
HAL Id: lirmm-01277374
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01277374v1

Submitted on 22 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Synthesis of certified programs in fixed-point arithmetic,
and its application to linear algebra basic blocks

Mohamed Amine Najahi

To cite this version:
Mohamed Amine Najahi. Synthesis of certified programs in fixed-point arithmetic, and its application
to linear algebra basic blocks. RAIM: Rencontres Arithmétiques de l’Informatique Mathématique,
Apr 2015, Rennes, France. 7ème Rencontres Arithmétiques de l’Informatique Mathématique, 2015.
�lirmm-01277374�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01277374v1
https://hal.archives-ouvertes.fr

7ème Rencontres Arithmétiques de l’Informatique Mathématique (RAIM2015)
Rennes, 7-9 april 2015

Synthesis of certified programs in fixed-point
arithmetic, and its application to

linear algebra basic blocks

Amine Najahi

Univ. Perpignan Via Domitia, DALI project-team
Univ. Montpellier 2, LIRMM, UMR 5506

CNRS, LIRMM, UMR 5506

D
A

LI

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 1/25

Which arithmetic for computational tasks?

Floating-point computations

© Easy and fast to implement

© Easily portable [IEEE754]

§ Requires dedicated hardware

§ Slow if emulated in software

Fixed-point computations

§ Tedious and time consuming to implement

• > 50% of design time [Wil98]

© Relies only on integer instructions

© Efficient

Embedded systems targets

µ-controllers DSPs FPGAs

→ have efficient integer instructions

Fixed-point arithmetic is well suited for embedded systems

But, how to make it easy, fast, and numerically safe to use by non-expert programmers?

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 2/25

Which arithmetic for computational tasks?

Floating-point computations
© Easy and fast to implement

© Easily portable [IEEE754]

§ Requires dedicated hardware

§ Slow if emulated in software

Fixed-point computations
§ Tedious and time consuming to implement

• > 50% of design time [Wil98]

© Relies only on integer instructions

© Efficient

Embedded systems targets

µ-controllers DSPs FPGAs

→ have efficient integer instructions

Fixed-point arithmetic is well suited for embedded systems

But, how to make it easy, fast, and numerically safe to use by non-expert programmers?

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 2/25

Which arithmetic for computational tasks?

Floating-point computations
© Easy and fast to implement

© Easily portable [IEEE754]

§ Requires dedicated hardware

§ Slow if emulated in software

Fixed-point computations
§ Tedious and time consuming to implement

• > 50% of design time [Wil98]

© Relies only on integer instructions

© Efficient

Embedded systems targets

µ-controllers DSPs FPGAs

→ have efficient integer instructions

Fixed-point arithmetic is well suited for embedded systems

But, how to make it easy, fast, and numerically safe to use by non-expert programmers?

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 2/25

Which arithmetic for computational tasks?

Floating-point computations
© Easy and fast to implement

© Easily portable [IEEE754]

§ Requires dedicated hardware

§ Slow if emulated in software

Fixed-point computations
§ Tedious and time consuming to implement

• > 50% of design time [Wil98]

© Relies only on integer instructions

© Efficient

Embedded systems targets

µ-controllers DSPs FPGAs

→ have efficient integer instructions

Fixed-point arithmetic is well suited for embedded systems

But, how to make it easy, fast, and numerically safe to use by non-expert programmers?

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 2/25

Which arithmetic for computational tasks?

Floating-point computations
© Easy and fast to implement

© Easily portable [IEEE754]

§ Requires dedicated hardware

§ Slow if emulated in software

Fixed-point computations
§ Tedious and time consuming to implement

• > 50% of design time [Wil98]

© Relies only on integer instructions

© Efficient

Embedded systems targets

µ-controllers DSPs FPGAs

→ have efficient integer instructions

Fixed-point arithmetic is well suited for embedded systems

But, how to make it easy, fast, and numerically safe to use by non-expert programmers?

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 2/25

The DEFIS approach

DEFIS (ANR, 2011-2015)

Goal: develop techniques and tools to automate
fixed-point programming

Combines conversion and IP block synthesis

Ï Ménard et al. (CAIRN, Univ. Rennes) [MCCS02]:
• automatic float-to-fix conversion

Ï Didier et al. (PEQUAN, Univ. Paris) [LHD14]:
• code generation for the linear filter IP block

Ï Our approach (DALI, Univ. Perpignan):
• certified fixed-point synthesis for:

• Fine grained IP blocks: dot-products,
polynomials, ...

• High level IP blocks: matrix multiplication,
triangular matrix inversion, Cholesky decomposition

Long term objective: code synthesis for matrix inversion

Im
plem

entation
tools

Infrastructure for the design of fixed-point system
s

Algorithm

level
optim

ization

IWL Determination
Dynamic Range

evaluation

FWL Determination

Back-end

S2S
transfor-
mation

Application description

Specific
block

generation

Floating-point
C code

Accuracy
evaluation

B1

B5

B4

B3 B6

B2

System level
optimization

Accuracy
constraint

High level
Synthesis Compiler

Architecture

Fixed-point C code

Architecture
model

Validation &
Optimization

Parameterized
IP blocks

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 3/25

The DEFIS approach

DEFIS (ANR, 2011-2015)

Goal: develop techniques and tools to automate
fixed-point programming

Combines conversion and IP block synthesis

Ï Ménard et al. (CAIRN, Univ. Rennes) [MCCS02]:
• automatic float-to-fix conversion

Ï Didier et al. (PEQUAN, Univ. Paris) [LHD14]:
• code generation for the linear filter IP block

Ï Our approach (DALI, Univ. Perpignan):
• certified fixed-point synthesis for:

• Fine grained IP blocks: dot-products,
polynomials, ...

• High level IP blocks: matrix multiplication,
triangular matrix inversion, Cholesky decomposition

Long term objective: code synthesis for matrix inversion

Im
plem

entation
tools

Infrastructure for the design of fixed-point system
s

Algorithm

level
optim

ization

IWL Determination
Dynamic Range

evaluation

FWL Determination

Back-end

S2S
transfor-
mation

Application description

Specific
block

generation

Floating-point
C code

Accuracy
evaluation

B1

B5

B4

B3 B6

B2

System level
optimization

Accuracy
constraint

High level
Synthesis Compiler

Architecture

Fixed-point C code

Architecture
model

Validation &
Optimization

Parameterized
IP blocks

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 3/25

The DEFIS approach

DEFIS (ANR, 2011-2015)

Goal: develop techniques and tools to automate
fixed-point programming

Combines conversion and IP block synthesis

Ï Ménard et al. (CAIRN, Univ. Rennes) [MCCS02]:
• automatic float-to-fix conversion

Ï Didier et al. (PEQUAN, Univ. Paris) [LHD14]:
• code generation for the linear filter IP block

Ï Our approach (DALI, Univ. Perpignan):
• certified fixed-point synthesis for:

• Fine grained IP blocks: dot-products,
polynomials, ...

• High level IP blocks: matrix multiplication,
triangular matrix inversion, Cholesky decomposition

Long term objective: code synthesis for matrix inversion

Im
plem

entation
tools

Infrastructure for the design of fixed-point system
s

Algorithm

level
optim

ization

IWL Determination
Dynamic Range

evaluation

FWL Determination

Back-end

S2S
transfor-
mation

Application description

Specific
block

generation

Floating-point
C code

Accuracy
evaluation

B1

B5

B4

B3 B6

B2

System level
optimization

Accuracy
constraint

High level
Synthesis Compiler

Architecture

Fixed-point C code

Architecture
model

Validation &
Optimization

Parameterized
IP blocks

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 3/25

The DEFIS approach

DEFIS (ANR, 2011-2015)

Goal: develop techniques and tools to automate
fixed-point programming

Combines conversion and IP block synthesis

Ï Ménard et al. (CAIRN, Univ. Rennes) [MCCS02]:
• automatic float-to-fix conversion

Ï Didier et al. (PEQUAN, Univ. Paris) [LHD14]:
• code generation for the linear filter IP block

Ï Our approach (DALI, Univ. Perpignan):
• certified fixed-point synthesis for:

• Fine grained IP blocks: dot-products,
polynomials, ...

• High level IP blocks: matrix multiplication,
triangular matrix inversion, Cholesky decomposition

Long term objective: code synthesis for matrix inversion

Im
plem

entation
tools

Infrastructure for the design of fixed-point system
s

Algorithm

level
optim

ization

IWL Determination
Dynamic Range

evaluation

FWL Determination

Back-end

S2S
transfor-
mation

Application description

Specific
block

generation

Floating-point
C code

Accuracy
evaluation

B1

B5

B4

B3 B6

B2

System level
optimization

Accuracy
constraint

High level
Synthesis Compiler

Architecture

Fixed-point C code

Architecture
model

Validation &
Optimization

Parameterized
IP blocks

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 3/25

Our road-map

How to generate certified fixed-point code for matrix inversion?

