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Which arithmetic for computational tasks?

Floating-point computations

© Easy and fast to implement

© Easily portable [IEEE754]

§ Requires dedicated hardware

§ Slow if emulated in software

Fixed-point computations

§ Tedious and time consuming to implement

• > 50% of design time [Wil98]

© Relies only on integer instructions

© Efficient

Embedded systems targets

µ-controllers DSPs FPGAs

→ have efficient integer instructions

Fixed-point arithmetic is well suited for embedded systems

But, how to make it easy, fast, and numerically safe to use by non-expert programmers?
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The DEFIS approach

DEFIS (ANR, 2011-2015)

Goal: develop techniques and tools to automate
fixed-point programming

Combines conversion and IP block synthesis

Ï Ménard et al. (CAIRN, Univ. Rennes) [MCCS02]:
• automatic float-to-fix conversion

Ï Didier et al. (PEQUAN, Univ. Paris) [LHD14]:
• code generation for the linear filter IP block

Ï Our approach (DALI, Univ. Perpignan):
• certified fixed-point synthesis for:

• Fine grained IP blocks: dot-products,
polynomials, ...

• High level IP blocks: matrix multiplication,
triangular matrix inversion, Cholesky decomposition

Long term objective: code synthesis for matrix inversion
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Our road-map

How to generate certified fixed-point code for matrix inversion?

1. Specify an arithmetic model
Ï Contributions:

• formalization of p and /

2. Build a synthesis tool, CGPE, for fine grained IP
blocks:

Ï it adheres to the arithmetic model
Ï Contributions:

• implementation of the arithmetic model

3. Build a second synthesis tool, FPLA, for algorithmic
IP blocks:

Ï it generates code using CGPE
Ï Contributions:

• trade-off implementations for matrix multiplication
• code synthesis for Cholesky decomposition and

triangular matrix inversion
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Outline of the talk

1. An arithmetic model for fixed-point code synthesis

2. An implementation of the arithmetic model: the CGPE tool

3. Fixed-point code synthesis for linear algebra basic blocks
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An arithmetic model for fixed-point code synthesis

Fixed-point arithmetic numbers

A fixed-point number x is defined by two integers:

. X the k -bit integer representation of x

. f the implicit scaling factor of x

 The value of x is given by x = X

2f
=

k−1−f∑
`=−f

X`+f ·2`

X7 X6 X5 X4 X3 X2 X1 X0

k = 8

i = 3 f = 5

Notation
A fixed-point number with i bits of integer part and f bits of fraction part is in the Qi .f format

Example:
Ï x in Q3.5 and X = (1001 1000)2 = (152)10 −→ x = (100.11000)2 = (4.75)10

How to compute with fixed-point numbers?
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An arithmetic model for fixed-point code synthesis

An interval arithmetic based model
For each coefficient or variable v , we keep track of 2 intervals Val(v) and Err(v)
Our model assumes a fixed word-length k

Val(v) is the range of v

the format Qi .f of v is deduced from
Val(v)= [

v,v
]

Ï i =
⌈

log2 (max(
∣∣v∣∣ ,

∣∣v∣∣))⌉+α Ï f = k − i

α=
{

1, if mod
(
log2(v),1

) 6= 0,

2, otherwise

Err(v) encloses the
rounding error of

computing v

a bound ε on rounding
errors is deduced from
Err(v)= [

e,e
]

Ï ε=max
(∣∣e∣∣ ,

∣∣e∣∣)
¦

¦

¦

a0 ¦

a1

¦

¦

a2 ¦

a3

¦

x

¦

¦ ¦

a4 ¦

a5

¦

. .

Val(v)= g¦
(
Val(v1),Val(v2),Err(v1),Err(v2)

)
Err(v)= h¦

(
Val(v1),Val(v2),Err(v1),Err(v2)

)
Val(v1)
Err(v1)

Val(v2)
Err(v2)

How to propagate Val(v) and Err(v) for ¦ ∈ {+,−,×,¿,À,p,/
}
?
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An arithmetic model for fixed-point code synthesis

Fixed-point multiplication
The output format of a Qi1 .f1 ×Qi2 .f2 is Qi1 + i2 .f1 + f2

But, doubling the word-length is costly

i1 f1

i2 f2

i1 + i2 f1 + f2

fr

• • • • • • • •

• • • • • • • •×

• • • • • • • • • • • • • • • •

Discarded bits

 
×

. .

