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Abstract. Numerical reproducibility failures rise in parallel computa-
tion because floating-point summation is non-associative. Massively par-
allel and optimized executions dynamically modify the floating-point op-
eration order. Hence, numerical results may change from one run to
another. We propose to ensure reproducibility by extending as far as
possible the IEEE-754 correct rounding property to larger operation
sequences. We introduce our RARE-BLAS (Reproducible, Accurately
Rounded and Efficient BLAS) that benefits from recent accurate and ef-
ficient summation algorithms. Solutions for level 1 (asum, dot and nrm2)
and level 2 (gemv) routines are presented. Their performance is studied
compared to Intel MKL library and other existing reproducible algo-
rithms. For both shared and distributed memory parallel systems, we
exhibit an extra-cost of 2× in the worst case scenario, which is satisfy-
ing for a wide range of applications. For Intel Xeon Phi accelerator a
larger extra-cost (4× to 6×) is observed, which is still helpful at least for
debugging and validation steps.

1 Introduction and Background

The increasing power of supercomputers leads to a higher amount of floating-
point operations to be performed in parallel. The IEEE-754 [8] standard defines
the representation of floating-point numbers and requires the addition operation
to be correctly rounded. However because of errors generated by every addition,
the accumulation of more than two floating-point numbers is non-associative.
The combination of the non-deterministic behavior in parallel programs and
the non-associativity of floating-point accumulation yields to non-reproducible
numerical results.

Numerical reproducibility is important for debugging and validating pro-
grams. Some solutions have been given in parallel programming libraries. Static
data scheduling and deterministic reduction ensure the numerical reproducibil-
ity of the library OpenMP. Nevertheless the same number of threads is still re-
quired [13]. Intel MKL library (starting with 11.0 release) introduces CNR [13]
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(Conditional Numerical Reproducibility). This feature limits the use of instruc-
tion set extensions to ensure numerical reproducibility between different archi-
tectures. Unfortunately this decreases dramatically the performance especially
on recent architectures.

First algorithmic solutions are proposed in [4]. Algorithms ReprodSum and
FastReprodSum ensure numerical reproducibility independently from the op-
eration order. Therefore numerical results do not depend on hardware con-
figuration. The performance of these latter is improved with the algorithm
OneReduction [6] by relying on indexed floating-point numbers [5] and requir-
ing a single reduction operation to reduce the communication cost on distributed
memory parallel platforms.

Another way to guarantee reproducibility is to compute accurately rounded
results. Recent works [2, 1, 11] show that an accurately rounded floating-point
summation can be calculated with very little or even no extra-cost. We have
analyzed in [1] different summation algorithms, and identified those suited for
an efficient parallel implementation on recent hardware. Algorithms for correctly
rounded dot and asum and for faithfully rounded nrm2 have been designed rely-
ing on the most efficient summation algorithms. Their implementation exhibits
interesting performance with 2× extra-cost in the worst case scenario on shared
memory parallel systems.

In this paper we extend our approach to an other type of parallel platforms
and to higher BLAS level. We consider the matrix-vector multiplication from the
level 2 BLAS. We complete our shared memory parallel implementation with so-
lutions for distributed memory model, and confirm its scalability with tests on
the Occigen supercomputer1. We also present tests on Intel Xeon Phi accelerator
to illustrate the portability and appreciate the efficiency of our implementation
on many-core accelerator. Our efficiency of our correctly rounded dot product
scales well on distributed memory parallel systems. It has no substantial extra-
cost on up to 128 sockets with 12 used cores on each socket. On Intel Xeon Phi
accelerator the extra-cost of our algorithms is up to 6×. Still they could be useful
for validation, debugging or applications that require supplemental precision or
reproducible results.

This paper is organized as follows. Section 2 presents our sequential algo-
rithms for reproducible and accurate BLAS. Parallel versions are presented in
section 3. Section 4 is devoted to implementation and detailed results,

2 Sequential RARE BLAS

We present the algorithms for accurately rounded BLAS. This section starts with
level 1 BLAS subroutines (dot, asum and nrm2). Then the accurately rounded
matrix-vector multiplication is introduced.