1. Specify an arithmetic model
Ï Contributions:

• formalization of p and /

2. Build a synthesis tool, CGPE, for fine grained IP
blocks:

Ï it adheres to the arithmetic model
Ï Contributions:

• implementation of the arithmetic model

3. Build a second synthesis tool, FPLA, for algorithmic
IP blocks:

Ï it generates code using CGPE
Ï Contributions:

• trade-off implementations for matrix multiplication
• code synthesis for Cholesky decomposition and

triangular matrix inversion

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 4/25

Our road-map

How to generate certified fixed-point code for matrix inversion?

1. Specify an arithmetic model
Ï Contributions:

• formalization of p and /

2. Build a synthesis tool, CGPE, for fine grained IP
blocks:

Ï it adheres to the arithmetic model
Ï Contributions:

• implementation of the arithmetic model

3. Build a second synthesis tool, FPLA, for algorithmic
IP blocks:

Ï it generates code using CGPE
Ï Contributions:

• trade-off implementations for matrix multiplication
• code synthesis for Cholesky decomposition and

triangular matrix inversion

Arithmetic
model

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 4/25

Our road-map

How to generate certified fixed-point code for matrix inversion?

1. Specify an arithmetic model
Ï Contributions:

• formalization of p and /

2. Build a synthesis tool, CGPE, for fine grained IP
blocks:

Ï it adheres to the arithmetic model
Ï Contributions:

• implementation of the arithmetic model

3. Build a second synthesis tool, FPLA, for algorithmic
IP blocks:

Ï it generates code using CGPE
Ï Contributions:

• trade-off implementations for matrix multiplication
• code synthesis for Cholesky decomposition and

triangular matrix inversion

Arithmetic
model

F
ixed-point synthesis

to
ol

CGPE

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 4/25

Our road-map

How to generate certified fixed-point code for matrix inversion?

1. Specify an arithmetic model
Ï Contributions:

• formalization of p and /

2. Build a synthesis tool, CGPE, for fine grained IP
blocks:

Ï it adheres to the arithmetic model
Ï Contributions:

• implementation of the arithmetic model

3. Build a second synthesis tool, FPLA, for algorithmic
IP blocks:

Ï it generates code using CGPE
Ï Contributions:

• trade-off implementations for matrix multiplication
• code synthesis for Cholesky decomposition and

triangular matrix inversion

Arithmetic
model

F
ixed-point synthesis

to
ol

CGPE

Algorithmic level tool

FPLA

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 4/25

Outline of the talk

1. An arithmetic model for fixed-point code synthesis

2. An implementation of the arithmetic model: the CGPE tool

3. Fixed-point code synthesis for linear algebra basic blocks

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 5/25

An arithmetic model for fixed-point code synthesis

Outline of the talk

1. An arithmetic model for fixed-point code synthesis

2. An implementation of the arithmetic model: the CGPE tool

3. Fixed-point code synthesis for linear algebra basic blocks

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 6/25

An arithmetic model for fixed-point code synthesis

Fixed-point arithmetic numbers

A fixed-point number x is defined by two integers:

. X the k -bit integer representation of x

. f the implicit scaling factor of x

 The value of x is given by x = X

2f
=

k−1−f∑
`=−f

X`+f ·2`

X7 X6 X5 X4 X3 X2 X1 X0

k = 8

i = 3 f = 5

Notation
A fixed-point number with i bits of integer part and f bits of fraction part is in the Qi .f format

Example:
Ï x in Q3.5 and X = (1001 1000)2 = (152)10 −→ x = (100.11000)2 = (4.75)10

How to compute with fixed-point numbers?

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 7/25

An arithmetic model for fixed-point code synthesis

Fixed-point arithmetic numbers

A fixed-point number x is defined by two integers:

. X the k -bit integer representation of x

. f the implicit scaling factor of x

 The value of x is given by x = X

2f
=

k−1−f∑
`=−f

X`+f ·2`

X7 X6 X5 X4 X3 X2 X1 X0

k = 8

i = 3 f = 5

Notation
A fixed-point number with i bits of integer part and f bits of fraction part is in the Qi .f format

Example:
Ï x in Q3.5 and X = (1001 1000)2 = (152)10 −→ x = (100.11000)2 = (4.75)10

How to compute with fixed-point numbers?

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 7/25

An arithmetic model for fixed-point code synthesis

Fixed-point arithmetic numbers

A fixed-point number x is defined by two integers:

. X the k -bit integer representation of x

. f the implicit scaling factor of x

 The value of x is given by x = X

2f
=

k−1−f∑
`=−f

X`+f ·2`

1 0 0 1 1 0 0 0

k = 8

i = 3 f = 5

Notation
A fixed-point number with i bits of integer part and f bits of fraction part is in the Qi .f format

Example:
Ï x in Q3.5 and X = (1001 1000)2 = (152)10 −→ x = (100.11000)2 = (4.75)10

How to compute with fixed-point numbers?

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 7/25

An arithmetic model for fixed-point code synthesis

Fixed-point arithmetic numbers

A fixed-point number x is defined by two integers:

. X the k -bit integer representation of x

. f the implicit scaling factor of x

 The value of x is given by x = X

2f
=

k−1−f∑
`=−f

X`+f ·2`

1 0 0 1 1 0 0 0

k = 8

i = 3 f = 5

Notation
A fixed-point number with i bits of integer part and f bits of fraction part is in the Qi .f format

Example:
Ï x in Q3.5 and X = (1001 1000)2 = (152)10 −→ x = (100.11000)2 = (4.75)10

How to compute with fixed-point numbers?

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 7/25

An arithmetic model for fixed-point code synthesis

An interval arithmetic based model
For each coefficient or variable v , we keep track of 2 intervals Val(v) and Err(v)
Our model assumes a fixed word-length k

Val(v) is the range of v

the format Qi .f of v is deduced from
Val(v)= [

v,v
]

Ï i =
⌈

log2 (max(
∣∣v∣∣ ,

∣∣v∣∣))⌉+α Ï f = k − i

α=
{

1, if mod
(
log2(v),1

) 6= 0,

2, otherwise

Err(v) encloses the
rounding error of

computing v

a bound ε on rounding
errors is deduced from
Err(v)= [

e,e
]

Ï ε=max
(∣∣e∣∣ ,

∣∣e∣∣)
¦

¦

¦

a0 ¦

a1

¦

¦

a2 ¦

a3

¦

x

¦

¦ ¦

a4 ¦

a5

¦

. .

Val(v)= g¦
(
Val(v1),Val(v2),Err(v1),Err(v2)

)
Err(v)= h¦

(
Val(v1),Val(v2),Err(v1),Err(v2)

)
Val(v1)
Err(v1)

Val(v2)
Err(v2)

How to propagate Val(v) and Err(v) for ¦ ∈ {+,−,×,¿,À,p,/
}
?

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 8/25

An arithmetic model for fixed-point code synthesis

An interval arithmetic based model
For each coefficient or variable v , we keep track of 2 intervals Val(v) and Err(v)
Our model assumes a fixed word-length k

Val(v) is the range of v
the format Qi .f of v is deduced from
Val(v)= [

v,v
]

Ï i =
⌈

log2 (max(
∣∣v∣∣ ,

∣∣v∣∣))⌉+α Ï f = k − i

α=
{

1, if mod
(
log2(v),1

) 6= 0,

2, otherwise

Err(v) encloses the
rounding error of

computing v
a bound ε on rounding
errors is deduced from
Err(v)= [

e,e
]

Ï ε=max
(∣∣e∣∣ ,

∣∣e∣∣)

¦

¦

¦

a0 ¦

a1

¦

¦

a2 ¦

a3

¦

x

¦

¦ ¦

a4 ¦

a5

¦

. .

Val(v)= g¦
(
Val(v1),Val(v2),Err(v1),Err(v2)

)
Err(v)= h¦

(
Val(v1),Val(v2),Err(v1),Err(v2)

)
Val(v1)
Err(v1)

Val(v2)
Err(v2)

How to propagate Val(v) and Err(v) for ¦ ∈ {+,−,×,¿,À,p,/
}
?