Val(v)= Val(v1)×Val(v2)
Err(v)= Val(v1)×Err(v2)

+Val(v2)×Err(v1)
+Err(v1)×Err(v2)

Val(v)= Val(v1)×Val(v2)−Err×
Err(v)= Err×

+Val(v1)×Err(v2)
+Val(v2)×Err(v1)
+Err(v1)×Err(v2)

Val(v1)
Err(v1)

Val(v2)
Err(v2)

Err× =
[
0,2−fr −2−(f1+f2)

]
This multiplication is available on integer processors and DSPs

int32_t mul (int32_t v1, int32_t v2){
int64_t prod = ((int64_t) v1) * ((int64_t) v2);
return (int32_t) (prod >> 32);

}
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An arithmetic model for fixed-point code synthesis

Our new fixed-point division
The output integer part of Qi1 .f1/Qi2 .f2 may be as large as i1 + f2

But, doubling the word-length is costly
How to obtain sharper a error bounds on Err/?

i1 f1

i2 f2

i1 f1 +k

i2 f2

• • • • • • • •

• • • • • • • •/

• • • • • • • • 0 0 0 0 0 0 0 0

• • • • • • • •÷

×2k

i1 + f2 i2 + f1

• • • • • • • • • • • • • • • •
i1 + f2 fr

• • • • • • • • • • • • • • • •
ir fr

• • • • • • • • • • • • • • • •

How to decide of the output format of division?

A large integer part
3 prevents overflow
7 loose error bounds and loss of

precision

A small integer part
7 may cause overflow
3 sharp error bounds and more

accurate computations
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An arithmetic model for fixed-point code synthesis

The propagation rule and implementation of division
Once the output format decided Qir .fr

/

. .

Val(v)=Range(Qir .fr )= [−2ir −1 ,2ir −1 −2fr ].

Err(v)=
áVal(v2)·Err(v1)−Val(v1)·Err(v2)áVal(v2)·

(áVal(v2)+Err(v2)
) +Err/

Val(v1)
Err(v1)

Val(v2)
Err(v2)

àVal(v2)=
Val(v1)âVal(v)+Err/

∩Val(v2) and âVal(v)= [−2ir−1,−2−fr ]∪ [2−fr ,2ir−1 −2fr ]

Additional code to check for run-time overflows
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∩Val(v2) and âVal(v)= [−2ir−1,−2−fr ]∪ [2−fr ,2ir−1 −2fr ]

int32_t div (int32_t V1, int32_t V2, uint16_t eta)
{

int64_t t1 = ((int64_t)V1) << eta;
int64_t V = t1 / V2;
CGPE_ASSERT
CGPE_ASSERT
return (int32_t) V;

}

Additional code to check for run-time overflows
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int32_t div (int32_t V1, int32_t V2, uint16_t eta)
{

int64_t t1 = ((int64_t)V1) << eta;
int64_t V = t1 / V2;
CGPE_ASSERT((((V & 0xFFFFFFFF80000000ll) == 0xFFFFFFFF80000000ll)

|| ((V & 0xFFFFFFFF80000000ll) == 0)));
return (int32_t) V;

}

Additional code to check for run-time overflows
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An arithmetic model for fixed-point code synthesis

The division format trade-off: case of inverting 2×2 matrices

Consider A=
(
a b

c d

)
with a,b,c,d ∈ [−1,1] in the format Q2.30

Cramer’s rule: if ∆= ad −bc 6= 0 then A−1 =
(

d
∆

−b
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−c
∆

a
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/
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An implementation of the arithmetic model: the CGPE tool

Outline of the talk

1. An arithmetic model for fixed-point code synthesis

2. An implementation of the arithmetic model: the CGPE tool

3. Fixed-point code synthesis for linear algebra basic blocks
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An implementation of the arithmetic model: the CGPE tool

The CGPE tool

CGPE (Code Generation for Polynomial Evaluation): initiated by Revy [MR11]
Ï synthesizes fixed-point code for polynomial evaluation

1. Computation step front-end
Ï computes evaluation schemes DAGs

2. Filtering step middle-end
Ï applies the arithmetic model
Ï prunes the DAGs that do not satisfy different

criteria:
• latency scheduling filter
• accuracy numerical filter
• ...

3. Generation step back-end
Ï generates C codes and Gappa accuracy

certificates

XML

...

