac{a}{\Delta} \end{pmatrix}$
The division format trade-off: case of inverting 2×2 matrices

- Consider $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $a, b, c, d \in [-1, 1]$ in the format $Q_{2.30}$

- Cramer's rule: if $\Delta = ad - bc \neq 0$ then $A^{-1} = \begin{pmatrix} \frac{d}{\Delta} & \frac{-b}{\Delta} \\ \frac{-c}{\Delta} & \frac{a}{\Delta} \end{pmatrix}$
The division format trade-off: case of inverting 2×2 matrices

- Consider $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $a, b, c, d \in [-1, 1]$ in the format $\mathbb{Q}_{2.30}$

- Cramer's rule: if $\Delta = ad - bc \neq 0$ then $A^{-1} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \frac{\Delta}{\Delta}$

![Division output format diagram]

Maximum experimental error

Overflow rate

Division output format

Maximum error

Overflow rate

0% 20% 40% 60% 80% 100%

-10.42 0.8 4.0 8.24 0.66 0.36 0.24 0.12 0.08 0.04 0.02
The division format trade-off: case of inverting 2×2 matrices

- Consider $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $a, b, c, d \in [-1, 1]$ in the format $Q_{2.30}$

- Cramer’s rule: if $\Delta = ad - bc \neq 0$ then $A^{-1} = \begin{pmatrix} \frac{d}{\Delta} & \frac{-b}{\Delta} \\ \frac{-c}{\Delta} & \frac{a}{\Delta} \end{pmatrix}$
The division format trade-off: case of inverting 2×2 matrices

- Consider $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $a, b, c, d \in [-1, 1]$ in the format $Q_{2.30}$.

- Cramer's rule: if $\Delta = ad - bc \neq 0$ then $A^{-1} = \begin{pmatrix} d/\Delta & -b/\Delta \\ -c/\Delta & a/\Delta \end{pmatrix}$.

![Division output format graph]
Outline of the talk

1. An arithmetic model for fixed-point code synthesis

2. An implementation of the arithmetic model: the CGPE tool

3. Fixed-point code synthesis for linear algebra basic blocks
The CGPE tool

- CGPE (*Code Generation for Polynomial Evaluation*): initiated by Revy [MR11]
 - synthesizes fixed-point code for polynomial evaluation
The CGPE tool

- CGPE (*Code Generation for Polynomial Evaluation*): initiated by Revy [MR11]
 - synthesizes fixed-point code for polynomial evaluation

1. Computation step \leadsto front-end
 - computes evaluation schemes \leadsto DAGs
The CGPE tool

- **CGPE (Code Generation for Polynomial Evaluation):** initiated by Revy [MR11]
 - synthesizes fixed-point code for polynomial evaluation

1. **Computation step ⇝ front-end**
 - computes evaluation schemes ⇝ DAGs

2. **Filtering step ⇝ middle-end**
 - applies the arithmetic model
 - prunes the DAGs that do not satisfy different criteria:
 - latency ⇝ scheduling filter
 - accuracy ⇝ numerical filter
 - ...

3. **Generation step ⇝ back-end**
 - generates C codes and Gappa accuracy certificates
The CGPE tool

- **CGPE** (*Code Generation for Polynomial Evaluation*): initiated by Revy [MR11]
 - synthesizes fixed-point code for polynomial evaluation

1. **Computation step** → front-end
 - computes evaluation schemes → DAGs

2. **Filtering step** → middle-end
 - applies the arithmetic model
 - prunes the DAGs that do not satisfy different criteria:
 - latency → scheduling filter
 - accuracy → numerical filter
 - ...

3. **Generation step** → back-end
 - generates C codes and Gappa accuracy certificates
Code synthesis for an IIR filter using CGPE

- Low-pass Butterworth filter with cutoff frequency $0.3 \cdot \pi$:

$$y[k] = \sum_{i=0}^{3} b_i \cdot u[k-i] - \sum_{i=1}^{3} a_i \cdot y[k-i]$$

```
<dotproduct inf="0xb1e91685" sup="0x4e16e97b" integer_width="6" fraction_width="26" width="32">
  <coefficient name="b0" value="0x65718e3b" integer_width="-3" fraction_width="35" width="32"/>
  ...
  <variable name="y3" inf="0xb1e91685" sup="0x4e16e97b" integer_width="6" fraction_width="26" width="32"/>
</dotproduct>
```
Code synthesis for an IIR filter using CGPE

