
HAL Id: lirmm-01279628
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01279628v1

Submitted on 26 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Trade-offs of certified fixed-point code synthesis for
linear algebra basic blocks

Matthieu Martel, Mohamed Amine Najahi, Guillaume Revy

To cite this version:
Matthieu Martel, Mohamed Amine Najahi, Guillaume Revy. Trade-offs of certified fixed-point code
synthesis for linear algebra basic blocks. Journal of Systems Architecture, 2017, 76, pp.133-148.
�10.1016/j.sysarc.2016.11.010�. �lirmm-01279628�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01279628v1
https://hal.archives-ouvertes.fr

Trade-offs of certified fixed-point code synthesis for
linear algebra basic blocks

Matthieu Martel1 Amine Najahi2,3,4 Guillaume Revy2,3,4

1 Univ. Perpignan Via Domitia, Laboratoire LAMPS, F-66860, Perpignan, France
2 Univ. Perpignan Via Domitia, DALI, F-66860, Perpignan, France

3 Univ. Montpellier II, LIRMM, UMR 5506, F-34095, Montpellier, France
4 CNRS, LIRMM, UMR 5506, F-34095, Montpellier, France

{matthieu.martel, amine.najahi, guillaume.revy}@univ-perp.fr

Abstract

In embedded systems, efficient implementations of numerical algorithms typ-
ically use the fixed-point arithmetic rather than the standardized and costly
floating-point arithmetic. But, fixed-point programmers face two difficulties:
First, writing fixed-point codes is tedious and error prone. Second, the low
dynamic range of fixed-point numbers leads to the persistent belief that fixed-
point computations are inherently inaccurate. In this article, we address these
two limitations by introducing a methodology to design and implement tools
that synthesize fixed-point programs. To strengthen the user’s confidence in
the synthesized code, analytic methods are presented to automatically assert its
numerical quality. Furthermore, we use this framework to generate fixed-point
code for linear algebra basic blocks such as matrix multiplication and inversion.
For example, the former task involves trade-offs such as choosing to maximize
the code’s accuracy or minimize its size. For the two cases of matrix multi-
plication and inversion, we describe, implement, and experiment with several
algorithms to find trade-offs between the conflicting goals.

Keywords: Fixed-point arithmetic, Code generation, Certified numerical
accuracy, Numerical linear algebra.

1. Introduction

Fixed-point arithmetic is a lightweight alternative to floating-point arithmetic.
It does not require dedicated hardware, namely a floating-point unit, and exe-
cutes more efficiently. However, developing fixed-point implementations requires
numerical expertise from the programmer, is time consuming, and error prone.
Moreover, the correctness and the numerical quality of the produced codes are
not guaranteed since they depend solely on the programmer.

In a typical design, DSP programmers prototype and simulate their algo-
rithms in high level environments like MATLAB. These environments work with

Preprint submitted to Journal of Systems Architecture February 26, 2016

the floating-point arithmetic [1] to ease and speedup the prototyping phase.
However, when mapping the design to hardware, constraints on silicon area,
power consumption, or throughput frequently force the implementer to convert
this design to the more efficient fixed-point arithmetic [2]. This conversion is
known to be a tedious and time consuming process [3] that may be split into
two phases:

1. Range analysis: This phase allows to find the integer wordlength of each
variable in the design. In a finite wordlength environment, minimizing the
integer word length allows one to allocate more digits for the fractional
part, thus obtaining more accuracy.

2. Precision analysis: In this phase, the number of bits to allocate to the
fractional part is decided. This phase must take into account the precision
requirements of the application.

Over the last years, authors have suggested different strategies to tackle these
conversion phases. These contributions fit into two categories:

1. Simulation based strategies [4, 5]: The information that allows to estimate
the required range and precision are inferred from intensive simulations
carried out using an accurate arithmetic, typically floating-point arith-
metic.

2. Analytic strategies [6, 7]: The information is obtained using formal meth-
ods such as interval arithmetic, affine arithmetic, and norm computation
for digital filters. The precision analysis relies on optimization techniques.

In this work, we focus on the automated design of fixed-point programs for
linear algebra basic blocks, like matrix multiplication and inversion. Although
many work on this topic exist, to our knowledge, this work is the first one where
an analytic approach based on interval arithmetic is used for large problems, in
order to bound the range of the variables in the design and to give strict bounds
on the rounding errors. Indeed [4] deals with the transformation from floating-
point to fixed-point of matrix decomposition algorithms for DSPs and [8] with
the implementation of matrix factorization algorithms for the particular C6x
VLIW processor, while [9] and [10] discuss matrix inversion for the C64x+ DSP
core and FPGAs, respectively. For the matrix multiplication, [11] presents a
hardware implementation of a matrix multiplier optimized for a Virtex4 FPGA,
which mainly relies on a large matrix-vector block to handle large matrices. Yet
another FPGA architecture is presented in [12], that uses parallel DSP units
and multiplies sub-matrices, whose size has been optimized so as to fully exploit
the resources of the underlying architecture. In [13] a delay and resource effi-
cient methodology is introduced to implement a FPGA architecture for matrix
multiplication in integer/fixed-point arithmetic. However, in all these works,
simulation based approaches are mainly used to decide the integer and frac-
tional wordlengths, in order to treat small size problem without any guarantee
on the accuracy of the result. For example, the methodology presented in [10]
enables to treat inversion of size-8 matrices, while [4] is able to handle matrices
of size up to 35, but without providing any certificate on the error bounds.

2

In this article, we present a framework for certified fixed-point code synthesis.
Through this framework, our aim is threefold:

1. to shorten the development time by providing tools that generate efficient
fixed-point code,

2. to reassure the users by certifying the numerical properties of the gener-
ated codes,

3. to propose a tool that scales up, i.e. able to synthesize code for large
problems such as inverting a 80× 80 matrix in fixed-point arithmetic.

This framework includes an arithmetic model, the CGPE1 library that synthe-
sizes code for fine-grained expressions (such as dot-products, sums, polynomial
evaluations, . . .), and the high level FPLA2 tool to generate code for linear
algebra basic blocks (such as matrix multiplications, Cholesky decompositions,
and triangular matrix inversions).

We intend this framework to be a proof of concept that the development time
of fixed-point codes can be dramatically reduced and that their numerical quality
can be asserted. Furthermore, we use the framework to show that generating
codes for matrix multiplication involves accuracy versus code size trade-offs and
that generating codes for matrix inversion involves trade-offs between obtaining
sharp error bounds and risking to have run-time overflows. For both cases, we
describe, implement, and experiment with several algorithms to find trade-offs
between the conflicting goals.

This article is organized as follows. Section 2 introduces background material
concerning the fixed-point numbers followed by our arithmetic model. Section 3
is dedicated to matrix multiplication and to the trade-offs between code size
and accuracy. Several techniques for matrix inversion are then introduced in
Section 4, before a conclusion in Section 5.

2. Background on certifying fixed-point computations

In this section, we start by a presentation of our fixed-point arithmetic model.
Then, we explicit a model based on the propagation of intervals to bound the
range of fixed-point variables and the rounding errors entailed by fixed-point
computations.

2.1. Fixed-point arithmetic model

Fixed-point number and variable. Unlike floating-point numbers, fixed-point
numbers do not store any information about their exponent. Indeed, the expo-
nent is implicit and known only to the programmer. And from the computer’s
perspective, a fixed-point number is similar to a computer integer. The ma-
chine integer that encodes the fixed-point number, denoted by X, is often a
k-bit signed integer in two’s complement notation. On the other hand, the

1See http://cgpe.gforge.inria.fr/ and [14] for details.
2See http://perso.univ-perp.fr/mohamedamine.najahi/fpla/ and [15, § 6] for details.

3

http://cgpe.gforge.inria.fr/
http://perso.univ-perp.fr/mohamedamine.najahi/fpla/

implicit information on the exponent is given by the scaling factor denoted by
f ∈ Z. Together, these integers define the fixed-point value x as:

x = X · 2−f .

In the sequel of this article, we shall denote Qi.f the format of a given fixed-
point variable v represented using a k-bit integer associated with a scaling factor
f , with k = i+ f . Here i and f denote the number of bits in the integer and
fraction parts of v, respectively, while k represents its wordlength. Hence v is
such that:

v ∈ {V · 2−f} with V ∈ Z ∩ [−2k−1, 2k−1 − 1]. (1)

Set of fixed-point variables. In practice, a fixed-point variable v may lie in a
smaller range than the one in Equation (1). For instance, if V ∈ Z∩ [−2k−1 +
2k−2, 2k−1 − 2k−2] in Equation (1), then v is still in the Qi.f format but with
additional constraints on the runtime values it can take. For this reason, we
shall denote by Fix the set of fixed-point variables, where each element has a
fixed-point format and an interval that narrows its runtime values.

2.2. Interval arithmetic based error model
An arithmetic model describes the semantics of operations such as addition and
multiplication, and gives the mean to estimate their accuracy. In the absence
of standards to govern fixed-point implementations, it is customary for every
research work on fixed-point arithmetic to present its underlying arithmetic
model. Examples of such models include Fang et al.’s work [7] which is based
on affine arithmetic and Didier et al.’s [16] which uses a probabilistic estimation
of the propagation of noise.

Our arithmetic model is based on interval arithmetic and was influenced by
typical DSP architectures. It keeps track of the three following intervals for
each fixed-point variable v:

1. Val(v) enclosing the values of v computed at run-time with finite precision,
2. Math(v) enclosing the values of v had the computations been carried

using infinite precision,
3. Err(v) enclosing the rounding errors occurring while computing v,

such that:
Err(v) = Math(v)−Val(v).