1 https://www.cines.fr/en/occigen-the-new-supercomputeur/
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2.1 Sequential Algorithms for the Level 1 BLAS

We only focus on the sum of absolute values (asum), the dot product (dot), and
the euclidean norm (nrm2). Some other level 1 BLAS subroutines do not suffer
of reproducibility problem. We recall our Sequential solutions already introduced
in [1]

Sum of Absolute Values The condition number for the sum of absolute values
is known to equal 1. This motivates to use algorithm SumK [12] to compute a
correctly rounded asum as SumK(p) where all pi are non-negative. Its relative
accuracy is bounded as:

|asum(p)−
∑
pi|

|
∑
pi|

≤ (n · u)K

1− (n · u)K
+ u, (1)

where u is the computing precision (u = 253 for IEEE-754 binary64) and n the
length of the sum. Picking carefully the value of K such that (n·u)K < u/(u+2),
asum will be correctly rounded. The appropriate value of K only depends on
the vector size. We have K = 2 for n ≤ 225, and K = 3 for n ≤ 234. For n ≤ 239

which occupies 4TB of data, the appropriate value for K is 4.

Dot Product Using Dekker’s TwoProd [3], the dot product of two n-vectors
can be transformed without error to a sum of a 2n-vector. The sum of the trans-
formed vector is correctly rounded using a mixed solution. For small vectors
that hold in high level cache and that can be reused with no memory extra-
cost, the algorithm FastAccSum [14] is used. Algorithms HybridSum [16] or
OnlineExact [17] are preferred for large vectors. The performance of both algo-
rithms is almost the same and the choice depends on the execution environment.

The idea of algorithms HybridSum and OnlineExact is to add elements
that share a same exponent to a dedicated accumulator — in practice one or
two floating-point numbers respectively. Therefore, the 2n-vector is replaced by
a smaller accumulator vector. The result and the error calculated with TwoProd
can be directly accumulated in accordance with their exponents. Finally we apply
iFastSum [16] algorithm on the accumulator vector to compute the correctly
rounded dot product.

Euclidean Norm The euclidean norm of a vector p is defined as
√∑

p2i . The
sum

∑
p2i can be accurately rounded using the previous dot product. Finally,

we apply a square root to return a faithfully rounded euclidean norm [7]. This
algorithm does not round correctly according to the IEEE-754 standard. We
recall that a faithfully rounded value is one of the two floating-point numbers
that enclose the exact result. Nevertheless we mention here that this computation
is reproducible, thanks to IEEE-754 standard.
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2.2 Sequential Algorithm for the Level 2 BLAS

We consider the matrix-vector multiplication problem defined in the BLAS as
y = αA · x + βy. In the following, we denote yi = αa(i) · x + βyi, where a(i) is
the ith row of matrix A. Algorithm 1 details the following process.
(1) The first step is to transform the dot product a(i) · x into a sum of non-
overlapping floating-point numbers. This error free transform the dot product
uses a minimum extra storage: the transform result is stored in one array of max-
imum size 40 (the range of floating-point numbers divided by the mantissa size).
This process is done in different ways depending on the vector size. For small
vectors we use TwoProd to create a 2n-vector. A distillation algorithm ?? is then
used to reduce the vector size. For large ones we do not create the 2n-vector. The
result and the error of TwoProd are directly accumulated in accordance to their
exponent as requested by HybridSum or OnlineExact. After the dot product
have been error free transformed to a smaller vector, the same distillation pro-
cess is applied. (2) The second step evaluates multiplications by the scalers α
and β using TwoProd. Note that until now data have been transformed with no
error. (3) Finally we apply a summation algorithm on the results of the previous
step to get a correctly rounded result of yi = αa(i) · x+ βyi.
The same process is repeated for each row of the matrix A. Blocking is not used
in our algorithm. For small datasets that hold in L1 cache blocking does not im-
prove performance. For larger datasets algorithms HybridSum or OnlineExact
are used. The accumulators (2048 and 4096 floating-point numbers respectively)
need to be stored in memory for each dot product. If we use blocks, the ac-
cumulator memory can not be freed until one row of blocks is processed. This
would increase the memory extra-cost and prevents the efficient use of cache
when blocking.