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 8/25

An arithmetic model for fixed-point code synthesis

An interval arithmetic based model
For each coefficient or variable v , we keep track of 2 intervals Val(v) and Err(v)
Our model assumes a fixed word-length k

Val(v) is the range of v
the format Qi .f of v is deduced from
Val(v)= [

v,v
]

Ï i =
⌈

log2 (max(
∣∣v∣∣ ,

∣∣v∣∣))⌉+α Ï f = k − i

α=
{

1, if mod
(
log2(v),1

) 6= 0,

2, otherwise

Err(v) encloses the
rounding error of

computing v
a bound ε on rounding
errors is deduced from
Err(v)= [

e,e
]

Ï ε=max
(∣∣e∣∣ ,

∣∣e∣∣)
¦

¦

¦

a0 ¦

a1

¦

¦

a2 ¦

a3

¦

x

¦

¦ ¦

a4 ¦

a5

¦

. .

Val(v)= g¦
(
Val(v1),Val(v2),Err(v1),Err(v2)

)
Err(v)= h¦

(
Val(v1),Val(v2),Err(v1),Err(v2)

)
Val(v1)
Err(v1)

Val(v2)
Err(v2)

How to propagate Val(v) and Err(v) for ¦ ∈ {+,−,×,¿,À,p,/
}
?

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 8/25

An arithmetic model for fixed-point code synthesis

An interval arithmetic based model
For each coefficient or variable v , we keep track of 2 intervals Val(v) and Err(v)
Our model assumes a fixed word-length k

Val(v) is the range of v
the format Qi .f of v is deduced from
Val(v)= [

v,v
]

Ï i =
⌈

log2 (max(
∣∣v∣∣ ,

∣∣v∣∣))⌉+α Ï f = k − i

α=
{

1, if mod
(
log2(v),1

) 6= 0,

2, otherwise

Err(v) encloses the
rounding error of

computing v
a bound ε on rounding
errors is deduced from
Err(v)= [

e,e
]

Ï ε=max
(∣∣e∣∣ ,

∣∣e∣∣)
¦

¦

¦

a0 ¦

a1

¦

¦

a2 ¦

a3

¦

x

¦

¦ ¦

a4 ¦

a5

¦

. .

Val(v)= g¦
(
Val(v1),Val(v2),Err(v1),Err(v2)

)
Err(v)= h¦

(
Val(v1),Val(v2),Err(v1),Err(v2)

)
Val(v1)
Err(v1)

Val(v2)
Err(v2)

How to propagate Val(v) and Err(v) for ¦ ∈ {+,−,×,¿,À,p,/
}
?

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 8/25

An arithmetic model for fixed-point code synthesis

Fixed-point multiplication
The output format of a Qi1 .f1 ×Qi2 .f2 is Qi1 + i2 .f1 + f2

But, doubling the word-length is costly

i1 f1

i2 f2

i1 + i2 f1 + f2

fr

• • • • • • • •

• • • • • • • •×

• • • • • • • • • • • • • • • •

Discarded bits

×

. .

Val(v)= Val(v1)×Val(v2)
Err(v)= Val(v1)×Err(v2)

+Val(v2)×Err(v1)
+Err(v1)×Err(v2)

Val(v)= Val(v1)×Val(v2)−Err×
Err(v)= Err×

+Val(v1)×Err(v2)
+Val(v2)×Err(v1)
+Err(v1)×Err(v2)

Val(v1)
Err(v1)

Val(v2)
Err(v2)

Err× =
[
0,2−fr −2−(f1+f2)

]
This multiplication is available on integer processors and DSPs

int32_t mul (int32_t v1, int32_t v2){
int64_t prod = ((int64_t) v1) * ((int64_t) v2);
return (int32_t) (prod >> 32);

}

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 9/25

An arithmetic model for fixed-point code synthesis

Fixed-point multiplication
The output format of a Qi1 .f1 ×Qi2 .f2 is Qi1 + i2 .f1 + f2

But, doubling the word-length is costly

i1 f1

i2 f2

i1 + i2 f1 + f2

fr

• • • • • • • •

• • • • • • • •×

• • • • • • • • • • • • • • • •

Discarded bits

×

. .

Val(v)= Val(v1)×Val(v2)
Err(v)= Val(v1)×Err(v2)

+Val(v2)×Err(v1)
+Err(v1)×Err(v2)

Val(v)= Val(v1)×Val(v2)−Err×
Err(v)= Err×

+Val(v1)×Err(v2)
+Val(v2)×Err(v1)
+Err(v1)×Err(v2)

Val(v1)
Err(v1)

Val(v2)
Err(v2)

Err× =
[
0,2−fr −2−(f1+f2)

]
This multiplication is available on integer processors and DSPs

int32_t mul (int32_t v1, int32_t v2){
int64_t prod = ((int64_t) v1) * ((int64_t) v2);
return (int32_t) (prod >> 32);

}

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 9/25

An arithmetic model for fixed-point code synthesis

Fixed-point multiplication
The output format of a Qi1 .f1 ×Qi2 .f2 is Qi1 + i2 .f1 + f2

But, doubling the word-length is costly

i1 f1

i2 f2

i1 + i2

f1 + f2

fr

• • • • • • • •

• • • • • • • •×

• • • • • • • • • • • • • • • •

Discarded bits

×

. .

Val(v)= Val(v1)×Val(v2)
Err(v)= Val(v1)×Err(v2)

+Val(v2)×Err(v1)
+Err(v1)×Err(v2)

Val(v)= Val(v1)×Val(v2)−Err×
Err(v)= Err×

+Val(v1)×Err(v2)
+Val(v2)×Err(v1)
+Err(v1)×Err(v2)

Val(v1)
Err(v1)

Val(v2)
Err(v2)

Err× =
[
0,2−fr −2−(f1+f2)

]

This multiplication is available on integer processors and DSPs

int32_t mul (int32_t v1, int32_t v2){
int64_t prod = ((int64_t) v1) * ((int64_t) v2);
return (int32_t) (prod >> 32);

}

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 9/25

An arithmetic model for fixed-point code synthesis

Fixed-point multiplication
The output format of a Qi1 .f1 ×Qi2 .f2 is Qi1 + i2 .f1 + f2

But, doubling the word-length is costly

i1 f1

i2 f2

i1 + i2

f1 + f2

fr

• • • • • • • •

• • • • • • • •×

• • • • • • • • • • • • • • • •

Discarded bits

×

. .

Val(v)= Val(v1)×Val(v2)
Err(v)= Val(v1)×Err(v2)

+Val(v2)×Err(v1)
+Err(v1)×Err(v2)

Val(v)= Val(v1)×Val(v2)−Err×
Err(v)= Err×

+Val(v1)×Err(v2)
+Val(v2)×Err(v1)
+Err(v1)×Err(v2)

Val(v1)
Err(v1)

Val(v2)
Err(v2)

Err× =
[
0,2−fr −2−(f1+f2)

]
This multiplication is available on integer processors and DSPs

int32_t mul (int32_t v1, int32_t v2){
int64_t prod = ((int64_t) v1) * ((int64_t) v2);
return (int32_t) (prod >> 32);

}

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 9/25

An arithmetic model for fixed-point code synthesis

Our new fixed-point division
The output integer part of Qi1 .f1/Qi2 .f2 may be as large as i1 + f2

But, doubling the word-length is costly
How to obtain sharper a error bounds on Err/?

i1 f1

i2 f2

i1 f1 +k

i2 f2

• • • • • • • •

• • • • • • • •/

• • • • • • • • 0 0 0 0 0 0 0 0

• • • • • • • •÷

×2k

i1 + f2 i2 + f1

• • • • • • • • • • • • • • • •
i1 + f2 fr

• • • • • • • • • • • • • • • •
ir fr

• • • • • • • • • • • • • • • •

How to decide of the output format of division?

A large integer part
3 prevents overflow
7 loose error bounds and loss of

precision

A small integer part
7 may cause overflow
3 sharp error bounds and more

accurate computations

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 10/25

An arithmetic model for fixed-point code synthesis

Our new fixed-point division
The output integer part of Qi1 .f1/Qi2 .f2 may be as large as i1 + f2

But, doubling the word-length is costly
How to obtain sharper a error bounds on Err/?

i1 f1

i2 f2

i1 f1 +k

i2 f2

• • • • • • • •

• • • • • • • •/

• • • • • • • • 0 0 0 0 0 0 0 0

• • • • • • • •÷

×2k

i1 + f2 i2 + f1

• • • • • • • • • • • • • • • •

i1 + f2 fr

• • • • • • • • • • • • • • • •
ir fr

• • • • • • • • • • • • • • • •

Err/ =
[−2i2+f1 ,2i2+f1

]

How to decide of the output format of division?