- Low-pass Butterworth filter with cutoff frequency $0.3 \cdot \pi$:

$$y[k] = \sum_{i=0}^{3} b_i \cdot u[k-i] - \sum_{i=1}^{3} a_i \cdot y[k-i]$$

![Graph showing the comparison between original signal and filtered signals in fixed-point and binary formats.](attachment:graph.png)
Code synthesis for an IIR filter using CGPE

- Low-pass Butterworth filter with cutoff frequency $0.3 \cdot \pi$:

$$y[k] = \sum_{i=0}^{3} b_i \cdot u[k-i] - \sum_{i=1}^{3} a_i \cdot y[k-i]$$

![Graph showing the comparison between the original signal and the filtered signal using fixed-point and binary formats.](image-url)

![Graph showing the certified error bound and the error of the implementations.](image-url)
An implementation of the arithmetic model: the CGPE tool

Code synthesis for an IIR filter using CGPE

- Low-pass Butterworth filter with cutoff frequency $0.3 \cdot \pi$:

$$y[k] = \sum_{i=0}^{3} b_i \cdot u[k-i] - \sum_{i=1}^{3} a_i \cdot y[k-i]$$

```c
int32_t filter(int32_t u0 /*Q5.27*/, int32_t u1 /*Q5.27*/,
                int32_t u2 /*Q5.27*/, int32_t u3 /*Q5.27*/,
                int32_t y1 /*Q6.26*/, int32_t y2 /*Q6.26*/,
                int32_t y3 /*Q6.26*/ )
{
    int32_t r0 = mul(0x4a5cdb26, y1); //Q8.24 [-2^{-24},0]
    int32_t r1 = mul(0xa6eb5908, y2); //Q7.25 [-2^{-25},0]
    int32_t r2 = mul(0x4688a637, y3); //Q5.27 [-2^{-27},0]
    int32_t r3 = mul(0x65718e3b, u0); //Q2.30 [-2^{-30},0]
    int32_t r4 = mul(0x65718e3b, u3); //Q2.30 [-2^{-30},0]
    int32_t r5 = r3 + r4; //Q2.30 [-2^{-29},0]
    int32_t r6 = r5 >> 2; //Q4.28 [-2^{-27.6781},0]
    int32_t r7 = mul(0x4c152aad, u1); //Q4.28 [-2^{-28},0]
    int32_t r8 = mul(0x4c152aad, u2); //Q4.28 [-2^{-28},0]
    int32_t r9 = r7 + r8; //Q4.28 [-2^{-27},0]
    int32_t r10 = r6 + r9; //Q4.28 [-2^{-26.2996},0]
    int32_t r11 = r10 >> 1; //Q5.27 [-2^{-25.9125},0]
    int32_t r12 = r2 + r11; //Q5.27 [-2^{-25.3561},0]
    int32_t r13 = r12 >> 2; //Q7.25 [-2^{-24.3853},0]
    int32_t r14 = r1 + r13; //Q7.25 [-2^{-23.6601},0]
    int32_t r15 = r14 >> 1; //Q8.24 [-2^{-23.1798},0]
    int32_t r16 = r0 + r15; //Q8.24 [-2^{-22.5324},0]
    int32_t r17 = r16 << 2; //Q6.26 [-2^{-22.5324},0]
    return r17;
}
```
Outline of the talk

1. An arithmetic model for fixed-point code synthesis

2. An implementation of the arithmetic model: the CGPE tool

3. Fixed-point code synthesis for linear algebra basic blocks
A strategy to synthesize code for matrix inversion

Let M be a matrix of fixed-point variables, to generate certified code that inverts $M' \in M$ a symmetric positive definite, we need to:

1. Generate certified code to compute B a lower triangular s.t. $M' = B \cdot B^T$
2. Generate certified code to compute $N = B^{-1}$
3. Generate certified code to compute $M'^{-1} = N^T \cdot N$
A strategy to synthesize code for matrix inversion

Let M be a matrix of fixed-point variables, to generate certified code that inverts $M' \in M$ a symmetric positive definite, we need to:

1. Generate certified code to compute B a lower triangular s.t. $M' = B \cdot B^T$
2. Generate certified code to compute $N = B^{-1}$
3. Generate certified code to compute $M'^{-1} = N^T \cdot N$

The basic blocks we need to include in our tool-chain

- Certified code synthesis for Cholesky decomposition
A strategy to synthesize code for matrix inversion

Let M be a matrix of fixed-point variables, to generate certified code that inverts $M' \in M$ a symmetric positive definite, we need to:

1. Generate certified code to compute B a lower triangular s.t. $M' = B \cdot B^T$
2. Generate certified code to compute $N = B^{-1}$
3. Generate certified code to compute $M'^{-1} = N^T \cdot N$

The basic blocks we need to include in our tool-chain

- Certified code synthesis for Cholesky decomposition
- Certified code synthesis for triangular matrix inversion
A strategy to synthesize code for matrix inversion

Let \(M \) be a matrix of fixed-point variables, to generate certified code that inverts \(M' \in M \) a symmetric positive definite, we need to:

1. Generate certified code to compute \(B \) a lower triangular s.t. \(M' = B \cdot B^T \)
2. Generate certified code to compute \(N = B^{-1} \)
3. Generate certified code to compute \(M'^{-1} = N^T \cdot N \)

The basic blocks we need to include in our tool-chain

- Certified code synthesis for Cholesky decomposition
- Certified code synthesis for triangular matrix inversion
- Certified code synthesis for matrix multiplication
Linear algebra basic blocks

- Cholesky decomposition
- Triangular matrix inversion
- Matrix multiplication
Linear algebra basic blocks

- Cholesky decomposition
- Triangular matrix inversion
- Matrix multiplication
Cholesky decomposition and triangular matrix inversion

Cholesky decomposition

\[b_{i,j} = \begin{cases} \sqrt{c_{i,i}} & \text{if } i = j \\ \frac{c_{i,j}}{b_{j,j}} & \text{if } i \neq j \end{cases} \]

with \(c_{i,j} = m_{i,j} - \sum_{k=0}^{j-1} b_{i,k} \cdot b_{j,k} \)

Triangular matrix inversion

\[n_{i,j} = \begin{cases} \frac{1}{b_{i,i}} & \text{if } i = j \\ \frac{-c_{i,j}}{b_{i,i}} & \text{if } i \neq j \end{cases} \]

where \(c_{i,j} = \sum_{k=j}^{i-1} b_{i,k} \cdot n_{k,j} \)
Cholesky decomposition

\[
 b_{i,j} = \begin{cases}
 \sqrt{c_{i,i}} & \text{if } i = j \\
 \frac{c_{i,j}}{b_{j,j}} & \text{if } i \neq j
\end{cases}
\]

with \(c_{i,j} = m_{i,j} - \sum_{k=0}^{j-1} b_{i,k} \cdot b_{j,k} \)

Triangular matrix inversion

\[
 n_{i,j} = \begin{cases}
 \frac{1}{b_{i,i}} & \text{if } i = j \\
 \frac{-c_{i,j}}{b_{i,i}} & \text{if } i \neq j
\end{cases}
\]

where \(c_{i,j} = \sum_{k=j}^{i-1} b_{i,k} \cdot n_{k,j} \)

Dependencies of the coefficient \(b_{4,2} \) in the decomposition and inversion of a 6 \(\times \) 6 matrix.
FPLA (Fixed-Point Linear Algebra)

- Problem dispatcher
 - Dot-product solver
 - Matrix multiplication solver
 - Triangular matrix inversion solver
 - Cholesky decomposition solver

- User options
- Coefficients and variables
- Codes
- Certificates
Impact of the output format of division

Different functions to set the output format of division

1. $f_1(i_1, i_2) = t,$
2. $f_2(i_1, i_2) = \min(i_1, i_2) + t,$
3. $f_3(i_1, i_2) = \max(i_1, i_2) + t,$
4. $f_4(i_1, i_2) = \left\lfloor (i_1 + i_2)/2 \right\rfloor + t,$

i_1 and i_2: integer parts of the numerator and denominator and $t \in [-2, 8]$

Maximum errors with various functions used to determine the output formats of division.

(a) Cholesky 5×5.

(b) Triangular 10×10.

