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Reproducible, Accurately Rounded and Efficient BLAS

Numerical reproducibility failures rise in parallel computation because floating-point summation is non-associative. Massively parallel and optimized executions dynamically modify the floating-point operation order. Hence, numerical results may change from one run to another. We propose to ensure reproducibility by extending as far as possible the IEEE-754 correct rounding property to larger operation sequences. We introduce our RARE-BLAS (Reproducible, Accurately Rounded and Efficient BLAS) that benefits from recent accurate and efficient summation algorithms. Solutions for level 1 (asum, dot and nrm2) and level 2 (gemv) routines are presented. Their performance is studied compared to the Intel MKL library and other existing reproducible algorithms. For both shared and distributed memory parallel systems, we exhibit an extra-cost of 2× in the worst case scenario, which is satisfying for a wide range of applications. For Intel Xeon Phi accelerator a larger extra-cost (4× to 6×) is observed, which is still helpful at least for debugging and validation steps.

Introduction and Background

The increasing power of supercomputers leads to a higher amount of floatingpoint operations to be performed in parallel. The IEEE-754 [START_REF]Standard for Floating-Point Arithmetic[END_REF] standard defines the representation of floating-point numbers and requires the addition operation to be correctly rounded. However because of errors generated by every addition, the accumulation of more than two floating-point numbers is non-associative. The combination of the non-deterministic behavior in parallel programs and the non-associativity of floating-point accumulation yields non-reproducible numerical results.

Numerical reproducibility is important for debugging and validating programs. Some solutions have been given in parallel programming libraries. Static data scheduling and deterministic reduction ensure the numerical reproducibility of the library OpenMP. Nevertheless the number of threads has to be set for all runs [START_REF] Todd | Run-to-Run Numerical Reproducibility with the Intel Math Kernel Library and Intel Composer XE[END_REF]. Intel MKL library (starting with 11.0 release) introduces CNR [START_REF] Todd | Run-to-Run Numerical Reproducibility with the Intel Math Kernel Library and Intel Composer XE[END_REF] firstname.lastname@univ-perp.fr (Conditional Numerical Reproducibility). This feature limits the use of instruction set extensions to ensure numerical reproducibility between different architectures. Unfortunately this decreases significantly the performance especially on recent architectures, and requires the number of threads to remain the same from run to run to ensure reproducible results.

First algorithmic solutions are proposed in [START_REF] Demmel | Fast reproducible floating-point summation[END_REF]. Algorithms ReprodSum and F astReprodSum ensure numerical reproducibility independently of the operation order. Therefore numerical results do not depend anymore on hardware configuration. The performance of these latter is improved with the algorithm OneReduction [START_REF] Demmel | [END_REF] by relying on indexed floating-point numbers [START_REF] Demmel | Toward hardware support for Reproducible Floating-Point Computation[END_REF] and requiring a single reduction operation to reduce the communication cost on distributed memory parallel platforms. However, those solutions do not improve accuracy. The computed result even if it is reproducible, it is still exposed to accuracy problems. Especially when we address an ill-conditioned problem.

Another way to guarantee reproducibility is to compute correctly rounded results. Recent works [START_REF] Collange | Reproducible and Accurate Matrix Multiplication in ExBLAS for High-Performance Computing[END_REF][START_REF] Chohra | Implementation and Efficiency of Reproducible Level 1 BLAS[END_REF][START_REF] Neal | Fast exact summation using small and large superaccumulators[END_REF] show that a accurately rounded floating-point summation can be calculated with very little or even no extra-cost. With accurately rounded we mean that the result is either correctly rounded (the nearest floating-point number to the exact result) or faithfully rounded (one of the two floating-point numbers that surround the exact result). We have analyzed in [START_REF] Chohra | Implementation and Efficiency of Reproducible Level 1 BLAS[END_REF] different summation algorithms, and identified those suited for an efficient parallel implementation on recent hardware. Parallel algorithms for correctly rounded dot and asum and for a faithfully rounded nrm2 have been designed relying on the most efficient summation algorithms. Their implementation exhibits interesting performance with 2× extra-cost in the worst case scenario on shared memory parallel systems [START_REF] Chohra | Implementation and Efficiency of Reproducible Level 1 BLAS[END_REF].