Notice that the computations that involve Val(v) and Err(v) are carried using
the interval arithmetic [17]. And thanks to the formula above, keeping track of
Val(v) and Err(v) suffices to deduce Math(v).

Next, for each operator � ∈ O =
{

+,−,×,�,�,√, /
}

, we shall explicit

the basic rules to compute Val(v) and Err(v) from Val(v1),Val(v2),Err(v1)
and Err(v2), where v1 is the first operand of � and v2 the second operand if
� is binary. To show how Val(v) and Err(v) are computed, let us define the
fixed-point formats of v, v1, and v2 to be Qi.f , Qi1.f1

, and Qi2.f2
, respectively.

When v = v1 � v2 with � ∈ {+,−,×}, we have:

Val(v) = Val(v1) �Val(v2)−Err�.

4

2.2.1. Addition and subtraction

In our context, addition and subtraction are error-free. Hence for � ∈ {+,−}
we have:

Err(v) = Err(v1) �Err(v2) and,

i = max(i1, i2) + 1 and f = max(f1, f2).

Note that the most significant bit is here to prevent overflow issues. In absence
of overflow, we can reduce the format of the result to i = max(i1, i2), which is
actually the case considered in our experiments.

2.2.2. Multiplication

If � is a multiplication, we have:

Err(v) = Err× + Err(v1) ·Err(v2)

+ Err(v1) ·Val(v2) + Val(v1) ·Err(v2),

where Err× is the error entailed by the multiplication itself. Remark that exact
fixed-point multiplication results in a number having a fraction of f1 + f2 bits.
If the fraction part f of the output is such that f ≥ f1 + f2, then we have
an exact multiplication, and Err× = [0, 0]. However, this is costly and most
DSP processors provide truncated multiplication operators. In this case, Err×
accounts for the truncation of the exact result of the multiplication to fit in a
smaller format with f < f1 + f2 fraction bits. Consequently it is defined as:

Err× = [0, 2−f − 2−(f1+f2)].

In this work, we consider a 32×32 multiplier that returns the 32 most significant
bits of the exact result. In this case,

i = i1 + i2 and f = 32− i.

2.2.3. Left and right shift

If � ∈ {<<, >>}, we have:

Err(v) = Err(v1) + Err�.

Left shifts of s bits entail no error but only a possible overflow: Err<< = [0, 0]
and (i, f) = (i1 − s, f1 + s). However right shifts of s bits may be followed by a
truncation to fit the result in a smaller format with f < f1 fraction bits. Thus,
we have:

(i, f) = (i1 + s, f1 − s) and Err>> = [0, 2−f1+s − 2−f1].

5

2.2.4. Square root

Assuming v1 ≥ 0, for v =
√
v1, we have:

Val(v) =
√

Val(v1)−Err√

since the computed value is truncated, while Err(v) is:

Err(v) =
√

Math(v1)−
√

Val(v1) + Err√,

where Err√ is the error entailed by the square root operation itself. The error
term is given by the following formula:

Err(v) =
√

Val(v1) + Err(v1)−
√

Val(v1) + Err√ (2)

=
√

Val(v1) ·

(√
1 +

Err(v1)

Val(v1)
− 1

)
+ Err√.

The last factorization is used to remedy the interval dependency phenomenon
inherent to interval arithmetic [18].

Notice that this formula does not yield tight error bounds as soon as Val(v1)
smallest elements are of the same order of magnitude than Err(v1). To overcome
this issue, we may use the subadditivity property of the square root function,
which holds as long as x and x+ y are both positive:

√
x−

√
|y| ≤

√
x+ y ≤

√
x+

√
|y|.

Hence we deduce the following bounds on Err(v):

Err√ −
√
|Err(v1)| ≤ Err(v) ≤ Err√ +

√
|Err(v1)|. (3)

In practice, we compute the intersection of the enclosures (2) and (3).
As for Err√, it depends on the algorithm used to compute the square root.

To explicit such an algorithm, let us remember that we have v1 = V1 · 2−f1
which one can rewrite as

v1 = 2η · V1 · 2−(f1+η)

with the integer η being a parameter of the algorithm chosen at synthesis-time
such as f1 + η is even. Using this scaling factor, it follows that

√
v1 =

√
2η · V1 · 2

−(f1+η)
2 . (4)

An algorithm that exploits (4) shifts the integer representation V1 of v1 by η bits
to the left and computes its integer square root. The result of this algorithm
is a fixed-point variable with (f1 + η)/2 bits of fraction part. Hence using this
approach, we conclude that

i = di1/2e , f =
f1 + η

2
, and

√
v1 =

⌊√
2η · V1

⌋
· 2
−(f1+η)

2 ,

6

where
⌊√

2η · V1
⌋

is computed using an integer square root operation. It is clear
now that with such an algorithm, we obtain the following bound on Err√:

Err√ =
[
0, 2−

(f1+η)
2

]
.

Notice that it would not make sense to choose η < 0, since it would result in an
increase of Err√. Hence in the following of the section, we assume η ≥ 0.

Notice that this integer square root operator may be implemented in hard-
ware or in software using multiple techniques such as digit-recurrence, and
Newton-Raphson or Goldschmidt iteration [19, 20]. In this implementation the
parameter η must be carefully chosen, to ensure that f1 + η is even, and that
the wordlength of the result is at most k, otherwise an overflow may occur.

2.2.5. Division

Let v = v1/v2, when the quotient is defined, i.e. when v2 6= 0, that is, 0 /∈
Val(v2), we have:

Val(v) =
Val(v1)

Val(v2)
−Err/

while Err(v) is defined as:

Err(v) =
Math(v1)

Math(v2)
− Val(v1)

Val(v2)
+ Err/,

where Err/ is the error entailed by the division itself. It follows that the error
term is defined as:

Err(v) =
Val(v2) ·Err(v1)−Val(v1) ·Err(v2)

Val(v2) · (Val(v2) + Err(v2))
+ Err/.

From a theoretical point of view, the quotient v1/v2 when defined must be a
fixed-point variable in the format Qi.f with

i = i1 + f2 and f = f1 + i2

since:

1. The largest possible dividend is −2i1−1 while the smallest divisor is 2−f2 .
Thus the quotient could be as large as −2i1+f2−1.

2. As for the opposite case, the smallest dividend is 2−f1 while the largest
divisor is −2i2−1. To be precise, the fractional part must be of size f1 + i2.

Remark that a special care must be taken when 0 ∈ Val(v2) to avoid division
by zero. In this case, we first compute both error and value bounds twice, using
the two intervals Val(v2) and Val(v2), such that:

Val(v2) ∪Val(v2) = Val(v2) \ {0}.

Then we compute the union of the resulting intervals.

7

As for the square root, the fixed-point format of v depends on the algorithm
implemented. In the following, we suggest an algorithm to perform fixed-point
division together with a piece of C code that implements it and we exhibit its
error bound. To do this, let us remember that we have v1 = V1 · 2−f1 and
v2 = V2 · 2−f2 and start from the following rewriting:

v1
v2

=
V1 · 2−f1
V2 · 2−f2

=
V1 · 2η

V2
· 2−(f1−f2+η).

An implementation based on this formula would compute

v1
v2

= trunc

(
V1 · 2η

V2

)
· 2−(f1−f2+η)

which results in a variable having the fractional part

f = f1 − f2 + η.

In our context, since we consider that all the variables have the same wordlength,
and in particular i+ f = i1 + f1, it follows that the integer part of the result is:

i = i1 + f2 − η. (5)

Then we deduce that the error Err/ is as follows:

Err/ = [−2−(f1−f2+η), 2−(f1−f2+η)].

Remark that even when v1 and v2 have the same format, Err/ = [−2−η, 2−η]
remains tight as long as η is large enough. Also as for square root, it would not
make sense to choose η < 0, since it would result in an increase of Err/.

Notice that an implementation of this method may use the C standard in-
teger division. If this option is not available or is too costly, this operation
may also be implemented in hardware or in software using digit-recurrence, and
Newton-Raphson or Goldschmidt iteration. And again, the parameter η must
be chosen carefully, since it greatly influences the result by impacting its integer
part i. Indeed picking a large η leads to a smaller value i than the theoretical
one and it minimizes the error bound and ensures more accuracy on the result.
However, by doing so, we suppose that the result is not large enough. More
precisely, this means that the largest values in magnitude eventually taken by
the result are ignored and discarded. This approach is equivalent to discarding
the smallest values eventually taken by the variable v2 in Val(v2), that is, the
values around 0 in Val(v2).

3. Code size versus accuracy trade-offs: matrix multiplication

As shown further in Section 4.1, the Cholesky decomposition based matrix inver-
sion requires to be able to multiply the inverse of triangular matrices. Moreover,
in practice, the matrix multiplication basic block can also be used for applying

8

linear transformations to input data derived from signal or image processing, or
for solving linear systems by iterative methods [21].