Front-end

Middle-end

Back-end

DAG computation

Filter 1

Filter n

Code generator

Set of DAGs

Decorated DAGs

C Gappa VHDL

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 14/25



An implementation of the arithmetic model: the CGPE tool

The CGPE tool

CGPE (Code Generation for Polynomial Evaluation): initiated by Revy [MR11]
Ï synthesizes fixed-point code for polynomial evaluation

1. Computation step front-end
Ï computes evaluation schemes DAGs

2. Filtering step middle-end
Ï applies the arithmetic model
Ï prunes the DAGs that do not satisfy different

criteria:
• latency scheduling filter
• accuracy numerical filter
• ...

3. Generation step back-end
Ï generates C codes and Gappa accuracy

certificates

XML

...

Front-end

Middle-end

Back-end

DAG computation

Filter 1

Filter n

Code generator

Set of DAGs

Decorated DAGs

C Gappa VHDL

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 14/25



An implementation of the arithmetic model: the CGPE tool

The CGPE tool

CGPE (Code Generation for Polynomial Evaluation): initiated by Revy [MR11]
Ï synthesizes fixed-point code for polynomial evaluation

1. Computation step front-end
Ï computes evaluation schemes DAGs

2. Filtering step middle-end
Ï applies the arithmetic model
Ï prunes the DAGs that do not satisfy different

criteria:
• latency scheduling filter
• accuracy numerical filter
• ...

3. Generation step back-end
Ï generates C codes and Gappa accuracy

certificates

XML

...

Front-end

Middle-end

Back-end

DAG computation

Filter 1

Filter n

Code generator

Set of DAGs

Decorated DAGs

C Gappa VHDL

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 14/25



An implementation of the arithmetic model: the CGPE tool

The CGPE tool

CGPE (Code Generation for Polynomial Evaluation): initiated by Revy [MR11]
Ï synthesizes fixed-point code for polynomial evaluation

1. Computation step front-end
Ï computes evaluation schemes DAGs

2. Filtering step middle-end
Ï applies the arithmetic model
Ï prunes the DAGs that do not satisfy different

criteria:
• latency scheduling filter
• accuracy numerical filter
• ...

3. Generation step back-end
Ï generates C codes and Gappa accuracy

certificates

XML

...

Front-end

Middle-end

Back-end

DAG computation

Filter 1

Filter n

Code generator

Set of DAGs

Decorated DAGs

C Gappa VHDL

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 14/25



An implementation of the arithmetic model: the CGPE tool

Code synthesis for an IIR filter using CGPE

Low-pass Butterworth filter with cutoff frequency 0.3 ·π:

y[k]=∑3
i=0 bi ·u[k − i]−∑3

i=1 ai ·y[k − i]

<dotproduct inf="0xb1e91685" sup="0x4e16e97b" integer_width="6" fraction_width="26" width="32">
<coefficient name="b0" value="0x65718e3b" integer_width="-3" fraction_width="35" width="32"/>

...
<variable name="y3" inf="0xb1e91685" sup="0x4e16e97b" integer_width="6" fraction_width="26" width="32"/>

</dotproduct >
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An implementation of the arithmetic model: the CGPE tool

Code synthesis for an IIR filter using CGPE

Low-pass Butterworth filter with cutoff frequency 0.3 ·π:

y[k]=∑3
i=0 bi ·u[k − i]−∑3

i=1 ai ·y[k − i]

int32_t filter( int32_t u0 /*Q5.27*/ , int32_t u1 /*Q5.27*/ ,
int32_t u2 /*Q5.27*/ , int32_t u3 /*Q5.27*/ ,
int32_t y1 /*Q6.26*/ , int32_t y2 /*Q6.26*/ ,
int32_t y3 /*Q6.26*/ )

{ //Formats Err
int32_t r0 = mul(0x4a5cdb26 , y1); //Q8.24 [-2^{-24},0]
int32_t r1 = mul(0xa6eb5908 , y2); //Q7.25 [-2^{-25},0]
int32_t r2 = mul(0x4688a637 , y3); //Q5.27 [-2^{-27},0]
int32_t r3 = mul(0x65718e3b , u0); //Q2.30 [-2^{-30},0]
int32_t r4 = mul(0x65718e3b , u3); //Q2.30 [-2^{-30},0]
int32_t r5 = r3 + r4; //Q2.30 [-2^{-29},0]
int32_t r6 = r5 >> 2; //Q4.28 [-2^{-27.6781},0]
int32_t r7 = mul(0x4c152aad , u1); //Q4.28 [-2^{-28},0]
int32_t r8 = mul(0x4c152aad , u2); //Q4.28 [-2^{-28},0]
int32_t r9 = r7 + r8; //Q4.28 [-2^{-27},0]
int32_t r10 = r6 + r9; //Q4.28 [-2^{-26.2996},0]
int32_t r11 = r10 >> 1; //Q5.27 [-2^{-25.9125},0]
int32_t r12 = r2 + r11; //Q5.27 [-2^{-25.3561},0]
int32_t r13 = r12 >> 2; //Q7.25 [-2^{-24.3853},0]
int32_t r14 = r1 + r13; //Q7.25 [-2^{-23.6601},0]
int32_t r15 = r14 >> 1; //Q8.24 [-2^{-23.1798},0]
int32_t r16 = r0 + r15; //Q8.24 [-2^{-22.5324},0]
int32_t r17 = r16 << 2; //Q6.26 [-2^{-22.5324},0]
return r17;