A large integer part
3 prevents overflow
7 loose error bounds and loss of

precision

A small integer part
7 may cause overflow
3 sharp error bounds and more

accurate computations

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 10/25

An arithmetic model for fixed-point code synthesis

Our new fixed-point division
The output integer part of Qi1 .f1/Qi2 .f2 may be as large as i1 + f2
But, doubling the word-length is costly

How to obtain sharper a error bounds on Err/?

i1 f1

i2 f2

i1 f1 +k

i2 f2

• • • • • • • •

• • • • • • • •/

• • • • • • • • 0 0 0 0 0 0 0 0

• • • • • • • •÷

×2k

i1 + f2 i2 + f1

• • • • • • • • • • • • • • • •

i1 + f2 fr

• • • • • • • • • • • • • • • •

ir fr

• • • • • • • • • • • • • • • •

Err/ =
[−2fr ,2fr

]

How to decide of the output format of division?

A large integer part
3 prevents overflow
7 loose error bounds and loss of

precision

A small integer part
7 may cause overflow
3 sharp error bounds and more

accurate computations

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 10/25

An arithmetic model for fixed-point code synthesis

Our new fixed-point division
The output integer part of Qi1 .f1/Qi2 .f2 may be as large as i1 + f2
But, doubling the word-length is costly
How to obtain sharper a error bounds on Err/?

i1 f1

i2 f2

i1 f1 +k

i2 f2

• • • • • • • •

• • • • • • • •/

• • • • • • • • 0 0 0 0 0 0 0 0

• • • • • • • •÷

×2k

i1 + f2 i2 + f1

• • • • • • • • • • • • • • • •
i1 + f2 fr

• • • • • • • • • • • • • • • •

ir fr

• • • • • • • • • • • • • • • •

Err/ =
[−2fr ,2fr

]
© sharper bound
§ risk of overflow at run-time

How to decide of the output format of division?

A large integer part
3 prevents overflow
7 loose error bounds and loss of

precision

A small integer part
7 may cause overflow
3 sharp error bounds and more

accurate computations

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 10/25

An arithmetic model for fixed-point code synthesis

Our new fixed-point division
The output integer part of Qi1 .f1/Qi2 .f2 may be as large as i1 + f2
But, doubling the word-length is costly
How to obtain sharper a error bounds on Err/?

i1 f1

i2 f2

i1 f1 +k

i2 f2

• • • • • • • •

• • • • • • • •/

• • • • • • • • 0 0 0 0 0 0 0 0

• • • • • • • •÷

×2k

i1 + f2 i2 + f1

• • • • • • • • • • • • • • • •
i1 + f2 fr

• • • • • • • • • • • • • • • •

ir fr

• • • • • • • • • • • • • • • •

Err/ =
[−2fr ,2fr

]
© sharper bound
§ risk of overflow at run-time

How to decide of the output format of division?

A large integer part
3 prevents overflow
7 loose error bounds and loss of

precision

A small integer part
7 may cause overflow
3 sharp error bounds and more

accurate computations

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 10/25

An arithmetic model for fixed-point code synthesis

The propagation rule and implementation of division
Once the output format decided Qir .fr

/

. .

Val(v)=Range(Qir .fr)= [−2ir −1 ,2ir −1 −2fr].

Err(v)=
áVal(v2)·Err(v1)−Val(v1)·Err(v2)áVal(v2)·

(áVal(v2)+Err(v2)
) +Err/

Val(v1)
Err(v1)

Val(v2)
Err(v2)

àVal(v2)=
Val(v1)âVal(v)+Err/

∩Val(v2) and âVal(v)= [−2ir−1,−2−fr]∪ [2−fr ,2ir−1 −2fr]

Additional code to check for run-time overflows

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 11/25

An arithmetic model for fixed-point code synthesis

The propagation rule and implementation of division
Once the output format decided Qir .fr

/

. .

Val(v)=Range(Qir .fr)= [−2ir −1 ,2ir −1 −2fr].

Err(v)=
áVal(v2)·Err(v1)−Val(v1)·Err(v2)áVal(v2)·

(áVal(v2)+Err(v2)
) +Err/

Val(v1)
Err(v1)

Val(v2)
Err(v2)

àVal(v2)=
Val(v1)âVal(v)+Err/

∩Val(v2) and âVal(v)= [−2ir−1,−2−fr]∪ [2−fr ,2ir−1 −2fr]

int32_t div (int32_t V1, int32_t V2, uint16_t eta)
{

int64_t t1 = ((int64_t)V1) << eta;
int64_t V = t1 / V2;
CGPE_ASSERT
CGPE_ASSERT
return (int32_t) V;

}

Additional code to check for run-time overflows

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 11/25

An arithmetic model for fixed-point code synthesis

The propagation rule and implementation of division
Once the output format decided Qir .fr

/

. .

Val(v)=Range(Qir .fr)= [−2ir −1 ,2ir −1 −2fr].

Err(v)=
áVal(v2)·Err(v1)−Val(v1)·Err(v2)áVal(v2)·

(áVal(v2)+Err(v2)
) +Err/

Val(v1)
Err(v1)

Val(v2)
Err(v2)

àVal(v2)=
Val(v1)âVal(v)+Err/

∩Val(v2) and âVal(v)= [−2ir−1,−2−fr]∪ [2−fr ,2ir−1 −2fr]

int32_t div (int32_t V1, int32_t V2, uint16_t eta)
{

int64_t t1 = ((int64_t)V1) << eta;
int64_t V = t1 / V2;
CGPE_ASSERT((((V & 0xFFFFFFFF80000000ll) == 0xFFFFFFFF80000000ll)

|| ((V & 0xFFFFFFFF80000000ll) == 0)));
return (int32_t) V;

}

Additional code to check for run-time overflows

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 11/25

An arithmetic model for fixed-point code synthesis

The division format trade-off: case of inverting 2×2 matrices

Consider A=
(
a b

c d

)
with a,b,c,d ∈ [−1,1] in the format Q2.30

Cramer’s rule: if ∆= ad −bc 6= 0 then A−1 =
(

d
∆

−b
∆

−c
∆

a
∆

)

/

d −

×

a d

×

b c

[−1,1] [−1,1]

[−1,1]

Q2.30

[−2,2]

Q3.29

?

Q−10.42

Q−8.40

Q−6.38

Q−4.36

Q−2.34

Q
0.32

Q
2.30

Q
4.28

Q
6.26

Q
8.24

Q
10.22

2−36

2−31

2−26

2−21

2−16

2−11

DIVISION OUTPUT FORMAT

M
ax

im
um

ex
pe

rim
en

ta
le

rr
or

0%

20%

40%

60%

80%

100%

Maximum error

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 12/25

An arithmetic model for fixed-point code synthesis

The division format trade-off: case of inverting 2×2 matrices

Consider A=
(
a b

c d

)
with a,b,c,d ∈ [−1,1] in the format Q2.30

Cramer’s rule: if ∆= ad −bc 6= 0 then A−1 =
(

d
∆

−b
∆

−c
∆

a
∆

)

/

d −

×

a d

×

b c

[−1,1] [−1,1]

[−1,1]

Q2.30

[−2,2]

Q3.29

?

Q−10.42

Q−8.40

Q−6.38

Q−4.36

Q−2.34

Q
0.32

Q
2.30

Q
4.28

Q
6.26

Q
8.24

Q
10.22

2−36

2−31

2−26

2−21

2−16

2−11

DIVISION OUTPUT FORMAT

M
ax

im
um

ex
pe

rim
en

ta
le

rr
or

0%

20%

40%

60%

80%

100%

Maximum error

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 12/25

An arithmetic model for fixed-point code synthesis

The division format trade-off: case of inverting 2×2 matrices

Consider A=
(
a b

c d

)
with a,b,c,d ∈ [−1,1] in the format Q2.30

Cramer’s rule: if ∆= ad −bc 6= 0 then A−1 =
(

d
∆

−b
∆

−c
∆

a
∆

)

/

d −

×

a d

×

b c

[−1,1] [−1,1]

[−1,1]

Q2.30

[−2,2]

Q3.29

?

Q−10.42

Q−8.40

Q−6.38

Q−4.36

Q−2.34

Q
0.32

Q
2.30

Q
4.28

Q
6.26

Q
8.24

Q
10.22

2−36

2−31

2−26

2−21

2−16

2−11

DIVISION OUTPUT FORMAT

M
ax

im
um

ex
pe

rim
en

ta
le

rr
or

0%

20%

40%

60%

80%

100%

Maximum error

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 12/25

An arithmetic model for fixed-point code synthesis

The division format trade-off: case of inverting 2×2 matrices

Consider A=
(
a b

c d

)
with a,b,c,d ∈ [−1,1] in the format Q2.30

Cramer’s rule: if ∆= ad −bc 6= 0 then A−1 =
(

d
∆

−b
∆

−c
∆

a
∆

)

/

d −

×

a d

×

b c

[−1,1] [−1,1]

[−1,1]

Q2.30

[−2,2]

Q3.29

?