In floating-point arithmetic, while asymptotically fast algorithms such as
Strassen’s [22] are usually used in highly optimized libraries, like the BLAS [23],
this process can be simply implemented in a straightforward way, based on the
following direct definition:

Ci,j =

n∑
k=1

Ai,k ·Bk,j ,

where A, B, and C are three matrices. In fixed-point arithmetic, works that
deal with matrix multiplications are scarce, and the existing ones mainly rely
on Sung’s technique [24] to convert floating-point designs into fixed-point, not
well-adapted for large problems as shown in Section 1. For example, the size-
64 matrix multiplication, which is considered as a large problem in fixed-point
arithmetic, involves 8192 input variables. In this case simulation approaches
do not scale and only an analytic approach is practical. To our knowledge, our
work is the first to attempt to apply certified fixed-point techniques to such large
problems [25]. And to provide small and accurate codes to multiply matrices
in fixed-point arithmetic, trade-offs between code size and accuracy are thus
proposed.

Section 3.1 gives a statement of the problem of matrix multiplication in
fixed-point arithmetic, while this kind of straightforward algorithms is investi-
gated in Section 3.2. Then, Section 3.3 suggests a strategy to find trade-offs
between these straightforward algorithms. This strategy is implemented and ex-
perimental data are presented to show its effectiveness on a set of benchmarks
in Section 3.4.

3.1. Problem statement of matrix multiplication

Let A and B be two matrices of fixed-point variables of size m × n and n × p,
respectively:

A ∈ Fixm×n and B ∈ Fixn×p.

Here and hereafter, we denote by Ai,: and A:,j the ith row and jth column of A,
respectively, and Ai,j the element of the ith row and jth column of A.

Our goal is to generate fixed-point code to multiply A and B. And, since
A and B are matrices of fixed-point variables, the generated code should be
able to multiply at run-time any matrices A′ and B′, where A′ and B′ are two
matrices that belong to A and B, that is, where the fixed-point numbers A′i,k
and B′k,j belong to the fixed-point variables Ai,k and Bk,j , respectively. This

consists in writing a program for computing C = A · B, where C ∈ Fixm×p.
Therefore, ∀i, j ∈ {1, · · · ,m} × {1, · · · , p}, we have:

Ci,j = Ai,: ·B:,j =

n∑
k=1

Ai,k ·Bk,j , (6)

9

3.2. Straightforward approaches for the synthesis of matrix multiplication codes

Here we discuss two straightforward approaches to solve the problem of code
synthesis for matrix multiplication.

3.2.1. Accurate and compact approaches

Following Equation (6), and assuming that a routine dedicated to the generation
of code for dot-products is available, a first straightforward approach may consist
in invoking this routine as many times as required to generate code for each
dot-product. As explained in Section 1, this routine is provided by the CGPE
software tool, and it is denoted by DPSynthesis in the sequel of this section.
Algorithm 1 below implements this approach.

Algorithm 1 Accurate algorithm.

Input:

A ∈ Fixm×n and B ∈ Fixn×p

Output:

Code to compute A′ ·B′

Algorithm:

1: for 1 ≤ i ≤ m do
2: for 1 ≤ j ≤ p do
3: DPSynthesis(Ai,:, B:,j)
4: end for
5: end for

Algorithm 2 Compact algorithm.

Input:

A ∈ Fixm×n and B ∈ Fixn×p

Output:

Code to compute A ·B
Algorithm:

1: U ← A1,: ∪A2,: ∪ · · · ∪Am,:,
with U ∈ Fix1×n

2: V ← B:,1 ∪B:,2 ∪ · · · ∪B:,p,
with V ∈ Fixn×1

3: DPSynthesis(U ,V)

Notice that Algorithm 1 issues m× p queries to the DPSynthesis routine. And
at runtime, only one call to each generated code will be issued, for a total of
m× p calls.

To significantly reduce the number of dot-product codes generated, denoted
by DPCodes in the following, some of them could be factored to evaluate more
than one dot-product at run-time. Algorithm 2 pushes this idea to the limits
by merging element by element the matrices A and B into a unique row U and
column V, respectively. Here merging two fixed-point matrices means computing
their union. Particularly, let (x, y) ∈ Fix2 be two fixed-point variables. In order
to compute their union, we must determine z ∈ Fix such that Qaz .bz

and IZ are,
respectively, the smallest format and enclosure that accommodate the values of
x and y without overflow. (See [15, § 4.2.1] for details on the algorithm used
to compute z.) This second approach issues a unique call to the DPSynthesis
routine, while at run-time, m× p calls to this code are still needed to evaluate
the matrix product.

3.2.2. Illustration example

Let us now illustrate the differences between these two algorithms by considering
the code generation for the product of the following two fixed-point matrices:

A =

(
[−1000, 1000] [−3000, 3000]

[−1, 1] [−1, 1]

)
and B =

(
[−2000, 2000] [−2, 2]
[−4000, 4000] [−10, 10]

)
,

10

Algorithm 1 Algorithm 2

Dot-product A1,: ·B:,1 A1,: ·B:,2 A2,: ·B:,1 A2,: ·B:,2 All

Evaluated using DPCode1,1 DPCode1,2 DPCode2,1 DPCode2,2 DPCodeU,V

Output format Q26,6 Q18,14 Q15,17 Q7,25 Q26,6

Certified error ≈ 2−5 ≈ 2−14 ≈ 2−16 ≈ 2−24 ≈ 2−5

Maximum error ≈ 2−5 ≈ 2−5

Average error ≈ 2−7 ≈ 2−5

Table 1: Numerical properties of the codes generated by Algorithms 1 and 2 for A ·B.

where A1,1 and B1,1 are in the format Q11.21, A1,2 in Q12.20, A2,1, A2,2, B2,1 in
Q2.30, B1,2 in Q3.29, and B2,2 in Q5.27. Algorithm 1 produces 4 distinct codes,
denoted by DPCode1,1, DPCode1,2, DPCode2,1, and DPCode2,2. On the other
hand, Algorithm 2 first computes U = A1,: ∪A2,: and V = B:,1 ∪B:,2 as follows:

U = ([−1000, 1000][−3000, 3000]) and V =

(
[−2000, 2000]
[−4000, 4000]

)
.

Then, DPCodeU,V is generated that evaluates the dot-product of U and V.
Table 1 summarizes the properties of the codes produced by Algorithms 1 and 2
on this example. On one hand, Algorithm 1 produces codes optimized for the
range of their entries: it is clearly superior in terms of accuracy since a dedicated
code evaluates each run-time dot-product. On the other hand, as expected,
Algorithm 2 produces far less code: it is is optimal in terms of code size since a
unique DPCode is generated, but remains a worst-case in terms of accuracy.

3.3. Dynamic closest pair algorithm for code size vs. accuracy trade-offs

Fixed-point arithmetic is primarily used in embedded systems where the execu-
tion environment is usually constrained. Hence even tools that produce codes
with guaranteed error bounds would be useless if the generated code size is
excessively large. In this section, we go further than Algorithms 1 and 2, and
explore the possible means to achieve trade-offs between the two conflicting
goals, through our new appraoch called Dynamic Closest Pair algorithm.

3.3.1. How to achieve trade-offs?

Once the accuracy and code size parameters are set, the programmer tries Al-
gorithms 1 and 2.

1. When Algorithm 1 is not accurate enough. Since Algorithm 1 produces
the most accurate codes, a potential solution is to adapt the fixed-point
computation word-lengths to reach the required accuracy, as in [26].

2. When Algorithm 2 does not satisfy the code size constraint. Again, since
this algorithm produces the most compact code, other solutions must be
considered such as adding more hardware resources.

11

• • • •
• • • •
• • • •
• • • •

×

• • • •
• • • •
• • • •
• • • •

 =

• • • •
• • • •
• • • •
• • • •

DPCode1

DPCode2

DPCode3

DPCode4

Figure 1: One merging strategy on a 4× 4 matrix multiplication.

Finally, the only uncertainty that remains is when Algorithm 1 satisfies the
accuracy constraint but has a large code size while Algorithm 2 satisfies the
code size bound but is not accurate enough. This case appeals for code size
versus accuracy trade-offs.

Since m × p dot-product calls are needed at runtime, reducing the number
of DPCodes requires to factor some of them so that they would evaluate more
than one run-time dot-product. This amounts to merging certain rows and/or
columns of the input matrices together. Obviously, it is useless to go as far as
compressing the left and right matrices into one row and column, respectively,
since this corresponds to Algorithm 2. Our idea is illustrated by Figure 1 on
a 4 × 4 matrix multiplication. In this example, the first matrix is compressed
into a 2× 4 matrix while the second matrix is compressed into a 4× 2 matrix,
as shown by the differently colored and shaped blocks. In this case, the number
of required codes is reduced from 16 to 4. For example, DPCode1 has been
particularly optimized for the computation of A1,: ·B:,1 and A1,: ·B:,2, and will
be used exclusively for these at run-time.

3.3.2. Combinatorial aspect of the merging strategy

Consider the two sets of vectors:

SA = {A1,:, · · · , Am,:} and SB = {B:,1, · · · , B:,p},

associated to the input matrices:

A ∈ Fixm×n and B ∈ Fixn×p.

In our case, the problem of finding an interesting code size versus accuracy
trade-off reduces to finding partitions of the sets SA and SB into kA ≤ m and
kB ≤ p subsets, respectively, such that both of the following conditions hold:

1. the code size bound σ is satisfied, that is:

(4n− 1) · kA · kB < σ, (7)

12

where 4n−1 is a worst case bound on the number of elementary operations
(additions, multiplications, and shifts) needed to evaluate a size-n dot-
product in fixed-pont arithemtic [25, § 3.2],

2. and the error bound ε is guaranteed, that is:

εmatrix < ε, (8)

where εmatrix is either the minimal, the maximal, or the average computa-
tion error depending on the certification level required by the user.