3 Parallel RARE BLAS

This section presents our parallel reproducible version of Level 1 and 2 BLAS.

3.1 Parallel Level 1 BLAS

Sum of Absolute Values The natural parallel version of algorithm SumK
introduced in [15] is used for parallel asum. Two stages are required. (1) The
first one consists in applying the sequential algorithm SumK on local data. But
the final error compensation is not performed. Therefore, we end with K floating
point numbers per thread. (2) The second stage gathers all these floating point
numbers in a single vector. Afterwards the master thread applies a sequential
SumK on this vector.

Dot Product and Euclidean Norm Fig. 1 illustrates our correctly rounded
dot product algorithm. Note that for step 1, the two entry vectors of the dot
product are equally split between the threads. We use the same transformation
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Data: A : m× n-matrix; x : n-vector; y : m-vector; α, β :double precision float;
Result: the input vector y updated as y = αA · x+ βy.
for row in 1 : m do

currentline = A[row, 1 : n];
if currentrow and x hold in cache then

declare 2n-vector C;
for column in 1 : n do

(result, error) = TwoProd(currentrow[column], x[column]);
C[column] = result; C[n+ column] = error;

end

else
declare the accumulator vector C;
for column in 1 : n do

(result, error) = TwoProd(currentline[column], x[column]);
accumulate result and error to corresponding accumulator in C;

end

end
declare a vector distil;
distil = distillationProcess(C);
declare a vector finalTransformation;
for i in 1 : size do

(result, error) = TwoProd(distil[i], α);
finalTransformation[i] = result;
finalTransformation[size+ i] = error;

end
(result, error) = TwoProd(y[row], β);
finalTransformation[size× 2 + 1] = result;
finalTransformation[size× 2 + 2] = error;
return iFastSum(finalTransformation);

end

Algorithm 1: Correctly rounded matrix-vector multiplication

as the one presented in Section 2.2 to error free transform the local dot product.
The accumulation of elements with the same exponent is only done for large
vectors. In this case the size of vector C ′ is either 2048 if HybridSum transfor-
mation is used, or 4096 for OnlineExact. For small vectors we create a 2n-vector
using only TwoProd. Distillation in step 2 mainly aims at reducing the commu-
nication cost. Since all done transformations to compute C are error free, the
final call to iFastSum in step 3 returns the correctly rounded result for the dot
product.

Euclidean norm is faithfully rounded as explained for the sequential case.
Even if we do not calculate a correctly rounded result for euclidean norm, it is
guaranteed to be reproducible because it depends on a reproducible correctly
rounded dot product.
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Fig. 1: Parallel Algorithm for Correctly Rounded Dot Product

3.2 Parallel Level 2 BLAS

For matrix-vector multiplication, several algorithms are available according to
the matrix decomposition. The three possible ones are : row layout, column
layout and block decomposition. We opt for row layout decomposition, because
the algorithms we use are more efficient when working on large vectors. This
choice also avoids the additional cost of reduction.
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Fig. 2: Parallel Algorithm for Correctly Rounded Matrix-Vector Multiplication

We show in Figure 2 how our parallel matrix-vector multiplication is per-
formed. The vector x must be attainable for all threads. On the other side the
matrix A and the vector y are split into p parts where p is the number of threads.
Each thread handles the panel A(i) of A and the sub-vector y(i) of y. y(i) is up-
dated with αA(i) · x+ βy(i) as described in section 2.2.
Note that a classical parallel algorithm which uses this decomposition does not
suffer from reproducibility problem. Although block algorithm should be more
efficient but suffers from reproducibility problem.
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4 Test and Results

In this section, we illustrate the efficiency of our proposed solution to repro-
ducible level 1 and level 2 BLAS.