Q−10.42

Q−8.40

Q−6.38

Q−4.36

Q−2.34

Q
0.32

Q
2.30

Q
4.28

Q
6.26

Q
8.24

Q
10.22

2−36

2−31

2−26

2−21

2−16

2−11

DIVISION OUTPUT FORMAT

M
ax

im
um

ex
pe

rim
en

ta
le

rr
or

0%

20%

40%

60%

80%

100%

Maximum error

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 12/25

An arithmetic model for fixed-point code synthesis

The division format trade-off: case of inverting 2×2 matrices

Consider A=
(
a b

c d

)
with a,b,c,d ∈ [−1,1] in the format Q2.30

Cramer’s rule: if ∆= ad −bc 6= 0 then A−1 =
(

d
∆

−b
∆

−c
∆

a
∆

)

/

d −

×

a d

×

b c

[−1,1] [−1,1]

[−1,1]

Q2.30

[−2,2]

Q3.29

?

Q−10.42

Q−8.40

Q−6.38

Q−4.36

Q−2.34

Q
0.32

Q
2.30

Q
4.28

Q
6.26

Q
8.24

Q
10.22

2−36

2−31

2−26

2−21

2−16

2−11

DIVISION OUTPUT FORMAT

M
ax

im
um

ex
pe

rim
en

ta
le

rr
or

0%

20%

40%

60%

80%

100%

Maximum error

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 12/25

An arithmetic model for fixed-point code synthesis

The division format trade-off: case of inverting 2×2 matrices

Consider A=
(
a b

c d

)
with a,b,c,d ∈ [−1,1] in the format Q2.30

Cramer’s rule: if ∆= ad −bc 6= 0 then A−1 =
(

d
∆

−b
∆

−c
∆

a
∆

)

/

d −

×

a d

×

b c

[−1,1] [−1,1]

[−1,1]

Q2.30

[−2,2]

Q3.29

?

Q−10.42

Q−8.40

Q−6.38

Q−4.36

Q−2.34

Q
0.32

Q
2.30

Q
4.28

Q
6.26

Q
8.24

Q
10.22

2−36

2−31

2−26

2−21

2−16

2−11

DIVISION OUTPUT FORMAT

M
ax

im
um

ex
pe

rim
en

ta
le

rr
or

0%

20%

40%

60%

80%

100%

Maximum error

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 12/25

An arithmetic model for fixed-point code synthesis

The division format trade-off: case of inverting 2×2 matrices

Consider A=
(
a b

c d

)
with a,b,c,d ∈ [−1,1] in the format Q2.30

Cramer’s rule: if ∆= ad −bc 6= 0 then A−1 =
(

d
∆

−b
∆

−c
∆

a
∆

)

/

d −

×

a d

×

b c

[−1,1] [−1,1]

[−1,1]

Q2.30

[−2,2]

Q3.29

?

Q−10.42

Q−8.40

Q−6.38

Q−4.36

Q−2.34

Q
0.32

Q
2.30

Q
4.28

Q
6.26

Q
8.24

Q
10.22

2−36

2−31

2−26

2−21

2−16

2−11

DIVISION OUTPUT FORMAT

M
ax

im
um

ex
pe

rim
en

ta
le

rr
or

0%

20%

40%

60%

80%

100%

Maximum error
Overflow rate

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 12/25

An arithmetic model for fixed-point code synthesis

The division format trade-off: case of inverting 2×2 matrices

Consider A=
(
a b

c d

)
with a,b,c,d ∈ [−1,1] in the format Q2.30

Cramer’s rule: if ∆= ad −bc 6= 0 then A−1 =
(

d
∆

−b
∆

−c
∆

a
∆

)

/

d −

×

a d

×

b c

[−1,1] [−1,1]

[−1,1]

Q2.30

[−2,2]

Q3.29

?

Q−10.42

Q−8.40

Q−6.38

Q−4.36

Q−2.34

Q
0.32

Q
2.30

Q
4.28

Q
6.26

Q
8.24

Q
10.22

2−36

2−31

2−26

2−21

2−16

2−11

DIVISION OUTPUT FORMAT

M
ax

im
um

ex
pe

rim
en

ta
le

rr
or

0%

20%

40%

60%

80%

100%

Maximum error
Overflow rate

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 12/25

An arithmetic model for fixed-point code synthesis

The division format trade-off: case of inverting 2×2 matrices

Consider A=
(
a b

c d

)
with a,b,c,d ∈ [−1,1] in the format Q2.30

Cramer’s rule: if ∆= ad −bc 6= 0 then A−1 =
(

d
∆

−b
∆

−c
∆

a
∆

)

/

d −

×

a d

×

b c

[−1,1] [−1,1]

[−1,1]

Q2.30

[−2,2]

Q3.29

?

Q−10.42

Q−8.40

Q−6.38

Q−4.36

Q−2.34

Q
0.32

Q
2.30

Q
4.28

Q
6.26

Q
8.24

Q
10.22

2−36

2−31

2−26

2−21

2−16

2−11

DIVISION OUTPUT FORMAT

M
ax

im
um

ex
pe

rim
en

ta
le

rr
or

0%

20%

40%

60%

80%

100%

Maximum error
Overflow rate

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 12/25

An arithmetic model for fixed-point code synthesis

The division format trade-off: case of inverting 2×2 matrices

Consider A=
(
a b

c d

)
with a,b,c,d ∈ [−1,1] in the format Q2.30

Cramer’s rule: if ∆= ad −bc 6= 0 then A−1 =
(

d
∆

−b
∆

−c
∆

a
∆

)

/

d −

×

a d

×

b c

[−1,1] [−1,1]

[−1,1]

Q2.30

[−2,2]

Q3.29

?

Q−10.42

Q−8.40

Q−6.38

Q−4.36

Q−2.34

Q
0.32

Q
2.30

Q
4.28

Q
6.26

Q
8.24

Q
10.22

2−36

2−31

2−26

2−21

2−16

2−11

DIVISION OUTPUT FORMAT

M
ax

im
um

ex
pe

rim
en

ta
le

rr
or

0%

20%

40%

60%

80%

100%

Maximum error
Overflow rate

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 12/25

An arithmetic model for fixed-point code synthesis

The division format trade-off: case of inverting 2×2 matrices

Consider A=
(
a b

c d

)
with a,b,c,d ∈ [−1,1] in the format Q2.30

Cramer’s rule: if ∆= ad −bc 6= 0 then A−1 =
(

d
∆

−b
∆

−c
∆

a
∆

)

/

d −

×

a d

×

b c

[−1,1] [−1,1]

[−1,1]

Q2.30

[−2,2]

Q3.29

?

Q−10.42

Q−8.40

Q−6.38

Q−4.36

Q−2.34

Q
0.32

Q
2.30

Q
4.28

Q
6.26

Q
8.24

Q
10.22

2−36

2−31

2−26

2−21

2−16

2−11

DIVISION OUTPUT FORMAT

M
ax

im
um

ex
pe

rim
en

ta
le

rr
or

0%

20%

40%

60%

80%

100%

Maximum error
Overflow rate

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 12/25

An arithmetic model for fixed-point code synthesis

The division format trade-off: case of inverting 2×2 matrices

Consider A=
(
a b

c d

)
with a,b,c,d ∈ [−1,1] in the format Q2.30

Cramer’s rule: if ∆= ad −bc 6= 0 then A−1 =
(

d
∆

−b
∆

−c
∆

a
∆

)

/

d −

×

a d

×

b c

[−1,1] [−1,1]

[−1,1]

Q2.30

[−2,2]

Q3.29

?

Q−10.42

Q−8.40

Q−6.38

Q−4.36

Q−2.34

Q
0.32

Q
2.30

Q
4.28

Q
6.26

Q
8.24

Q
10.22

2−36

2−31

2−26

2−21

2−16

2−11

DIVISION OUTPUT FORMAT

M
ax

im
um

ex
pe

rim
en

ta
le

rr
or

0%

20%

40%

60%

80%

100%

Maximum error
Overflow rate

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 12/25

An arithmetic model for fixed-point code synthesis

The division format trade-off: case of inverting 2×2 matrices

Consider A=
(
a b

c d

)
with a,b,c,d ∈ [−1,1] in the format Q2.30

Cramer’s rule: if ∆= ad −bc 6= 0 then A−1 =
(

d
∆

−b
∆

−c
∆

a
∆

)

/

d −

×

a d

×

b c

[−1,1] [−1,1]

[−1,1]

Q2.30

[−2,2]

Q3.29

?