Note that, given the partitions of SA and SB , the first condition is easy to
check. However in order to guarantee the error condition, we must synthesize
the DPCodes and deduce their error bounds. This can be done using CGPE.

A benefit of formulating the refactoring strategy in terms of partitioning
is the ability to give an upper bound on the number of possible dot-product
mergings. Indeed, given a non-empty set S of k vectors, the number of different
ways to partition S into k′ ≤ k non-empty subsets of vectors is given by the
Stirling number3 of the second kind

{
k
k′

}
, defined as follows:

{
k

k′

}
=

1

k′!

k′∑
j=0

(−1)k
′−j k′!

j!(k′ − j)!
jk.

However, k′ is a priori unknown and can be ∈ {1, · · · , k}. The total number of
possible partitions of a set of k vectors is therefore given by the following sum,
commonly referred to as the Bell number:4

B(k) =

k∑
k′=1

{
k

k′

}
.

Finally, in our case, the total number of partitionings is defined as follows:

P(m, p) = B(m) ·B(p)− 2, (9)

where m × p is the size of the resulting matrix. Notice that we exclude two
partitions:

1. The partition of SA and SB into, respectively, m and p subsets which
correspond to putting one and only one vector in each subset. This is the
partitioning that leads to Algorithm 1.

2. The partition of SA and SB into one subset each. This partitioning leads
to Algorithm 2.

Table 2 gives some values of P of Equation (9). Since this number is large,
even for small matrix sizes, heuristics will be necessary to tackle this problem.

3See http://oeis.org/A008277.
4See http://oeis.org/A000110.

13

http://oeis.org/A008277
http://oeis.org/A000110

(m, p) (5, 5) (6, 6) (10, 10) (16, 16) (25, 25) (64, 64)

Number of algorithms P 2704 41 209 ≈ 234 ≈ 266 ≈ 2124 ≈ 2433

Table 2: Some values of P for the multiplication of square matrices.

3.3.3. Dynamic Closest Pair Algorithm

A component-wise merging of two vectors U and V of fixed-point variables yields
a vector whose ranges are larger than those of U and V. This eventually leads
to a degradation of the accuracy if the resulting vector is used to generate some
DPCodes. In the extreme, this is illustrated by Algorithm 2 in Section 3.2.1.
Therefore the underlying idea of our approach is that of putting together, in the
same subset, row or column vectors that are close according to a given distance
or criterion. Hence we ensure a reduction in code size while maintaining tight
fixed-point formats, and thus guaranteeing a tight error bound.

Many metrics can be used to compute the distance between two vectors.
Below, we cite two mathematically rigorous distances that are suitable for fixed-
point arithmetic: the Hausdorff distance and the fixed-point distance. However,
as our method does not use the mathematical properties of distances, any cri-
terion that may discriminate between pairs of vectors of fixed-point variables
may be used, like the width criterion introduced below.

Hausdorff distance. The range of a fixed-point variable corresponds to a rational
discrete interval. It follows that the Hausdorff distance [27], widely used as a
metric in interval arithmetic, can be applied to fixed-point variables. Given
two fixed-point variables x and y and their ranges Range(x) =

[
rx, rx

]
and

Range(y) =
[
ry, ry

]
, this distance dH(x, y) is defined as follows:

dH : Fix× Fix→ R+

dH (x, y) = max
{∣∣∣rx − ry∣∣∣ , |rx − ry|},

Roughly, this distance computes the maximum increase suffered by Range(x)
and Range(y) when computing the union x ∪ y, as illustrated on Figure 2(a).

This distance illustrates our heuristic: by trying to merge only vectors of
variables that minimize the Hausdorff distance, we make sure that this merging
minimally impacts their range.

Range(x) Range(y)
dH(x, y)

(a) Hausdorff distance.

Range(x) Range(y)
dW (x, y)

(b) Width criterion.

Figure 2: Illustration of distances between two input variables (x, y) ∈ Fix2.

14

Fixed-point distance. Contrarily to the Hausdorff distance which reasons on the
ranges defined by the fixed-point variables, the fixed-point distance uses only
their fixed-point formats. As such, it is slightly faster to compute. Given two
fixed-point variables x and y, this distance dF (x, y) is defined as follows:

dF : Fix× Fix→ N
dF (x, y) = |ax − ay|,

where Qax.bx and Qay .by are the fixed-point formats of x and y, respectively.
Analogously to Hausdorff distance, this distance computes the increase in the
integer part suffered by x and y when computing their union x ∪ y.

Width criterion. Let x, y, and z be three fixed-point variables such that z = x∪y
where z is computed according to merging algorithm in [15, § 4.2.1]. Our third
metric consists in considering the width of Range(z) =

[
rz, rz

]
as illustrated on

Figure 2(b). Formally, it is defined as follows:

dW : Fix× Fix→ R+

dW (x, y) =
(
rz − rz

)
.

Notice that although the metrics are introduced as functions of two fixed-
point intervals, we generalized them to vectors of fixed-point variables by con-
sidering either the component-wise max or average value.

Given one of these metrics and a set S of vectors, it is straightforward to
implement a findClosestPair routine that returns the pair of closest vectors in
S. AO(n2) naive approach was implemented, that compare all the possible pairs
of vectors. But, depending on the distance used, optimized implementations
may rely on the well established fast closest pair of points algorithms [28], [29,
§33]. Nevertheless, our contribution lies mainly in the design of Algorithm 3
which is based on a dynamic search of a code that satisfies both an accuracy
bound C1 and a code size bound C2.

Here we assume that Algorithm 1 satisfies the accuracy bound C1, otherwise,
no smaller code satisfying C1 could be found. Therefore, Algorithm 3 starts with
two sets of m and p vectors, respectively, corresponding to the rows of A and
the columns of B. As long as the bound C1 is satisfied, each step of the while
loop merges together the closest pair of rows or columns, and thus decrements
the total number of vectors by 1. At the end of Algorithm 3, if the size of the
generated code satisfies the code size bound C2, a trade-off solution has been
found. Otherwise, Algorithm 3 failed to find a code that satisfies both bounds
C1 and C2. This algorithm was implemented in the FPLA tool.

3.4. Numerical experiments

In this section, we illustrate the efficiency of our heuristics, and the behaviour
of Algorithm 3 as well as the impact of the distance and the matrix size through
a set of numerical results.

15

Algorithm 3 Dynamic Closest Pair algorithm.

Input:

Two matrices A ∈ Fixm×n and B ∈ Fixn×p

An accuracy bound C1 (ex. average error bound is < ε)
A code size bound C2
A metric d

Output:

Code to compute A ·B s.t. C1 and C2 are satisfied,
or no code otherwise

Algorithm:

1: SA ← {A1,:, . . . , Am,:}
2: SB ← {B:,1, . . . , B:,p}
3: while C1 is satisfied do
4: (uA, vA), dA ← findClosestPair(SA, d)
5: (uB , vB), dB ← findClosestPair(SB , d)
6: if dA ≤ dB then
7: remove(uA, vA,SA)
8: insert(uA ∪ vA,SA)
9: else

10: remove(uB , vB ,SB)
11: insert(uB ∪ vB ,SB)
12: end if
13: for (Ai, Bj) ∈ SA × SB do
14: DPSynthesis(Ai, Bj)
15: end for
16: end while
17: /* Revert the last merging step. */
18: /* Check the bound C2. */

3.4.1. Experimental environment

Experiments have been carried out with 32 bit fixed-point variables and using 3
structured and 1 unstructured benchmark. For structured benchmarks, the large
coefficients distribution throughout the matrices follows different patterns. This
is achieved through weight matrices, as shown in Table 3 where Wi,j corresponds
to the element of row i and column j of the considered weight matrix.

Name Wi,j Heat map

Center 2max(i,j,n−1−i,n−1−j)−bn/2c
2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Edges 2min(i,j,n−1−i,n−1−j)
2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Rows / Columns 2bi/2c 2bj/2c 2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Random 2rand(0,bn/2c−1)
2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Table 3: Weight matrices considered for the benchmarks.

16

Notice, that the dynamic range defined as max(Wi,j)/min(Wi,j) is the same
for all benchmarks, and is equal to 2bn/2c. The reason we did not directly use
these matrices in our experiments is that the first three patterns correspond to
structured matrices in the usual sense and that better algorithms to multiply
structured matrices exist [30]. To obtain random matrices where the large co-
efficients are still distributed according to the pattern described by the weight
matrices, we computed the Hadamard product of Table 3 matrices with nor-
mally distributed matrices generated using Matlab R©’s randn function. Finally,
notice that the matrices obtained this way have floating-point coefficients. In
order to get fixed-point matrices, we first converted them to interval matrices
by considering the radius 1 intervals centered at each coefficient. Next, the
floating-point intervals are converted into fixed-point variables by considering
the smallest fixed-point format that holds all the interval’s values.

3.4.2. Efficiency of the distance based heuristic

As a first experiment, let us consider 2 of the benchmarks: Center and Random
square matrices of size 6. For each, we build two matrices A and B, and observe
the efficiency of our closest pair heuristic based approach by comparing the
result of Algorithm 3 to all the possible codes. To do so, we compute all the
possible row and column mergings: Equation (9) assures that there are 41 209
such mergings for size-6 matrices. For each of these, we synthesized the codes
for computing A · B, and determined the maximum and average errors. This
exhaustive experiment took approximately 2h15min per benchmark on an Intel
Core i7-870 desktop machine running at 2.93 GHz. Figures 3 and 4 show the
maximum and average errors of the produced codes according to the number
of DPCodes involved. Next, we ran our tool with Hausdorff’s distance and
with the accuracy bound C1 set to a large value so as to see the behavior of
Algorithm 3 on all the intermediate steps. This took less than 10 seconds for
each benchmark and corresponds to the dark blue dots in Figures 3 and 4.
Notice on both sides the accurate algorithm which produces 36 DPCodes and
the compact algorithm which produces only one DPCode.