}
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Fixed-point code synthesis for linear algebra basic blocks

Outline of the talk

1. An arithmetic model for fixed-point code synthesis

2. An implementation of the arithmetic model: the CGPE tool

3. Fixed-point code synthesis for linear algebra basic blocks
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Fixed-point code synthesis for linear algebra basic blocks

A strategy to synthesize code for matrix inversion

Let M be a matrix of fixed-point variables,

to generate certified code that inverts M ′ ∈M a symmetric positive definite, we need to:

1. Generate certified code to compute B a lower triangular s.t. M ′ =B ·BT

2. Generate certified code to compute N =B−1

3. Generate certified code to compute M ′−1 =NT ·N

The basic blocks we need to include in our tool-chain

Certified code synthesis for Cholesky decomposition

Certified code synthesis for triangular matrix inversion

Certified code synthesis for matrix multiplication

Triangular

matrix

inversion

Cholesky

decomposition

Matrix

multiplication
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Fixed-point code synthesis for linear algebra basic blocks

Linear algebra basic blocks

Triangular
matrix

inversion

Cholesky
decomposition

Matrix
multiplication
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Fixed-point code synthesis for linear algebra basic blocks

Linear algebra basic blocks

Triangular
matrix

inversion

Cholesky
decomposition

Matrix
multiplication

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 19/25



Fixed-point code synthesis for linear algebra basic blocks

Cholesky decomposition and triangular matrix inversion

Cholesky decomposition

bi ,j =


p

ci ,i if i = j

ci ,j

bj ,j
if i 6= j

with ci ,j =mi ,j −
j−1∑
k=0

bi ,k ·bj ,k

Triangular matrix inversion

ni ,j =


1

bi ,i
if i = j

−ci ,j

bi ,i
if i 6= j

where ci ,j =
i−1∑
k=j

bi ,k ·nk ,j

Dependencies of the coefficient b4,2 in the decomposition and inversion of a 6×6 matrix.
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Fixed-point code synthesis for linear algebra basic blocks

FPLA (Fixed-Point Linear Algebra)

User options

Coefficients
and vari-

ables

Problem dispatcher

Dot-product solver

Matrix multipli-
cation solver

Triangular matrix
inversion solver

Cholesky decom-
position solver

Codes

Certificates

FP
LA

-C
G

P
E

interface

M. A. Najahi (DALI UPVD/LIRMM, UM2, CNRS) Synthesis of certified programs in fixed-point arithmetic, and its application to linear algebra basic blocks 21/25



Fixed-point code synthesis for linear algebra basic blocks

Impact of the output format of division
Different functions to set the output format of division

1. f1(i1, i2)= t ,

2. f2(i1, i2)=min(i1, i2)+ t ,

3. f3(i1, i2)=max(i1, i2)+ t ,

4. f4(i1, i2)=
⌊
(i1 + i2)/2

⌋+ t ,

i1 and i2: integer parts of the numerator and denominator and t ∈ [−2,8]
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(b) Triangular 10×10.

Maximum errors with various functions used to determine the output formats of division.
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Fixed-point code synthesis for linear algebra basic blocks

How fast is generating triangular matrix inversion codes?

We use f4(i1, i2)=
⌊
(i1 + i2)/2

⌋+1 to set the output format of division
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Generation time for the inversion of triangular matrices of size 4 to 40.
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Fixed-point code synthesis for linear algebra basic blocks

Decomposing some well known matrices

2 ill-conditioned matrices: Hilbert and Cauchy
2 well-conditioned matrices: KMS and Lehmer
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Ill-conditioned matrices tend to overflow more often
Ï similar behaviour in floating-point arithmetic

The decompositions of KMS and Lehmer are highly accurate
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Fixed-point code synthesis for linear algebra basic blocks

Conclusions and perspectives
Contributions

Formalization and implementation of an arithmetic model
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