Q−10.42

Q−8.40

Q−6.38

Q−4.36

Q−2.34

Q
0.32

Q
2.30

Q
4.28

Q
6.26

Q
8.24

Q
10.22

2−36

2−31

2−26

2−21

2−16

2−11

DIVISION OUTPUT FORMAT

M
ax

im
um

ex
pe

rim
en

ta
le

rr
or

0%

20%

40%

60%

80%

100%

Maximum error
Overflow rate

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 12/25

An arithmetic model for fixed-point code synthesis

The division format trade-off: case of inverting 2×2 matrices

Consider A=
(
a b

c d

)
with a,b,c,d ∈ [−1,1] in the format Q2.30

Cramer’s rule: if ∆= ad −bc 6= 0 then A−1 =
(

d
∆

−b
∆

−c
∆

a
∆

)

/

d −

×

a d

×

b c

[−1,1] [−1,1]

[−1,1]

Q2.30

[−2,2]

Q3.29

?

Q−10.42

Q−8.40

Q−6.38

Q−4.36

Q−2.34

Q
0.32

Q
2.30

Q
4.28

Q
6.26

Q
8.24

Q
10.22

2−36

2−31

2−26

2−21

2−16

2−11

DIVISION OUTPUT FORMAT

M
ax

im
um

ex
pe

rim
en

ta
le

rr
or

0%

20%

40%

60%

80%

100%

Maximum error
Overflow rate

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 12/25

An implementation of the arithmetic model: the CGPE tool

Outline of the talk

1. An arithmetic model for fixed-point code synthesis

2. An implementation of the arithmetic model: the CGPE tool

3. Fixed-point code synthesis for linear algebra basic blocks

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 13/25

An implementation of the arithmetic model: the CGPE tool

The CGPE tool

CGPE (Code Generation for Polynomial Evaluation): initiated by Revy [MR11]
Ï synthesizes fixed-point code for polynomial evaluation

1. Computation step front-end
Ï computes evaluation schemes DAGs

2. Filtering step middle-end
Ï applies the arithmetic model
Ï prunes the DAGs that do not satisfy different

criteria:
• latency scheduling filter
• accuracy numerical filter
• ...

3. Generation step back-end
Ï generates C codes and Gappa accuracy

certificates

XML

...

Front-end

Middle-end

Back-end

DAG computation

Filter 1

Filter n

Code generator

Set of DAGs

Decorated DAGs

C Gappa VHDL

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 14/25

An implementation of the arithmetic model: the CGPE tool

The CGPE tool

CGPE (Code Generation for Polynomial Evaluation): initiated by Revy [MR11]
Ï synthesizes fixed-point code for polynomial evaluation

1. Computation step front-end
Ï computes evaluation schemes DAGs

2. Filtering step middle-end
Ï applies the arithmetic model
Ï prunes the DAGs that do not satisfy different

criteria:
• latency scheduling filter
• accuracy numerical filter
• ...

3. Generation step back-end
Ï generates C codes and Gappa accuracy

certificates

XML

...

Front-end

Middle-end

Back-end

DAG computation

Filter 1

Filter n

Code generator

Set of DAGs

Decorated DAGs

C Gappa VHDL

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 14/25

An implementation of the arithmetic model: the CGPE tool

The CGPE tool

CGPE (Code Generation for Polynomial Evaluation): initiated by Revy [MR11]
Ï synthesizes fixed-point code for polynomial evaluation

1. Computation step front-end
Ï computes evaluation schemes DAGs

2. Filtering step middle-end
Ï applies the arithmetic model
Ï prunes the DAGs that do not satisfy different

criteria:
• latency scheduling filter
• accuracy numerical filter
• ...

3. Generation step back-end
Ï generates C codes and Gappa accuracy

certificates

XML

...

Front-end

Middle-end

Back-end

DAG computation

Filter 1

Filter n

Code generator

Set of DAGs

Decorated DAGs

C Gappa VHDL

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 14/25

An implementation of the arithmetic model: the CGPE tool

The CGPE tool

CGPE (Code Generation for Polynomial Evaluation): initiated by Revy [MR11]
Ï synthesizes fixed-point code for polynomial evaluation

1. Computation step front-end
Ï computes evaluation schemes DAGs

2. Filtering step middle-end
Ï applies the arithmetic model
Ï prunes the DAGs that do not satisfy different

criteria:
• latency scheduling filter
• accuracy numerical filter
• ...

3. Generation step back-end
Ï generates C codes and Gappa accuracy

certificates

XML

...

Front-end

Middle-end

Back-end

DAG computation

Filter 1

Filter n

Code generator

Set of DAGs

Decorated DAGs

C Gappa VHDL

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 14/25

An implementation of the arithmetic model: the CGPE tool

Code synthesis for an IIR filter using CGPE

Low-pass Butterworth filter with cutoff frequency 0.3 ·π:

y[k]=∑3
i=0 bi ·u[k − i]−∑3

i=1 ai ·y[k − i]

<dotproduct inf="0xb1e91685" sup="0x4e16e97b" integer_width="6" fraction_width="26" width="32">
<coefficient name="b0" value="0x65718e3b" integer_width="-3" fraction_width="35" width="32"/>

...
<variable name="y3" inf="0xb1e91685" sup="0x4e16e97b" integer_width="6" fraction_width="26" width="32"/>

</dotproduct >

-15

-10

-5

0

5

10

15

0 10 20 30 40 50 60 70 80 90

A
m
p
li
tu
d
e

Time

Original signal
Filtered in fixed-point using S1

Filtered in binary64

-60

-50

-40

-30

-20

-10

0

10 20 30 40 50 60 70 80

-16.76

lo
g
2
(E

r
r
)

Time

Certified error bound
Error of the fixed-point impl. using S1

Error of the binary32 impl.
Error of the binary64 impl.

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 15/25

An implementation of the arithmetic model: the CGPE tool

Code synthesis for an IIR filter using CGPE

Low-pass Butterworth filter with cutoff frequency 0.3 ·π:

y[k]=∑3
i=0 bi ·u[k − i]−∑3

i=1 ai ·y[k − i]

<dotproduct inf="0xb1e91685" sup="0x4e16e97b" integer_width="6" fraction_width="26" width="32">
<coefficient name="b0" value="0x65718e3b" integer_width="-3" fraction_width="35" width="32"/>

...
<variable name="y3" inf="0xb1e91685" sup="0x4e16e97b" integer_width="6" fraction_width="26" width="32"/>

</dotproduct >

-15

-10

-5

0

5

10

15

0 10 20 30 40 50 60 70 80 90

A
m
p
li
tu
d
e

Time

Original signal
Filtered in fixed-point using S1

Filtered in binary64

-60

-50

-40

-30

-20

-10

0

10 20 30 40 50 60 70 80

-16.76

lo
g
2
(E

r
r
)

Time

Certified error bound
Error of the fixed-point impl. using S1

Error of the binary32 impl.
Error of the binary64 impl.

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 15/25

An implementation of the arithmetic model: the CGPE tool

Code synthesis for an IIR filter using CGPE

Low-pass Butterworth filter with cutoff frequency 0.3 ·π:

y[k]=∑3
i=0 bi ·u[k − i]−∑3

i=1 ai ·y[k − i]

<dotproduct inf="0xb1e91685" sup="0x4e16e97b" integer_width="6" fraction_width="26" width="32">
<coefficient name="b0" value="0x65718e3b" integer_width="-3" fraction_width="35" width="32"/>

...
<variable name="y3" inf="0xb1e91685" sup="0x4e16e97b" integer_width="6" fraction_width="26" width="32"/>

</dotproduct >

-15

-10

-5

0

5

10

15

0 10 20 30 40 50 60 70 80 90

A
m
p
li
tu
d
e

Time

Original signal
Filtered in fixed-point using S1

Filtered in binary64

-60

-50

-40

-30

-20

-10

0

10 20 30 40 50 60 70 80

-16.76

lo
g
2
(E

r
r
)

Time

Certified error bound
Error of the fixed-point impl. using S1

Error of the binary32 impl.
Error of the binary64 impl.