For the structured Center benchmark, Algorithm 3 behaves as expected. For
both maximum and average error, it is able to drastically reduce the number of
DPCodes without impacting the accuracy. Indeed, as shown in Figure 3(b), for
a maximum error of ≈ 3 · 10−3 which is close to the most accurate algorithm,
our algorithm is able to reduce the number of DPCodes from 36 to 9. For
average error in Figure 4, Algorithm 3 even finds a merging that produces 9
DPCodes and has almost the same accuracy as Algorithm 1 which is the most
accurate.

For the Random benchmark, the behavior of Algorithm 3 is less predictable.
Indeed, in this benchmark, the elements of high dynamic range are spread over
the matrix and do not follow a particular pattern. In this case, it is less obvious
for Algorithm 3 to find the best codes in terms of accuracy. Indeed, Algorithm 3
follows a greedy approach in making the local decision to merge two vectors.
And, once it goes in a wrong branch of the result space, this may lead to a code
having an average or maximum error slightly larger than the best case. This

17

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

0.026

0.028

0.03

1 5 10 15 20 25 30 36

M
ax

im
um

er
ro

r

Number of dot-products used

Maximum error of all possible algorithms
Dynamic closest pair algorithm run result

(a) Random matrices.

0.0029

0.003

0.0031

0.0032

0.0033

0.0034

0.0035

0.0036

0.0037

0.0038

1 5 10 15 20 25 30 36

M
ax

im
um

er
ro

r

Number of dot-products used

Maximum error of all possible algorithms
Dynamic closest pair algorithm run result

(b) Center matrices.

Figure 3: Maximum error according to the number of DPCodes.

0

0.005

0.01

0.015

0.02

0.025

1 5 10 15 20 25 30 36

A
ve

ra
ge

er
ro

r

Number of dot-products used

Average error of all possible algorithms
Dynamic closest pair algorithm run result

(a) Random matrices.

0

0.001

0.002

0.003

0.004

0.005

1 5 10 15 20 25 30 36

A
ve

ra
ge

er
ro

r

Number of dot-products used

Average error of all possible algorithms
Dynamic closest pair algorithm run result

(b) Center matrices.

Figure 4: Average error versus the number of DPCodes.

can be observed on Figure 4(b): the first 6 steps produce code with very tight
average error, but step 7 results in a code with an average error of ≈ 10−3 while
the best code has an error of ≈ 5 · 10−4. As a consequence, the following of the
algorithm gives a code with an error of ≈ 3 ·10−3 instead of ≈ 10−3 for the best
case. The same phenomenon happens at step 1 Figure 3(a).

Despite this, these experiments show the interest of our approach. Indeed
we may observe that, at each step, the heuristic merges together 2 rows of A
or 2 columns of B to produce a code having in most cases an average error
close to the best case. This is particularly the case on Figures 3(b) and 4(b)
for Center benchmarks. Moreover, Algorithm 3 converges toward code having
good numerical quality much faster than the exhaustive approach.

3.4.3. Impact of the metric on the trade-off strategy

In this second experiment, we consider 25 × 25 matrices. For each benchmark
introduced above, 50 different matrix products are generated, and the results
exhibited are computed as the average on these 50 products. To compare the

18

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

2
-17

2
-16

2
-15

2
-14

2
-13

2
-12

N
u

m
b

e
r

o
f

d
o

t-
p

ro
d

u
c
t

c
o

d
e

s

Average error bound

Average width criterion
Max width criterion

Average Hausdorff criterion
Max Hausdorff criterion
Average fixed criterion

Max fixed criterion
Random criterion

(a) Center matrices.

 0

 100

 200

 300

 400

 500

 600

2
-14

2
-13

2
-12

2
-11

2
-10

2
-9

N
u

m
b

e
r

o
f

d
o

t-
p

ro
d

u
c
t

c
o

d
e

s

Average error bound

Average width criterion
Max width criterion

Average Hausdorff criterion
Max Hausdorff criterion
Average fixed criterion

Max fixed criterion
Random criterion

(b) Edges matrices.

 0

 100

 200

 300

 400

 500

 600

2
-16

2
-15

2
-14

2
-13

2
-12

2
-11

2
-10

N
u

m
b

e
r

o
f

d
o

t-
p

ro
d

u
c
t

c
o

d
e

s

Average error bound

Average width criterion
Max width criterion

Average Hausdorff criterion
Max Hausdorff criterion
Average fixed criterion

Max fixed criterion
Random criterion

(c) Rows/Columns matrices.

 0

 100

 200

 300

 400

 500

 600

2
-16

2
-15

2
-14

2
-13

2
-12

2
-11

N
u

m
b

e
r

o
f

d
o

t-
p

ro
d

u
c
t

c
o

d
e

s

Average error bound

Average width criterion
Max width criterion

Average Hausdorff criterion
Max Hausdorff criterion
Average fixed criterion

Max fixed criterion
Random criterion

(d) Random matrices.

Figure 5: Number of dot-product codes generated by each algorithm for increasing
average error bounds.

different distances, we consider the average accuracy bound: for each metric,
we varied this bound and used Algorithm 3 to obtain the most compact codes
that satisfy it. Here we ignored the code size bound C2 by setting it to a large
enough value. Also, in order to show the efficiency of the closest pair strategy,
we compare the codes generated using Algorithm 3 with those of an algorithm
where the merging of rows and columns is carried out randomly. Figure 5 shows
the results of running FPLA.

First notice that, as expected, large accuracy bounds yield the most com-
pact codes. For instance, for all the benchmarks, no matter the distance used,
if the target average accuracy is > 2−9.5, one DPCode suffices to evaluate the
matrix multiplication. This indeed amounts to using Algorithm 2. Also as ex-
pected and except for few values, when used with one of the distances above,
our algorithm produces less DPCodes than with the random function as a dis-
tance. Using the average width criterion, our algorithm is by far better than the
random algorithm and yields on the Center and Rows/Columns benchmarks a
significant reduction in code size, as shown on Figures 5(a) and 5(c). For exam-
ple, for the Center benchmark, when the average error bound is set to 2−16, our
algorithm satisfies it with only 58 DPCodes, while the random algorithm needs
234 DPCodes. This yields a code size reduction of up to 75%. Notice also that

19

globally, the Center benchmark is the most accurate. This is due to the fact
that few Rows/Columns have a high dynamic range. On Figures 5(b) and 5(d),
in the Edges as well as Random benchmarks, all of the rows and columns have a
high dynamic range which explains in part why these benchmarks are less accu-
rate than the Center benchmark. These experiments also suggest that average
based distances yield tighter code than maximum based ones.

3.4.4. Impact of the matrix size

In this third experiment, we study the influence of the matrix sizes on the
methodology presented above. To do so, we consider square matrices of the
Center benchmark with sizes 8, 16, 32, and 64, where each element has been
scaled so as these matrices have the same dynamic range. We run Algorithm 3
using the average width criterion as a metric with different average error bounds
from 2−21 to 2−14. Here the bound C2 has also been ignored. For each of these
benchmarks, we determine the number of DPCodes used for each average error,
as shown in Table 4 (where “−” means “no result has been found”).

Maximum error

Matrix size 2−21 2−20 2−19 2−18 2−17 2−16 2−15 2−14

8 24 6 1 1 1 1 1 1

16 − 117 40 16 3 1 1 1

32 − − 552 147 14 2 1 1

64 − − − 2303 931 225 48 1

Table 4: Number of DPCodes for various matrix sizes and error bounds.

This shows clearly that our method is extensible to large matrices, since it
allows to reduce the size of the problem to be implemented, while maintaining a
good numerical quality. For example, the 64×64 accurate matrix multiplication
would require 4096 DPCodes. Using our heuristic, we produce a code with 2303
DPCodes having an average error bounded by 2−18, that is, a reduction of about
45%. Remark that no code with average error bound of 2−19 is found, which
means that even the accurate algorithm (Algorithm 1) has an error no tighter
than 2−19: we can conclude that our heuristic converges towards code having
an error close to the best case, but with half less DPCodes. Finally, if the user’s
accuracy expectations are low, i.e., if an error bound of 2−14 is acceptable, then
only one DPCode is enough to implement matrix multiplication for all the sizes.

4. Trade-offs between sharp error bounds and run-time overflows:
matrix inversion

For a large set of applications, numerical analysts advise against computing
matrix inversion since it is known to be numerically unstable. Yet, as stated
by Higham [22, § 14], cases exist where the inverse conveys useful information.
For instance, in wireless communications, matrix inversion is used in equaliza-
tion algorithms [31] as well as detection estimation algorithms in space-time

20

coding [32]. In radar applications, Space Time Adaptive Processing algorithms
(STAP) require the inversion a positive-definite covariance matrix [33].

Mainly motivated by the latter application, we present our approach to code
synthesis for matrix inversion which is based on Cholesky decomposition. Sec-
tions 4.1 and 4.2 detail our method and explain how to implement it respectively.
Finally, Section 4.3 exhibits our experimental results which mainly illustrate the
sharp error bounds versus risk of overflow trade-offs.