In this paper we extend our approach to an other type of parallel platforms and to higher BLAS level. We consider the matrix-vector multiplication from the level 2 BLAS. We complete our shared memory parallel implementation with solution for a distributed memory model, and confirm its scalability with tests on the Occigen supercomputer1 . We also present tests on the Intel Xeon Phi accelerator to illustrate the portability and appreciate the efficiency of our implementation on a many-core accelerator. The efficiency of our correctly rounded dot product scales well on distributed memory parallel systems. Compared to optimized but not reproducible implementations, it has no substantial extra-cost up to about 1600 threads (128 sockets, 12 cores). On Intel Xeon Phi accelerator the extra-cost increases up to 6× mainly because our solution benefits less from the high memory bandwidth of this architecture compared to MKL's implementation. Nevertheless they still could be useful for validation, debugging or for applications that require precision or reproducible results.

This paper is organized as follows. Section 2 presents our sequential algorithms for reproducible and accurate BLAS. Parallel versions are presented in Section 3. Section 4 is devoted to implementation and detailed results, and Section 5 includes some conclusions and the description of future work.

Sequential RARE BLAS

We present the algorithms for accurately rounded BLAS. This section starts briefly recalling our sequential level 1 BLAS subroutines (dot, asum and nrm2) already introduced in [START_REF] Chohra | Implementation and Efficiency of Reproducible Level 1 BLAS[END_REF]. Then the accurately rounded matrix-vector multiplication is introduced.

Sequential Algorithms for the Level 1 BLAS

In this section we focus on the sum of absolute values (asum), the dot product (dot), and the euclidean norm (nrm2).

Sum of Absolute Values

The condition number of a sum is defined as cond( p i ) = |p i |/ p i . For the sum of absolute values the condition number is known to equal 1. This justifies the use of algorithm SumK [START_REF] Ogita | Accurate sum and dot product[END_REF].

Picking carefully the value of K ensures that computing asum(p) as SumK(p) is faithfully rounded. Such appropriate value of K only depends on the vector size. We have K = 2 for n ≤ 2 25 , and K = 3 for n ≤ 2 34 . For n ≤ 2 39 which represents 4T B of data, K = 4 is sufficient [START_REF] Chohra | Implementation and Efficiency of Reproducible Level 1 BLAS[END_REF]. Dot Product Using Dekker's T woP rod [START_REF] Dekker | A floating-point technique for extending the available precision[END_REF], the dot product of two n-vectors can be transformed without error to a sum of a 2n-vector. The sum of the transformed vector is correctly rounded using a mixed solution. For small vectors that fit in high level cache and that can be reused with no memory extra-cost, the algorithm F astAccSum [START_REF] Rump | Ultimately fast accurate summation[END_REF] is used, the algorithms HybridSum [START_REF] Zhu | Correct rounding and hybrid approach to exact floatingpoint summation[END_REF] or OnlineExact [START_REF] Zhu | Algorithm 908: Online exact summation of floating-point streams[END_REF] are preferred for large vectors (both algorithms exhibit barely the same performance). The idea of these algorithms is to add elements that share the same exponent to a dedicated accumulator -in practice one or two floatingpoint numbers respectively. Therefore, the 2n-vector is error-free replaced by a smaller accumulator vector (of size 4096 or 2048 respectively). Here the result and the error calculated with T woP rod are directly accumulated. Finally we apply the distillation algorithm iF astSum [START_REF] Zhu | Correct rounding and hybrid approach to exact floatingpoint summation[END_REF] to the accumulator vector to compute the correctly rounded dot product.

Euclidean Norm

The euclidean norm of a vector p is defined as ( p 2 i ) 1/2 . The sum p 2 i can be correctly rounded using the previous dot product. Finally, we apply a square root that returns a faithfully rounded euclidean norm [START_REF] Graillat | Efficient calculations of faithfully rounded l2-norms of n-vectors[END_REF]. numbers that enclose the exact result). This does not allow us to compute a correctly rounded norm-2 but this faithful rounding is reproducible.