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 15/25

An implementation of the arithmetic model: the CGPE tool

Code synthesis for an IIR filter using CGPE

Low-pass Butterworth filter with cutoff frequency 0.3 ·π:

y[k]=∑3
i=0 bi ·u[k − i]−∑3

i=1 ai ·y[k − i]

int32_t filter(int32_t u0 /*Q5.27*/ , int32_t u1 /*Q5.27*/ ,
int32_t u2 /*Q5.27*/ , int32_t u3 /*Q5.27*/ ,
int32_t y1 /*Q6.26*/ , int32_t y2 /*Q6.26*/ ,
int32_t y3 /*Q6.26*/)

{ //Formats Err
int32_t r0 = mul(0x4a5cdb26 , y1); //Q8.24 [-2^{-24},0]
int32_t r1 = mul(0xa6eb5908 , y2); //Q7.25 [-2^{-25},0]
int32_t r2 = mul(0x4688a637 , y3); //Q5.27 [-2^{-27},0]
int32_t r3 = mul(0x65718e3b , u0); //Q2.30 [-2^{-30},0]
int32_t r4 = mul(0x65718e3b , u3); //Q2.30 [-2^{-30},0]
int32_t r5 = r3 + r4; //Q2.30 [-2^{-29},0]
int32_t r6 = r5 >> 2; //Q4.28 [-2^{-27.6781},0]
int32_t r7 = mul(0x4c152aad , u1); //Q4.28 [-2^{-28},0]
int32_t r8 = mul(0x4c152aad , u2); //Q4.28 [-2^{-28},0]
int32_t r9 = r7 + r8; //Q4.28 [-2^{-27},0]
int32_t r10 = r6 + r9; //Q4.28 [-2^{-26.2996},0]
int32_t r11 = r10 >> 1; //Q5.27 [-2^{-25.9125},0]
int32_t r12 = r2 + r11; //Q5.27 [-2^{-25.3561},0]
int32_t r13 = r12 >> 2; //Q7.25 [-2^{-24.3853},0]
int32_t r14 = r1 + r13; //Q7.25 [-2^{-23.6601},0]
int32_t r15 = r14 >> 1; //Q8.24 [-2^{-23.1798},0]
int32_t r16 = r0 + r15; //Q8.24 [-2^{-22.5324},0]
int32_t r17 = r16 << 2; //Q6.26 [-2^{-22.5324},0]
return r17;

}

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 15/25

Fixed-point code synthesis for linear algebra basic blocks

Outline of the talk

1. An arithmetic model for fixed-point code synthesis

2. An implementation of the arithmetic model: the CGPE tool

3. Fixed-point code synthesis for linear algebra basic blocks

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 16/25

Fixed-point code synthesis for linear algebra basic blocks

A strategy to synthesize code for matrix inversion

Let M be a matrix of fixed-point variables,

to generate certified code that inverts M ′ ∈M a symmetric positive definite, we need to:

1. Generate certified code to compute B a lower triangular s.t. M ′ =B ·BT

2. Generate certified code to compute N =B−1

3. Generate certified code to compute M ′−1 =NT ·N

The basic blocks we need to include in our tool-chain

Certified code synthesis for Cholesky decomposition

Certified code synthesis for triangular matrix inversion

Certified code synthesis for matrix multiplication

Triangular

matrix

inversion

Cholesky

decomposition

Matrix

multiplication

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 17/25

Fixed-point code synthesis for linear algebra basic blocks

A strategy to synthesize code for matrix inversion

Let M be a matrix of fixed-point variables,

to generate certified code that inverts M ′ ∈M a symmetric positive definite, we need to:

1. Generate certified code to compute B a lower triangular s.t. M ′ =B ·BT

2. Generate certified code to compute N =B−1

3. Generate certified code to compute M ′−1 =NT ·N

The basic blocks we need to include in our tool-chain

Certified code synthesis for Cholesky decomposition

Certified code synthesis for triangular matrix inversion

Certified code synthesis for matrix multiplication

Triangular

matrix

inversion

Cholesky

decomposition

Matrix

multiplication

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 17/25

Fixed-point code synthesis for linear algebra basic blocks

A strategy to synthesize code for matrix inversion

Let M be a matrix of fixed-point variables,

to generate certified code that inverts M ′ ∈M a symmetric positive definite, we need to:

1. Generate certified code to compute B a lower triangular s.t. M ′ =B ·BT

2. Generate certified code to compute N =B−1

3. Generate certified code to compute M ′−1 =NT ·N

The basic blocks we need to include in our tool-chain

Certified code synthesis for Cholesky decomposition

Certified code synthesis for triangular matrix inversion

Certified code synthesis for matrix multiplication

Triangular

matrix

inversion

Cholesky

decomposition

Matrix

multiplication

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 17/25

Fixed-point code synthesis for linear algebra basic blocks

A strategy to synthesize code for matrix inversion

Let M be a matrix of fixed-point variables,

to generate certified code that inverts M ′ ∈M a symmetric positive definite, we need to:

1. Generate certified code to compute B a lower triangular s.t. M ′ =B ·BT

2. Generate certified code to compute N =B−1

3. Generate certified code to compute M ′−1 =NT ·N

The basic blocks we need to include in our tool-chain

Certified code synthesis for Cholesky decomposition

Certified code synthesis for triangular matrix inversion

Certified code synthesis for matrix multiplication

Triangular

matrix

inversion

Cholesky

decomposition

Matrix

multiplication

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 17/25

Fixed-point code synthesis for linear algebra basic blocks

Linear algebra basic blocks

Triangular
matrix

inversion

Cholesky
decomposition

Matrix
multiplication

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 18/25

Fixed-point code synthesis for linear algebra basic blocks

Linear algebra basic blocks

Triangular
matrix

inversion

Cholesky
decomposition

Matrix
multiplication

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 19/25

Fixed-point code synthesis for linear algebra basic blocks

Cholesky decomposition and triangular matrix inversion

Cholesky decomposition

bi ,j =

p

ci ,i if i = j

ci ,j

bj ,j
if i 6= j

with ci ,j =mi ,j −
j−1∑
k=0

bi ,k ·bj ,k

Triangular matrix inversion

ni ,j =

1

bi ,i
if i = j

−ci ,j

bi ,i
if i 6= j

where ci ,j =
i−1∑
k=j

bi ,k ·nk ,j

Dependencies of the coefficient b4,2 in the decomposition and inversion of a 6×6 matrix.

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 20/25

Fixed-point code synthesis for linear algebra basic blocks

Cholesky decomposition and triangular matrix inversion

Cholesky decomposition

bi ,j =

p

ci ,i if i = j

ci ,j

bj ,j
if i 6= j

with ci ,j =mi ,j −
j−1∑
k=0

bi ,k ·bj ,k

Triangular matrix inversion

ni ,j =

1

bi ,i
if i = j

−ci ,j

bi ,i
if i 6= j

where ci ,j =
i−1∑
k=j

bi ,k ·nk ,j

Dependencies of the coefficient b4,2 in the decomposition and inversion of a 6×6 matrix.
M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 20/25

Fixed-point code synthesis for linear algebra basic blocks

FPLA (Fixed-Point Linear Algebra)

User options

Coefficients
and vari-

ables

Problem dispatcher

Dot-product solver

Matrix multipli-
cation solver

Triangular matrix
inversion solver

Cholesky decom-
position solver

Codes

Certificates

FP
LA

-C
G

P
E

interface

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 21/25

Fixed-point code synthesis for linear algebra basic blocks

Impact of the output format of division
Different functions to set the output format of division

1. f1(i1, i2)= t ,

2. f2(i1, i2)=min(i1, i2)+ t ,

3. f3(i1, i2)=max(i1, i2)+ t ,

4. f4(i1, i2)=
⌊
(i1 + i2)/2

⌋+ t ,

i1 and i2: integer parts of the numerator and denominator and t ∈ [−2,8]

2
-30

2
-25

2
-20

2
-15

2
-10

2
-5

2
0

2
5

-2 0 2 4 6 8

M
ax

im
u

m
 e

rr
o

r

User defined parameter t

f1
f2
f3
f4

(a) Cholesky 5×5.

2
-30

2
-25

2
-20

2
-15

2
-10

2
-5

2
0

2
5

-2 0 2 4 6 8

M
ax

im
u

m
 e

rr
o

r

User defined parameter t

f1
f2
f3
f4

(b) Triangular 10×10.

Maximum errors with various functions used to determine the output formats of division.

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 22/25

Fixed-point code synthesis for linear algebra basic blocks

How fast is generating triangular matrix inversion codes?

We use f4(i1, i2)=
⌊
(i1 + i2)/2

⌋+1 to set the output format of division

0

2

4

6

8

10

12

14

5 10 15 20 25 30 35 40

T
im

e
in

se
co

nd
s

Matrix size

Generation time for the inversion of triangular matrices of size 4 to 40.
M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 23/25

Fixed-point code synthesis for linear algebra basic blocks

How fast is generating triangular matrix inversion codes?