4.1. A methodology for matrix inversion

A survey of floating-point matrix inversion and linear systems solving methods
shows that there are many algorithms in use: Cramer’s rule, LU decomposition,
QR decomposition, . . . [21]. A common pattern to the efficient algorithms is
the decomposition of the input matrix into a product of easy to invert matrices
(triangular or orthogonal matrices). LU decomposition, for instance, proceeds
by Gaussian elimination to decompose an input matrix A into two triangular
matrices L and U such that A = LU . Inverting triangular matrices being
straightforward, solving the associated linear system is equally simple and so is
obtaining the inverse A−1 by the formula A−1 = U−1L−1. Almost the same
chain of reasoning is applicable to QR decomposition. In our tool-chain, we
focus on a Cholesky decomposition based approach.

4.1.1. Matrix inversion using Cholesky decomposition

Symmetric positive-definite matrices are ubiquitous in signal processing and can
be inverted through Cholesky decomposition which is known to be numerically
stable [22]. Given a symmetric positive-definite matrix A, the method follows
the three following steps:

1. matrix decomposition: computing a lower triangular matrix L such as
A = LLT ,

2. triangular matrix inversion: computing L−1, and

3. inverse re-composition through multiplication: A−1 = L−TL−1.

In floating-point arithmetic, the computationally intensive step is the decom-
position part [21]. The decomposition step is also the missing link in fixed-point
arithmetic. Indeed, we presented in Section 3 a methodology for fixed-point code
synthesis for matrix multiplication that we first described in [25].

Remark that restraining to symmetric positive-definite matrices is not an
overkill. Indeed, Cholesky decomposition can be used to invert any non-symmetric
positive-definite matrix A by decomposing the following matrix: M = AAT

which is guaranteed to be symmetric to obtain M = LLT . From this decompo-
sition, A−1 can be recovered using the formula:

A−1 = ATL−TL−1. (10)

21

4.1.2. The Cholesky decomposition step

The Cholesky decomposition of a matrix A is defined if A is a symmetric
positive-definite matrix. This method exploits the structure of the matrix, is
more efficient than Gaussian elimination, and is numerically stable [22, § 10].
It works by finding a lower triangular matrix L such that:

A = L · LT . (11)

And by equating the coefficients in (11) and using the symmetry of A, the
following formula for the general term of L is deduced:

`i,j =

0 if i < j

√
ci,i if i = j where ci,j = ai,j −

j−1∑
k=0

`i,k · `j,k

ci,j
`j,j

if i 6= j

(12)

Again, before generating code for `i,j , one must generate code for its depen-
dencies. These include all the `i,k and `j,k with k ∈ {0, . . . , j − 1} as well as
`j,j if the coefficient is not on the diagonal. Also, synthesizing code that com-
putes `i,j from ci,j involves the square root and division operators. Therefore,
as explained in Section 2.2.5, the intervention of the user is needed to provide
the fixed-point format of the output of division. By doing so, the user sets the
appropriate trade-off between the sharpness of the accuracy bounds and the risk
of run-time overflows.

4.1.3. The triangular matrix inversion step

Using the so called backward and forward substitution techniques, inverting
a triangular matrix is a straightforward process in floating-point arithmetic.
Indeed, for a lower triangular matrix M , its inverse N is given by the following
equation:

ni,j =

0 if i < j

1

mi,i
if i = j

−ci,j
mi,i

if i > j where ci,j =

i−1∑
k=j

mi,k · nk,j .

(13)

While in floating-point arithmetic, implementing these equations requires only
three nested loops, it is more challenging in fixed-point arithmetic. Indeed, the
coefficient ni,j depends on other coefficients of the inverse N , namely all the nk,j
with k ∈ {j, . . . , i − 1}. This implies that the synthesis tool, when generating
code that computes ni,j must know the ranges and formats of all the nk,j with
k ∈ {j, . . . , i− 1}. It is clear that such a tool must follow a determined order in
synthesizing code and that it must keep track of the formats and ranges of the
computed coefficients so as to reuse them.

22

4.2. Code synthesis for triangular matrix inversion and Cholesky decomposition

The basic blocks introduced in the previous section were implemented in the
FPLA tool. This tool was developed with the aim of generating fixed-point
code for the most frequently used linear algebra routines. It handles the aspects
peculiar to each class of input problems and relies on the CGPE library for the
low-level code synthesis details. For triangular matrix inversion and Cholesky
decomposition, FPLA internally keeps track of two matrices of fixed-point vari-
ables:

1. the input matrix, and

2. the resulting matrix.

The input matrix is not modified throughout the run. However, the resulting
matrix is updated with the range, format, and error bound of each code returned
by the CGPE. Therefore, FPLA must correctly handle the ordering of calls to
CGPE in such a way that each coefficient’s code is generated only after all the
information on which it depends has been collected.

In triangular matrix inversion and according to Equation (13), the diago-
nal elements do not depend on any generated code. Therefore they may be
computed in any order. The non-diagonal coefficients depend only on the co-
efficients that precede them on the same column. Therefore, FPLA can follow
a row major, column major, or even a diagonal major approach. The latter
consists in generating the elements on the diagonal, followed by those on the
first sub-diagonal, and so on. The last code generated in this fashion would be
that of the bottom left coefficient `n−1,0. This is illustrated by Figure 6(a).

(a) (b)

Figure 6: Dependencies of the coefficient `5,3 (in blue) in the triangular matrix inver-
sion (left) and in the Cholesky’s decomposition (right) of a 6× 6 matrix.

For Cholesky decomposition, a diagonal element `i,i depends on the gener-
ated coefficients that precede it on row i. A non-diagonal element `i,j depends
on the first j elements of row i as well as the first j+1 elements of row j. FPLA
may satisfy these dependencies by following either a row major or column major

23

synthesis strategy but not a diagonal major strategy. These dependencies are
illustrated by Figure 6(b).

Once all the coefficient codes of the resulting matrix are generated, FPLA
generates the global C file where each code assigns its result to the correct matrix
index. For the sake of space, the synthesized C codes are not presented here,
but are available in [15, § 5.3.1].

4.3. Experimental results

In this section, we first explain how we generate our benchmarks. Then we
investigate the impact of the output format of division and study the speed of
the generation and the sharpness of the error bounds of our generated codes.
Finally we show the impact of the matrix condition number on the accuracy of
the generated code.

4.3.1. Generation of fixed-point test matrices

The input matrices for which FPLA generates code are made of fixed-point
variables. After the synthesis process, in order to test the resulting code on a
set of benchmarks, we need to generate matrices of fixed-point numbers that
belong to these fixed-point variables. For Cholesky decomposition, the matrices
of fixed-point numbers should be symmetric positive-definite. To obtain such
matrices, we followed the 5-stage process below:

1. Generate a lower triangular random matrix M whose fixed-point coeffi-
cients belong to the input fixed-point variables. Determine A by filling
the upper side of the matrix with MT . Formally, this is equivalent to
computing A = M + (MT − diag(M)). At this point, A is a symmetric
matrix that belongs to the input variable matrix.

2. Compute the smallest eigenvalue of A, denoted by λmin.

3. If λmin > 0, then the matrix A is positive-definite, and we are done.

4. Otherwise, compute A′ = A− (λmin + δ)I, for a small δ.

5. A′ is guaranteed to be symmetric and positive-definite. This step, checks
if all the coefficients of A′ belong to their respective fixed-point variables.
If it is the case, we are done, otherwise, either try to divide A′ by a factor
and retest Step 5, or restart from Step 1.

Generating triangular matrices is straightforward. For each coefficient, one
must generate randomly a fixed-point number that belongs to the input fixed-
point variable.

4.3.2. Impact of the output format of division on accuracy

As mentioned in Section 2.2.5, the output format of division must be explicitly
set and has a great impact on the properties of the generated code. In this
experiment, we use 4 different functions to set the integer part size of the result
of a division. In each case, the output fraction part is determined so as each
result fits on 32 bits. The functions used are the following:

24

1. f1(i1, i2) = t,

2. f2(i1, i2) = min(i1, i2) + t,

3. f3(i1, i2) = max(i1, i2) + t,

4. f4(i1, i2) = b(i1 + i2)/2c+ t,

where t ∈ Z is a user defined parameter, and i1 and i2 are the integer parts
of the dividend and divisor, respectively. The function f1 consists in fixing all
the division results to the same fixed-point format. The experiment consists in
computing the Cholesky decomposition and the triangular inversion of matrices
of size 5 and 10, respectively. Using FPLA, we synthesize codes for each problem
and each function in

{
f1, f2, f3, f4

}
, for t ranging from −2 to 8. Then for each

synthesized code, 10 000 example instances are generated and solved both in
fixed and floating-point arithmetics. Each example input is a matrix having
32-bits coefficients in the range between −1 and 1. Then the error considered
is obtained by comparing the results to floating-point computations and by
considering the maximum errors among the 10 000 samples. The results, for
both basic blocks, are shown in Figures 7 and 8 for sizes 5 and 10, respectively,
where the absence of the curve in some figures means that all of the examples
overflew.

2−30

2−25

2−20

2−15

2−10

2−5

20

25

-2 0 2 4 6 8

M
ax

im
um

er
ro

r

t

f1
f2
f3
f4

(a) Cholesky decomposition.

2−30

2−25

2−20

2−15

2−10

2−5

20

25

-2 0 2 4 6 8

M
ax

im
um

er
ro

r

t

f1
f2
f3
f4

(b) Triangular matrix inversion.