Sequential Algorithms for the Level 2 BLAS

Matrix-vector multiplication is defined in the BLAS as y = αA • x + βy. In the following, we denote y i = αa (i) • x + βy i , where a (i) is the i th row of matrix A.

Algorithm 1 details our proposed reproducible computation: (1) The first step transforms the dot product a (i) • x into a sum of non-overlapping floatingpoint numbers. This error-free transform uses a minimum extra storage: the transformed result is stored in one array of maximum size 40 (the floating-point number range divided by the mantissa size). This process is done in different ways depending on the vector size. For small vectors we use T woP rod to create a 2n-vector. The distillation algorithm iFastSum [START_REF] Zhu | Correct rounding and hybrid approach to exact floatingpoint summation[END_REF] is then used to reduce the vector size. For large ones we do not create the 2n-vector. The result and the error of T woP rod are directly accumulated in accordance to their exponent as requested by HybridSum or OnlineExact. After the dot product has been errorfree transformed to a smaller vector, the same distillation process is applied. Let us remark that this step does not compute the dot product a (i) •x but transforms it without error in a small floating point vector. [START_REF] Collange | Reproducible and Accurate Matrix Multiplication in ExBLAS for High-Performance Computing[END_REF] The second step evaluates multiplications by the scalars α and β using T woP rod. Again data is transformed with no error. (3) Finally we distillate the results of the previous steps to get a correctly rounded result of y i = αa (i) • x + βy i . The same process is repeated for each row of the matrix A.

Parallel RARE BLAS

This section presents our parallel reproducible version of Level 1 and 2 BLAS.

Parallel Algorithms for the Level 1 BLAS

Sum of Absolute Values

The natural parallel version of algorithm SumK introduced in [START_REF] Yamanaka | A parallel algorithm for accurate dot product[END_REF] is used for parallel asum. Two stages are required. [START_REF] Chohra | Implementation and Efficiency of Reproducible Level 1 BLAS[END_REF] The first one consists in applying the sequential algorithm SumK on local data without performing the final error compensation. So we end with K floating point numbers per thread. [START_REF] Collange | Reproducible and Accurate Matrix Multiplication in ExBLAS for High-Performance Computing[END_REF] The second stage gathers all these numbers in a single vector. Afterwards the master thread applies a sequential SumK on this vector. Dot Product and Euclidean Norm Figure 1 illustrates our correctly rounded dot product. Note that for step 1, the two entry vectors of the dot product are equally split between the threads. We use the same transformation as the one presented in Section 2.2 to error-free transform the local dot product. The accumulation of elements with the same exponent is only done for large vectors. As before C vector size equals 4096 or 2048. For small vectors we create a 2n-vector using only T woP rod. Distillation in step 2 mainly aims at reducing the communication cost of the union that yields the vector C. Since all transformations up to C are error-free, the final call to iF astSum in step 3 returns the correctly rounded result for the dot product.

The euclidean norm is faithfully rounded as explained for the sequential case. Even if we do not calculate a correctly rounded result for euclidean norm, it is guaranteed to be reproducible because it only depends on a reproducible dot product. For matrix-vector multiplication, several algorithms are available according to the matrix decomposition. The three possible ones are: row layout, column layout and block decomposition. We opt for row layout decomposition because the algorithms we use are more efficient when working on large vectors. This choice also avoids the additional cost of reduction.

Figure 2 shows how our parallel matrix-vector multiplication is performed. The vector x must be attainable for all threads. On the other side the matrix A and the vector y are split into p parts where p is the number of threads. Each Step 1
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Fig. 1: Parallel algorithm for correctly rounded dot product
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• = -----Fig. 2: Parallel algorithm for correctly rounded matrix-vector multiplication thread handles the panel A (i) of A and the sub-vector y (i) of y. y (i) is updated with αA (i) • x + βy (i) as described in Section 2.2.

Test and Results

In this section, we illustrate the performance and accuracy results of our proposed solution to accurate and reproducible level 1 and level 2 BLAS.

Experimental framework

We consider the three frameworks described in Table 1. They are significant of today's practise of floating-point computing.