We use f4(i1, i2)=
⌊
(i1 + i2)/2

⌋+1 to set the output format of division

2−30

2−25

2−20

2−15

2−10

2−5

20

25

5 10 15 20 25 30 35 40

E
rr
or

Matrix size

Certified error bound
Maximum experimental error

Error bounds and experimental errors for the inversion of triangular matrices of size 4 to 40.
M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 23/25

Fixed-point code synthesis for linear algebra basic blocks

Decomposing some well known matrices

2 ill-conditioned matrices: Hilbert and Cauchy
2 well-conditioned matrices: KMS and Lehmer

100

102

104

106

108

1010

1012

1014

1016

1018

5 10 15

C
on

d
it

io
n

nu
m

b
er

Matrix size

KMS
Lehmer
Prolate
Hilbert
Cauchy

2
-30

2
-25

2
-20

2
-15

2
-10

2
-5

2
0

 4 6 8 10 12 14

M
a
x

im
u

m
 e

r
r
o

r

Matrix size

Hilbert
Kms

Cauchy
Lehmer
Prolate

Ill-conditioned matrices tend to overflow more often
Ï similar behaviour in floating-point arithmetic

The decompositions of KMS and Lehmer are highly accurate

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 24/25

Fixed-point code synthesis for linear algebra basic blocks

Decomposing some well known matrices

2 ill-conditioned matrices: Hilbert and Cauchy
2 well-conditioned matrices: KMS and Lehmer

100

102

104

106

108

1010

1012

1014

1016

1018

5 10 15

C
on

d
it

io
n

nu
m

b
er

Matrix size

KMS
Lehmer
Prolate
Hilbert
Cauchy

2
-30

2
-25

2
-20

2
-15

2
-10

2
-5

2
0

 4 6 8 10 12 14

M
a
x

im
u

m
 e

r
r
o

r

Matrix size

Hilbert
Kms

Cauchy
Lehmer
Prolate

Ill-conditioned matrices tend to overflow more often
Ï similar behaviour in floating-point arithmetic

The decompositions of KMS and Lehmer are highly accurate

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 24/25

Fixed-point code synthesis for linear algebra basic blocks

Conclusions and perspectives
Contributions

Formalization and implementation of an arithmetic model
Ï allows certification Ï handles p and /

Adaptation of the CGPE tool to the model:
Ï generates code for fine grained expressions Ï instruction selection

Development of FPLA:
Ï automated and certified code synthesis for linear algebra basic block

→ Cholesky decomposition and triangular matrix inversion: study of divisions’ impact

Perspectives
Integrate the matrix inversion flow

Triangular

matrix

inversion

Cholesky

decomposition

Matrix

multiplication

Cholesky

decomposition

Matrix

multiplication

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 25/25

Fixed-point code synthesis for linear algebra basic blocks

Conclusions and perspectives
Contributions

Formalization and implementation of an arithmetic model
Ï allows certification Ï handles p and /

Adaptation of the CGPE tool to the model:
Ï generates code for fine grained expressions Ï instruction selection

Development of FPLA:
Ï automated and certified code synthesis for linear algebra basic block

→ Cholesky decomposition and triangular matrix inversion: study of divisions’ impact

Perspectives
Integrate the matrix inversion flow

Triangular

matrix

inversion

Cholesky

decomposition

Matrix

multiplication

Cholesky

decomposition

Matrix

multiplication

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 25/25

Fixed-point code synthesis for linear algebra basic blocks

Conclusions and perspectives
Contributions

Formalization and implementation of an arithmetic model
Ï allows certification Ï handles p and /

Adaptation of the CGPE tool to the model:
Ï generates code for fine grained expressions Ï instruction selection

Development of FPLA:
Ï automated and certified code synthesis for linear algebra basic block

→ Cholesky decomposition and triangular matrix inversion: study of divisions’ impact

Perspectives
Integrate the matrix inversion flow

Triangular

matrix

inversion

Cholesky

decomposition

Matrix

multiplication

Cholesky

decomposition

Matrix

multiplication

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 25/25

Fixed-point code synthesis for linear algebra basic blocks

Conclusions and perspectives
Contributions

Formalization and implementation of an arithmetic model
Ï allows certification Ï handles p and /

Adaptation of the CGPE tool to the model:
Ï generates code for fine grained expressions Ï instruction selection

Development of FPLA:
Ï automated and certified code synthesis for linear algebra basic block

→ Cholesky decomposition and triangular matrix inversion: study of divisions’ impact

Perspectives
Integrate the matrix inversion flow

Triangular

matrix

inversion

Cholesky

decomposition

Matrix

multiplication

Cholesky

decomposition

Matrix

multiplication

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 25/25

Fixed-point code synthesis for linear algebra basic blocks

Conclusions and perspectives
Contributions

Formalization and implementation of an arithmetic model
Ï allows certification Ï handles p and /

Adaptation of the CGPE tool to the model:
Ï generates code for fine grained expressions Ï instruction selection

Development of FPLA:
Ï automated and certified code synthesis for linear algebra basic block

→ Cholesky decomposition and triangular matrix inversion: study of divisions’ impact

Perspectives
Integrate the matrix inversion flow

Triangular

matrix

inversion

Cholesky

decomposition

Matrix

multiplication

Cholesky

decomposition

Matrix

multiplication

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 25/25

Fixed-point code synthesis for linear algebra basic blocks

M
E
R
C
I

[Wil98] H. Keding, M. Willems, M. Coors, and H. Meyr.
Fridge: a fixed-point design and simulation
environment.

[IEEE754] IEEE 754.
IEEE Standard for Floating-Point Arithmetic.

[MCCS02] Daniel Menard, Daniel Chillet, François Charot, and
Olivier Sentieys.
Automatic floating-point to fixed-point conversion for
DSP code generation.

[IBMK10] Ali Irturk, Bridget Benson, Shahnam Mirzaei, and
Ryan Kastner.
GUSTO: An Automatic Generation and Optimization
Tool for Matrix Inversion Architectures.

[LHD12] Benoit Lopez, Thibault Hilaire, and Laurent-Stéphane
Didier.
Sum-of-products evaluation schemes with fixed-point
arithmetic, and their application to IIR filter
implementation.

[FRC03] Claire F. Fang, Rob A. Rutenbar, and Tsuhan Chen.
Fast, accurate static analysis for fixed-point
finite-precision effects in dsp designs.

[MRS12] Daniel Ménard, Romuald Rocher, Olivier Sentieys,
Nicolas Simon, Laurent-Stéphane Didier, Thibault
Hilaire, Benoît Lopez, Eric Goubault, Sylvie Putot,
Franck Vedrine, Amine Najahi, Guillaume Revy, Laurent
Fangain, Christian Samoyeau, Fabrice Lemonnier, and
Christophe Clienti.
Design of Fixed-Point Embedded Systems (defis)
French ANR Project.

[LHD14] Benoit Lopez, Thibault Hilaire, and Laurent-Stéphane
Didier.
Formatting bits to better implement signal processing
algorithms.

[Rev09] Guillaume Revy.
Implementation of binary floating-point arithmetic on
embedded integer processors - Polynomial
evaluation-based algorithms and certified code
generation.

[MNR12] Christophe Mouilleron, Amine Najahi, and Guillaume
Revy.
Approach based on instruction selection for fast and
certified code generation.

[MR11] Christophe Mouilleron and Guillaume Revy.
Automatic Generation of Fast and Certified Code for
Polynomial Evaluation.

[KG08] David R. Koes and Seth C. Goldstein.
Near-optimal instruction selection on DAGs.

[MNR14b] Matthieu Martel, Amine Najahi, and Guillaume Revy.
Toward the synthesis of fixed-point code for matrix
inversion based on cholesky decomposition.

[MNR14c] Christophe Mouilleron, Amine Najahi, and Guillaume
Revy.
Automated Synthesis of Target-Dependent Programs
for Polynomial Evaluation in Fixed-Point Arithmetic.

[MNR14a] Matthieu Martel, Amine Najahi, and Guillaume Revy.
Code Size and Accuracy-Aware Synthesis of
Fixed-Point Programs for Matrix Multiplication.

[CG09] Jason Cong, Karthik Gururaj, Bin Liu 0006, Chunyue
Liu, Zhiru Zhang, Sheng Zhou, and Yi Zou.
Evaluation of static analysis techniques for fixed-point
precision optimization.

[LV09] Dong-U Lee and John D. Villasenor.
Optimized custom precision function evaluation for
embedded processors.

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 26/25

	Thesis defense 2014
	An arithmetic model for fixed-point code synthesis
	An implementation of the arithmetic model: the CGPE tool
	Fixed-point code synthesis for linear algebra basic blocks