Figure 7: Results obtained on the Cholesky decomposition and triangular matrix
inversion of matrices of size 5×5 with different functions to set the format of division.

Obviously, one can observe that the function used to determine the output
format of division has a great impact on the accuracy of the generated code.
For example, if we consider the case t = 0 on 5× 5 Cholesky decomposition on
Figure 7(a), using f1 leads to an error of ≈ 2−28, while using f3 gives an error
≈ 2−15, that is, twice larger than f1. More particularly, we can observe that a
good function choice is one that minimizes the output integer part but not too
much. Indeed, as long as t ≥ −1, using the function f1 always leads to better
maximum error than using the function f3. In addition, surprisingly, as long
as t ≥ −1, the function that gives the best results is f1(i1, i2) = t, namely the
function that fixes explicitly all the division results of a resulting code to the
same fixed-point format independently of the input formats.

Indeed the problem of using a function that depends on the input formats
comes from the fact that it quickly leads to a growth of the integer part of

25

2−30

2−25

2−20

2−15

2−10

2−5

20

25

-2 0 2 4 6 8

M
ax

im
um

er
ro

r

t

f1
f2
f3
f4

(a) Cholesky decomposition.

2−30

2−25

2−20

2−15

2−10

2−5

20

25

-2 0 2 4 6 8

M
ax

im
um

er
ro

r

t

f1
f2
f3
f4

(b) Triangular matrix inversion.

Figure 8: Results obtained on the Cholesky decomposition and triangular matrix
inversion of matrices of size 10 × 10 with different functions to set the format of
division.

each computed coefficient, since it relies on the previously computed coefficient
themselves. Hence the interest of f1 is that it avoids this fast growth, and
leads to result coefficients having a fixed and relatively small integer part, thus
to tighter errors than the other functions. This remark is true for the four
experiments of Figures 7 and 8 when t ≥ 0 where f1 is the only function that
leads to successful results. This phenomenon becomes obvious as the matrix
size increases.

However, one should not be too optimistic and set the value t of f1 to a very
low value when implementing triangular matrix inversion, and cases occur where
f1 leads to unsuccessful results. Indeed, the value of the diagonal coefficient of
the inverse matrix is 1/ai,i and since ai,i may be arbitrarily small, one way to fix
the right t is to choose it such that no division overflows occur when computing
the division of the diagonal elements.

These experiments may also be seen as simulations to find the right t. In-
deed, suppose we need to generate fixed-point code for the inversion of size-10
triangular matrices. FPLA comes with helper scripts that generate tests matri-
ces and produce the figures similar to Figures 7 and 8. A strategy then consists
in using these figures to restrain the search for the adequate output format. In
the cases of interest, g(i1, i2) = 3 and h(i1, i2) = b(i1 + i2)/2c, except for size-10
Cholesky decomposition, seem to be the most promising functions to set the
output of division, in terms of accuracy.

4.3.3. Sharpness of the error bounds and generation time

The originality of our approach is the automatic generation of certified error
bounds along with the synthesized code. This enables the generated code to
be used in critical and precision sensitive applications. However, it is equally
important that these bounds be sharp, at least for a large class of matrices.
To investigate their sharpness, we compare in this second experiment the error

26

bounds for the case of triangular matrix inversion with the experimental errors
obtained from inverting 10 000 sample matrices. This experiment is carried out
using the function f4 introduced in the previous experiment with t = 1. For
each matrix size from 4 to 40, C code and error bounds are obtained by running
FPLA. Figure 9(a) shows the evolution of the generation time when the size
of the matrices grows. On an Intel Core i7-870 desktop machine running at
2.93 GHz, it does not exceed 14 seconds for 40 × 40 matrices. This is clearly
an improvement of several orders of magnitude over a hand written fixed-point
code.

0

2

4

6

8

10

12

14

5 10 15 20 25 30 35 40

T
im

e
in

se
co

nd
s

Matrix size

(a)

2−30

2−25

2−20

2−15

2−10

2−5

20

25

5 10 15 20 25 30 35 40

E
rr
or

Matrix size

Certified error bound
Maximum experimental error

(b)

Figure 9: Generation time (left) and comparison of the error bounds and experimental
errors (right) for the inversion of triangular matrices of size 4 to 40.

Besides being quickly generated, Figure 9(b) shows that these codes have
low accuracy bounds, at least when the matrix size is less than 30. The bounds
vary from 2−26 to 22 while the experimental errors vary from 2−28 to 2−6. The
difference between the error bounds and experimental errors is less than 2 bits
for size-4 matrices and is inferior to 5 bits for size-15 matrices, and it grows as
the size of the input matrices grows. Nevertheless, the two curves have the same
overall shape, and the gap between them grows smoothly. And, although the
bounds obtained for matrices of size larger than 35 are too large to be useful
in practice, the experimental errors are still tight enough and do not exceed
2−6. These issues may be tackled by considering other means to handle division
that are more suited to large matrices. Indeed, our experiments tend to show
that the output format of division impacts heavily the accuracy of the result
and that there is no way to determine a format that is adapted to all matrix
sizes. We also argue that a bound of 2−12 on the inversion of size-20 matrices
is satisfying for a broad range of applications, and this is a large improvement
over hand-written fixed-point codes or codes whose numerical quality is asserted
uniquely by simulations and a posteriori processes.

4.3.4. Impact of the matrix condition number on accuracy

The sample matrices considered in the previous experiments were randomly
drawn in the input intervals. In this third experiment, we consider the Cholesky

27

100

102

104

106

108

1010

1012

1014

1016

1018

5 10 15

C
on

di
ti

on
nu

m
be

r

Matrix size

KMS
Lehmer
Prolate
Hilbert
Cauchy

(a) .

2−30

2−25

2−20

2−15

2−10

2−5

20

4 6 8 10 12 14

M
ax

im
um

er
ro

r

Matrix size

Hilbert
Cauchy
Prolate
Lehmer

Kms

(b)

Figure 10: Evolution of the conditioning of standard matrices of size 5, 10, and 15
(right) and maximum errors measured when computing the Cholesky decomposition
of various kinds of standard matrices for sizes varying from 4 to 14 (left).

decomposition of some standard matrices namely, KMS, Lehmer, Prolate, Hilbert,
and Cauchy matrices. These symmetric positive-definite matrices have multiple
properties and are often provided by numerical computing environments. In-
deed, we generated them using MATLAB’s gallery(’name’, size) command.
Among these, Hilbert and Cauchy matrices and to a lower extent Prolate are
ill-conditioned as shown in Figure 10(a).

Nonetheless, with a fixed-point code generated for matrices in the input
format Q1.31, we were able to check that the fixed-point results, whenever com-
putable, are accurate as shown in Figure 10(b). For sizes larger than 8 and 9,
respectively, overflows occur when computing the decompositions of Cauchy and
Hilbert matrices. But this fact does not invalidate our approach. Indeed, these
matrices are very ill-conditioned and are difficult to decompose accurately even
in floating-point arithmetic. On the other hand, KMS and Lehmer matrices
have a linearly growing condition number and are therefore very well suited to
our approach. As shown by the two bottom curves of Figure 10(b), the code
generated by FPLA decomposes these matrices with a precision of up to 24 bits.

In practice, nothing is noticeable on synthesis time, since the input matrices
are made of fixed-point variables and that the same fixed-point code is generated
for the 5 different classes of matrices. However, at run-time, ill-conditioned
matrices tend to overflow more often and for smaller matrix sizes than well-
conditioned matrices.

The above results show that accurate fixed-point codes accompanied by
bounds on the rounding errors can be automatically generated in a few seconds
to invert and to decompose matrices of sizes up to 40. The greatest difficulty of
this process is related to fixing the output format of divisions.

Finally, a further research direction on matrix inversion consists in investi-
gating other trade-offs involved in the code synthesis process. This includes,
similarly to the work presented in Section 3, a study of the trade-off between
code size and accuracy.

28

5. Conclusion

In this article, we addressed the automated synthesis of certified fixed-point
programs and treated the particular cases of code generation for linear algebra
basic blocks. The article tackles two recurrent issues encountered by embedded
systems developers: the difficulty of fixed-point programming and the perceived
low numerical quality of fixed-point computations.

We presented an example of an arithmetic model in Section 2 and imple-
mented it in the CGPE library. Our arithmetic model gives bounds on the
rounding errors of fixed-point square root and division as well as the means to
implement them. These operators are useful for linear algebra basic blocks and
are often overlooked in research publications.

Next, we used the arithmetic model and the CGPE tool to investigate code
generation for higher level problems. Such problems include linear algebra ba-
sic blocks such as matrix multiplication and inversion. We showed that code
synthesis for matrix multiplication can rely on straightforward approaches. But
these approaches are on the edges of the accuracy versus code size spectrum.
Therefore, we suggested, implemented, and provided experimental data for a
novel approach that finds trade-offs between these algorithms.

Finally, we tackled matrix inversion. We showed that the order of synthesis
must be arranged to respect the dependencies between the coefficients. Matrix
inversion also provided a test case for our square root and division operators.
We showed through our experiments that the user must be careful in setting the
output format of division. Indeed, small output formats lead to tight accuracy
bounds but involve a high risk of run-time overflows.