We test the efficiency of the sequential and the shared memory parallel implementation on platform A. Platform B illustrates the many core accelerator use. The scalability of our approach on large supercomputers is exhibited on platform C (Occigen supercomputer). Only the dot product has been tested on [START_REF] Ogita | Accurate sum and dot product[END_REF]. The same idea is used to generate condition dependent data for matrix-vector multiplication (multiple dot products with a shared vector).

Implementation and Performance Results

We compare the performance results of our implementation to the highly optimized Intel MKL library, and to implementations based on algorithm OneReduction used on the library ReproBLAS [START_REF] Nguyen | ReproBLAS: Reproducible BLAS[END_REF]. We have implemented an OpenMP parallel version of this algorithm since ReproBLAS offers only an MPI parallel version. We derive reproducible version of dot, nrm2, asum and gemv by replacing all non-associative accumulations by the algorithm OneReduction [START_REF] Demmel | [END_REF]. These versions are denoted OneReductionDot, OneReductionAsum, OneReductionN rm2 and OneReductionGemv.

CNR feature [START_REF] Todd | Run-to-Run Numerical Reproducibility with the Intel Math Kernel Library and Intel Composer XE[END_REF] is not considered because it does not guarantee reproducibility between sequential and parallel runs. Running time is measured in cycles using the RDTSC instruction. In the parallel case, RDTSC calls have been made out of parallel region before and after function calls. We take the minimum running time over 8 executions for gemv and 16 executions for other routines to improve result consistency. We note up to 3% difference in number of cycles between different runs. This difference is due to turbo boost and operating system interruption and it is known that performance results can not be exactly reproduced.

Sequential Performance tests are run on platform A. Results for dot, asum and nrm2 are presented in [START_REF] Chohra | Implementation and Efficiency of Reproducible Level 1 BLAS[END_REF]. These accurately rounded versions exhibit respectively 5×, 2× and 9× extra-cost.

Our Rgemv matrix-vector multiplication computes a correctly rounded result using iF astSum for small matrices and HybridSum for large ones, this latter being slightly more efficient than OnlineExact on both platforms A and B. As shown in Figure 3a, Rgemv costs 8 times more compared to MKL in this sequential case. Shared Memory Parallel Performance tests have also been done on platform A where 16 cores are used with no hyper-threading. We use OpenMP to implement our parallel algorithms. As for the sequential case, results for dot, asum and nrm2 are presented in [START_REF] Chohra | Implementation and Efficiency of Reproducible Level 1 BLAS[END_REF]. The dot and asum do not exhibit any extra-cost compared to classic versions, and nrm2 has 2× extra-cost. For the matrix-vector multiplication, the correctly rounded algorithm costs about twice more compared to MKL as shown in Figure 3b. As in the sequential case, M KLGemv certainly use cache blocking and so benefits from a better memory bandwidth use. Nevertheless our parallel implementation scales well and its extra-cost now reaches the 2× ratio.

Xeon Phi Performance. There is not much difference between implementation for Xeon Phi and previous CPU ones. Thread level parallelism is implemented using OpenMP and intrinsic functions are used to benefit from the available instruction set extensions. A FMA (Fused Multiply and Add) is also available. Therefore T woP rod is replaced by 2M ultF M A [START_REF] Muller | Handbook of Floating-Point Arithmetic[END_REF] which only requires two FMAs to compute the product and its error, and so improves performance. Fig. 4: Extra-cost of Xeon Phi implementation compared to classical algorithms Figure 4 exhibits respective ratios of 2×, 4×, 6× and 6× for asum, dot product, euclidean norm and matrix-vector multiplication. So the extra-cost of accurately rounded implementations is larger for this accelerator than for the CPU. Indeed MKL based implementations of these memory bounded routines benefit from both higher memory bandwidth and large vector capabilities (AVX-512) provided by the Xeon Phi more than our accurate ones. Note that on our correctly rounded dot product algorithms there is no efficient way to vectorize the accumulation to the elements of vector C since the access to those elements is not contiguous (see Algorithm 1 and Figure 1).