4.1 Experimental framework

We make performance tests on three frameworks significant of today’s practice
of floating-point computations. These frameworks are detailed in Table 1.

A Processor dual Xeon E5-2650 v2 16 cores (8 per socket), No hyper-threading.
L1/L2 = 32/256 KB per core. L3 = shared 20 MB per socket.

Bandwidth 59,7 GB/s.
Compiler Intel ICC 16.0.0.
Options -O3 -xHost -fp-model double -fp-model strict -funroll-all-loops.
Libraries Intel OpenMP 5. Intel MKL 11.3.

B Processor Intel Xeon Phi 7120 accelerator, 60 cores, 4 threads per core.
L1/L2 = 32/512 KB per core.

Bandwidth 352 GB/s.
Compiler Intel ICC 16.0.0.
Options -O3 -mmic -fp-model double -fp-model strict -funroll-all-loops.
Libraries Intel OpenMP 5. Intel MKL 11.3.

C Processor 4212 Xeon E5-2690 v3 (12 cores per socket), No hyper-threading.
L1/L2 = 32/256 KB per core. L3 = shared 30 MB per socket.

Bandwidth 68 GB/s.
Compiler Intel ICC 15.0.0.
Options -O3 -xHost -fp-model double -fp-model strict -funroll-all-loops.
Libraries Intel OpenMP 5. Intel MKL 11.2. OpenMPI 1.8.

Table 1: Experimental frameworks

We test the efficiency of the sequential and the shared memory parallel im-
plementation on platform A. Platform B illustrates the many core accelerator
use. Finally the scalability of our approach on large supercomputers is exhibited
on platform C (Occigen supercomputer). Unfortunately due to a limited access
time to this latter we are only able to present results for dot product. Data for
dot product are generated as in [12]. The same idea is used to generate condition
dependant data for matrix-vector multiplication (multiple condition dependant
dot products with a shared vector).

4.2 Implementation and Performance Results

We compare the performance results to the Intel MKL library which is highly
optimized but neither accurately rounded nor reproducible.
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Sequential Performance Performance tests for the sequential case are done
on platform A. Results for dot, asum and nrm2 are presented in [1]. Accurately
rounded versions have respectively 5×, 2× and 9× extra-cost.

In Figure 3a, we compare our correctly rounded matrix-vector multiplication
to the classical one provided by MKL. Our algorithm is not compared to any
reproducible solution. Indeed MKL matrix-vector multiplication does not suf-
fer from reproducibility problem. Rgemv computes a correctly rounded matrix-
vector multiplication using iFastSum for small matrices and HybridSum for
large ones, this latter being slightly more efficient than On both platforms A
and B. In the sequential case Rgemv costs about 8 times more compared to
MKLGemv.
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Fig. 3: Extra-cost of correctly rounded Matrix vector multiplication (Cond =
108)

Shared Memory Parallel Performance Tests for shared memory parallel
systems have also been done on platform A, where 16 cores are used with no
hyper-threading. We use OpenMP to implement our parallel algorithms. As for
sequential implementation, results for dot, asum and nrm2 are presented in [1].
The extra-cost of accurately rounded versions is respectively 1×, 1× and 2×.