Finally, we consider that this work is extensible in the following directions:

Towards code synthesis for higher level problems. As of today, fixed-point pro-
grammers working on large applications have no choice but to implement part of
them in floating-point arithmetic. For instance, an application like Space Time
Adaptive Processing (STAP) for radars involves computing matrix inversion.
Due to the large number of steps of matrix inversion, it is tedious to imple-
ment it without appropriate tools. The same applies to other frequently used
basic blocks such as the Fast Fourier Transform, two dimensional convolutions,
and advanced filters like Kalman’s. Future work should extend the trade-off
strategies studied in this article to these basic blocks.

Towards high level synthesis. High level synthesis consists in generating hard-
ware architectures instead of software implementations. Targeting FPGAs has
two justifications: this type of hardware is becoming more and more popular
today and presents the advantage of allowing fully custom designs. For instance,
a fixed-point FPGA implementation can use custom word-length numbers and
therefore beat floating-point arithmetic in terms of chip area, energy consump-
tion, memory bandwidth consumption, and latency.

29

References

[1] IEEE Computer Society, IEEE Standard for Floating-Point Arithmetic,
IEEE Standard 754-2008, 2008.

[2] R. Yates, Fixed-Point Arithmetic: An Introduction, Digital Signal Labs
(2013).

[3] D. Menard, D. Chillet, O. Sentieys, Floating-to-fixed-point conversion for
digital signal processors, in: EURASIP Journal on Applied Signal Process-
ing, 2006, pp. 1–15.

[4] Z. Nikolic, H. T. Nguyen, G. Frantz, Design and Implementation of Numer-
ical Linear Algebra Algorithms on Fixed-Point DSPs, EURASIP J. Adv.
Sig. Proceedings 2007.

[5] W. Sung, K.-I. Kum, Simulation-based word-length optimization method
for fixed-point digital signal processing systems, IEEE Trans. Signal Pro-
cessing 43 (12) (1995) 3087–3090.

[6] D.-U. Lee, A. A. Gaffar, R. C. C. Cheung, O. Mencer, W. Luk, G. A.
Constantinides, Accuracy-guaranteed bit-width optimization, IEEE Trans.
Computer-Aided Design of Integrated Circuits and Systems 25 (10) (2006)
1990–2000.

[7] C. F. Fang, R. A. Rutenbar, T. Chen, Fast, Accurate Static Analysis for
Fixed-Point Finite-Precision Effects in DSP Designs, in: Proc. of the 2003
IEEE/ACM International Conf. on Computer-aided Design (ICCAD’03),
IEEE Computer Society, 2003, pp. 275–282.

[8] G. Golub, I. Mitchell, Matrix factorizations in Fixed Point on the C6x
VLIW architecture, Tech. rep., Stanford University, Standford, California,
USA (1998).

[9] M. Mehlhose, S. Schiffermüller, Efficient Fixed-Point Implementation of
Linear Equalization for Cooperative MIMO Systems, 17th European Signal
Processing Conference (EUSIPCO 2009).

[10] A. Irturk, B. Benson, S. Mirzaei, R. Kastner, GUSTO: An automatic gener-
ation and optimization tool for matrix inversion architectures, ACM Trans.
Embed. Comput. Syst. 9 (4) (2010) 32:1–32:21.

[11] A. Y. A. Syed M. Qasim, Ahmed A. Telba, FPGA Design and Implemen-
tation of Matrix Multiplier Architectures for Image and Signal Processing
Applications, International Journal of Computer Science and Network Se-
curity 10 (2) (2010) 168–176.

[12] I. Sotiropoulos, I. Papaefstathiou, A fast parallel matrix multiplication
reconfigurable unit utilized in face recognitions systems, in: Field Pro-
grammable Logic and Applications, 2009. FPL 2009. International Confer-
ence on, 2009, pp. 276–281.

30

[13] S. J. Campbell, S. P. Khatri, Resource and delay efficient matrix multipli-
cation using newer FPGA devices, in: Proceedings of the 16th ACM Great
Lakes Symposium on VLSI, GLSVLSI ’06, ACM, New York, NY, USA,
2006, pp. 308–311.

[14] C. Mouilleron, G. Revy, Automatic Generation of Fast and Certified Code
for Polynomial Evaluation, in: Proc. of the 20th IEEE Symposium on
Computer Arithmetic (ARITH’20), 2011, pp. 95–103.

[15] M. A. Najahi, Synthesis of certified programs in fixed-point arithmetic,
and its application to linear algebra basic blocks, Ph.D. thesis, Univ. de
Perpignan Via Domitia (2014).

[16] B. Lopez, T. Hilaire, L.-S. Didier, Sum-of-products evaluation schemes with
fixed-point arithmetic, and their application to IIR filter implementation,
in: Proc. of the Conference on Design and Architectures for Signal and
Image Processing (DASIP), 2012, pp. 160–167.

[17] R. E. Moore, Interval Analysis, Prentice-Hall, 1966.

[18] E. Hansen, A generalized interval arithmetic, in: K. Nickel (Ed.), Inter-
val Mathematics, Vol. 29 of Lecture Notes in Computer Science, Springer
Berlin Heidelberg, 1975, pp. 7–18. doi:10.1007/3-540-07170-9_2.
URL http://dx.doi.org/10.1007/3-540-07170-9_2

[19] M. D. Ercegovac, L. Imbert, D. W. Matula, J.-M. Muller, G. Wei, Improv-
ing Goldschmidt division, square root, and square root reciprocal, IEEE
Trans. Computers 49 (7) (2000) 759–763.

[20] M. D. Ercegovac, T. Lang, Digital Arithmetic, Morgan Kaufmann Publish-
ers, 2004.

[21] G. H. Golub, C. F. Van Loan, Matrix Computations (3rd Ed.), Johns
Hopkins University Press, Baltimore, MD, USA, 1996.

[22] N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd Edi-
tion, Society for Industrial and Applied Mathematics, 2002.

[23] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, D. Sorensen,
LAPACK Users’ Guide, 3rd Edition, Society for Industrial and Applied
Mathematics, Philadelphia, PA, 1999.

[24] S. Kim, K. il Kum, W. Sung, Fixed-point optimization utility for c and
c++ based digital signal processing programs, in: IEEE Trans. Circuits
and Systems II, 1996, pp. 1455–1464.

[25] M. Martel, A. Najahi, G. Revy, Code Size and Accuracy-Aware Synthe-
sis of Fixed-Point Programs for Matrix Multiplication, in: Proc. of the
4th International Conference on Pervasive and Embedded Computing and
Communication Systems (PECCS’14), 2014, pp. 204–214.

31

http://dx.doi.org/10.1007/3-540-07170-9_2
http://dx.doi.org/10.1007/3-540-07170-9_2
http://dx.doi.org/10.1007/3-540-07170-9_2

[26] D.-U. Lee, J. D. Villasenor, Optimized custom precision function evaluation
for embedded processors, IEEE Trans. Comput. 58 (1) (2009) 46–59.

[27] R. E. Moore, R. B. Kearfott, M. J. Cloud, Introduction to Interval Analysis,
SIAM, 2009.

[28] M. I. Shamos, D. Hoey, Closest-point problems, in: FOCS, 1975, pp. 151–
162.

[29] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to
Algorithms (3. ed.), MIT Press, 2009.

[30] C. Mouilleron, Efficient computation with structured matrices and arith-
metic expressions, Ph.D. thesis, Univ. de Lyon - ENS de Lyon (2011).

[31] L. Zhou, L. Qiu, J. Zhu, A novel adaptive equalization algorithm for MIMO
communication system, in: Proc. of the IEEE 62nd Vehicular Technology
Conference (VTC-2005-Fall), Vol. 4, 2005, pp. 2408–2412. doi:10.1109/

VETECF.2005.1558980.

[32] H. Chen, X. Deng, A. Haimovich, Layered turbo space-time coded mimo-
ofdm systems for time varying channels, in: Proc. of the 2003 IEEE Global
Telecommunications Conference (GLOBECOM’03), Vol. 4, 2003, pp. 1831–
1836 vol.4. doi:10.1109/GLOCOM.2003.1258555.

[33] J. R. Guerci, Space-time adaptive processing for radar, Artech House, 2003.

32

http://dx.doi.org/10.1109/VETECF.2005.1558980
http://dx.doi.org/10.1109/VETECF.2005.1558980
http://dx.doi.org/10.1109/GLOCOM.2003.1258555

	Introduction
	Background on certifying fixed-point computations
	Fixed-point arithmetic model
	Interval arithmetic based error model
	Addition and subtraction
	Multiplication
	Left and right shift
	Square root
	Division

	Code size versus accuracy trade-offs: matrix multiplication
	Problem statement of matrix multiplication
	Straightforward approaches for the synthesis of matrix multiplication codes
	Accurate and compact approaches
	Illustration example

	Dynamic closest pair algorithm for code size vs. accuracy trade-offs
	How to achieve trade-offs?
	Combinatorial aspect of the merging strategy
	Dynamic Closest Pair Algorithm

	Numerical experiments
	Experimental environment
	Efficiency of the distance based heuristic
	Impact of the metric on the trade-off strategy
	Impact of the matrix size

	Trade-offs between sharp error bounds and run-time overflows: matrix inversion
	A methodology for matrix inversion
	Matrix inversion using Cholesky decomposition
	The Cholesky decomposition step
	The triangular matrix inversion step

	Code synthesis for triangular matrix inversion and Cholesky decomposition
	Experimental results
	Generation of fixed-point test matrices
	Impact of the output format of division on accuracy
	Sharpness of the error bounds and generation time
	Impact of the matrix condition number on accuracy

	Conclusion