Distributed Memory Parallel Performance Finally we present performance on distributed memory systems. Only dot product tests have been run on the Occigen supercomputer. In this case we have two levels of parallelism: OpenMP is used for thread level parallelism on a single socket, and OpenMPI library for socket communication. The algorithm scalability is tested on a single data set with input vectors of length 10 7 and condition number is 10 32 .

Figure 5a shows the scalability for a single socket configuration. It is not a surprise that M KLDot does not scale so far since it is quickly limited by the memory bandwidth. OneReductionDot and Rdot scale well up to exhibit no extra-cost compared to optimized M KLDot. Again such scaling occurs until being limited by the memory bandwidth. Performance for the multi socket configuration is presented in Figure 5b. X-axis shows the number of sockets where all the 12 available cores are used. Y-axis shows execution time normalized to ClassicDot (socket local M KLDots followed by a MPI sum reduction).

Algorithms Rdot and OneReductionDot stay almost as efficient as Classic-Dot. All algorithms exhibit similar performance because they rely all on a single communication.

Accuracy Results

We present here accuracy results for dot and gemv variants. In both Figures 6a and6b, we show the relative error according to the condition number of the problem. Relative errors are calculated according to MPFR library [START_REF]The MPFR library[END_REF] results. The two subroutines nrm2 and asum are excluded from this test because condition number is fixed for both of them. The condition number for the dot product is defined as cond

( X i •Y i ) = 2• |X i |•|Y i |/ X i •Y i .
In almost all cases, solutions based on algorithm OneReduction besides being reproducible are more accurate than MKL. However, for ill-conditioned problems both MKL and OneReduction derived implementation give worthless results. On the other side RARE-BLAS subroutines ensure that results are always correctly rounded independently from the condition number. 

Conclusion and Future Work

We have presented algorithms that compute reproducible and accurately rounded results for BLAS. Level 1 and 2 subroutines have been addressed in this paper. Implementations of these algorithms have been tested on three platforms significant of the floating-point computing practice. While existing solutions tackle only the reproducibility problem, our proposed solutions aim at ensuring both reproducibility and the best precision. We compare them to optimized Intel MKL implementations. We measure interesting performance on CPU based parallel environments. Extra-cost on CPU when all available cores are used is at worst twice. Nevertheless performance on Xeon Phi accelerator is lagging behind: extra-cost is between 4 and 6 times more. Nevertheless, our algorithms remain efficient enough to be used for validation or debugging programs, and also for parallel applications that can sacrifice performance to increase the accuracy and the reproducibility of their results. Our plan for future development includes achieving reproducibility and precision for other BLAS subroutines. We are currently designing an accurate and reproducible version of triangular solver. Other Level 3 BLAS routines will be addressed even if the performance gap with optimized libraries will enforce the previously identified restriction of the application scope.

  Data: A : m × n-matrix; x : n-vector; y : m-vector; α, β :double precision float; Result: the input vector y updated as y = αA • x + βy; for row in 1 : m do currentrow = A[row, 1 : n]; if currentrow and x fit in cache then declare 2n-vector C; for column in 1 : n do (result, error) = T woP rod(currentrow[column], x[column]); C[column] = result; C[n + column] = error; end else declare the accumulator vector C; for column in 1 : n do (result, error) = T woP rod(currentrow[column], x[column]); accumulate result and error to corresponding accumulator in C; end end declare a vector distil; distil = distillationP rocess(C);declare a vector f inalT ransf ormation; size = sizeOf(distil); /* Step 2 : multiply by the scalars α and β */ for i in 1 : size do (result, error) = T woP rod(distil[i], α); f inalT ransf ormation[i] = result; f inalT ransf ormation[size + i] = error; end (result, error) = T woP rod(y[row], β); f inalT ransf ormation[size × 2 + 1] = result; f inalT ransf ormation[size × 2 + 2] = error; /* Step 3 : use iFastSum to calculate the correctly rounded result */ y[row] = iF astSum(f inalT ransf ormation); end Algorithm 1: Correctly rounded matrix-vector multiplication 3.2 Parallel Algorithms for the Level 2 BLAS
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