Maximum errors with various functions used to determine the output formats of division.
How fast is generating triangular matrix inversion codes?

- We use $f_4(i_1, i_2) = \left\lfloor (i_1 + i_2) / 2 \right\rfloor + 1$ to set the output format of division

Generation time for the inversion of triangular matrices of size 4 to 40.
How fast is generating triangular matrix inversion codes?

- We use \(f_4(i_1, i_2) = \lfloor (i_1 + i_2)/2 \rfloor + 1 \) to set the output format of division.

Error bounds and experimental errors for the inversion of triangular matrices of size 4 to 40.
Decomposing some well known matrices

- 2 ill-conditioned matrices: Hilbert and Cauchy
- 2 well-conditioned matrices: KMS and Lehmer

![Condition number vs Matrix size for different matrices](image)
Decomposing some well known matrices

- 2 ill-conditioned matrices: Hilbert and Cauchy
- 2 well-conditioned matrices: KMS and Lehmer

- Ill-conditioned matrices tend to overflow more often
 - similar behaviour in floating-point arithmetic
- The decompositions of KMS and Lehmer are highly accurate
Conclusions and perspectives

Contributions

- Formalization and implementation of an arithmetic model
 - allows certification
 - handles $\sqrt{}$ and $/$
Conclusions and perspectives

Contributions

- **Formalization and implementation of an arithmetic model**
 - allows certification
 - handles $\sqrt{}$ and $/$

- **Adaptation of the CGPE tool to the model:**
 - generates code for fine grained expressions
 - instruction selection

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS)

Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks
Conclusions and perspectives

Contributions

- Formalization and implementation of an arithmetic model
 - allows certification
 - handles √ and /

- Adaptation of the CGPE tool to the model:
 - generates code for fine grained expressions
 - instruction selection

- Development of FPLA:
 - automated and certified code synthesis for linear algebra basic block
 - Cholesky decomposition and triangular matrix inversion: study of divisions’ impact
Conclusions and perspectives

Contributions

- Formalization and implementation of an arithmetic model
 - allows certification
 - handles $\sqrt{}$ and $/$

- Adaptation of the CGPE tool to the model:
 - generates code for fine grained expressions
 - instruction selection

- Development of FPLA:
 - automated and certified code synthesis for linear algebra basic block
 - Cholesky decomposition and triangular matrix inversion: study of divisions’ impact

Perspectives

- Integrate the matrix inversion flow
Conclusions and perspectives

Contributions

- Formalization and implementation of an arithmetic model
 - allows certification
 - handles √ and /

- Adaptation of the CGPE tool to the model:
 - generates code for fine grained expressions
 - instruction selection

- Development of FPLA:
 - automated and certified code synthesis for linear algebra basic block
 → Cholesky decomposition and triangular matrix inversion: study of divisions’ impact

Perspectives

- Integrate the matrix inversion flow
Fixed-point code synthesis for linear algebra basic blocks

Fridge: a fixed-point design and simulation environment.

IEEE Standard for Floating-Point Arithmetic.

[MCCS02] Daniel Menard, Daniel Chillet, François Charot, and Olivier Sentieys.
Automatic floating-point to fixed-point conversion for DSP code generation.

GUSTO: An Automatic Generation and Optimization Tool for Matrix Inversion Architectures.

Sum-of-products evaluation schemes with fixed-point arithmetic, and their application to IIR filter implementation.

Implementation of binary floating-point arithmetic on embedded integer processors - Polynomial evaluation-based algorithms and certified code generation.

Approach based on instruction selection for fast and certified code generation.

[KG08] David R. Koes and Seth C. Goldstein.
Near-optimal instruction selection on DAGs.

Toward the synthesis of fixed-point code for matrix inversion based on cholesky decomposition.

[MNR14c] Christophe Mouilleron, Amine Najahi, and Guillaume Revy.
Automated Synthesis of Target-Dependent Programs for Polynomial Evaluation in Fixed-Point Arithmetic.

Code Size and Accuracy-Aware Synthesis of Fixed-Point Programs for Matrix Multiplication.

Evaluation of static analysis techniques for fixed-point precision optimization.

[LV09] Dong-U Lee and John D. Villasenor.
Optimized custom precision function evaluation for embedded processors.