For the matrix-vector multiplication, correctly rounded algorithm cost about
twice compared to classical algorithms. MKLGemv would use blocking algo-
rithms to benefit from a better memory bandwidth use. This approach can re-
duce memory access operations to about half compared to algorithms that do
not use blocking [9]. Since our algorithms do not benefit from blocking, they per-
form twice more memory access. This justifies the gap in performance between
Rgemv and MKLGemv even with enough CPU power.
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Xeon Phi Performance There is not much difference between implemen-
tation for Xeon Phi and previous CPU ones. Thread level parallelism is im-
plemented using OpenMP, and intrinsics are used to benefit from extensions
of the instruction set available on Xeon Phi. In our scope, the main architec-
tural difference comes from the larger memory bandwidth provided by the Xeon
Phi. Therefore, the classical implementations that do not require huge CPU
power become less memory bounded. A FMA (Fused Multiply and Add) opera-
tion is also available. Therefore TwoProd is replaced by 2MultFMA [10] which
only requires two FMAs to compute the product and its error, and so improves
performance. We also include the recent reproducible and efficient algorithm
OneReduction [6]. This latter originally applies to sum, but we derive and test
a reproducible versions using it for dot, asum and nrm2. These versions are
denoted OneReductionDot, OneReductionAsum and OneReductionNrm2.
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Fig. 4: Extra-cost of Xeon Phi implementation compared to classical algorithms
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Fig. 4a shows that for sum of absolute values, both reproducible and cor-
rectly rounded solutions cost about twice compared to the classical one. For dot
product, euclidean norm and matrix-vector multiplication respectively shown in
Figures 4b, 4b and 4d, the gap between the accurately rounded and the classical
implementations is larger than for CPU. We note a 4× ratio for dot product, and
a 6× times one for both euclidean norm and matrix-vector multiplication. This
worse ratio is due to (1) larger memory bandwidth, so classical implementations
become less memory bounded, (2) algorithm HybridSum suffer from operations
that can not be vectorized, which breaks down performance on an accelerator.

Distributed Memory Parallel Performance Finally we present perfor-
mance on distributed memory systems. Only dot product tests have been run
on the Occigen supercomputer. In this case we have two levels of parallelism:
OpenMP is used for thread level parallelism on a single socket, and OpenMPI
library for socket communication. The algorithm scalability is tested on a single
data set, with input vectors of length 107, and condition number is 1032. We
also test the two algorithms ReprodDot and FastReprodDot, that we derived
from ReprodSum and FastReprodSum respectively. They illustrate the effect
of reduction and memory bandwidth on performance.

Fig. 5a shows scalability on the single socket configuration. It is not a surprise
that MKLDot does not scale since it is quickly limited by the memory band-
width. HybridSumDot, OnlineExactDot and OneReductionDot scale very well
up to exhibit no extra-cost compared to optimized MKLDot. This happens
since we have enough CPU power and a limit on the memory bandwidth. On
the other hand algorithms ReprodDot and FastReprodDot cost twice compared
to MKLDot in the best case. Indeed those algorithms run twice through the
vector, and make twice more memory access operations than other algorithms.

Performance for the multi socket configuration is presented in Figures 5b
and 5c. In Figure 5b we show the scalability of all tested algorithms, And
Figure 5c presents the same data, but normalized compared to ClassicDot.
Note that X-axis shows the number of sockets, and that all available 12 cores
on each socket are used. Algorithms HybridSumDot, OnlineExactDot and
OneReductionDot are almost as efficient as ClassicDot up to used sockets.
FastReprodDot and ReprodDot suffer from communication extra-cost at this
level, both algorithms rely on two communications. This degrades dramatically
their performance on this kind of large systems where communication cost is
critical.
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Fig. 5: Extra-cost of distributed memory parallel implementation compared to
classical algorithms

5 Conclusion and Future Work

We have presented algorithms that compute reproducible and accurately rounded
results for BLAS. Level 1 and level 2 subroutines have been addressed in this
paper. Implementations of these algorithms have been tested on three platforms
significant of the floating-point computations practice. Our proposed solutions
aim at ensuring reproducibility and best precision. It shows pleasant perfor-
mance on CPU based parallel environments. Over-cost on CPU when all avail-
able cores are used is at worst twice. On the other hand, performance on Xeon
Phi accelerator is lagging behind. The over-cost is between 4 times and 6 times
more compared to classical implementations. Although, our algorithms remain
efficient enough to be used for validation or debugging programs, and also for
applications that can sacrifice performance to increase the accuracy and the
reproducibility of their results.
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