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Relaxed Hensel lifting of triangular sets
Extended abstract

Abstract

In this paper, we present a new lifting algorithm for triangular sets over power
series. Our contribution is to give, for any power series triangular set, a shifted
algorithm of which the triangular set is a fixed point. Then we can apply the
relaxed recursive power series framework and deduce a relaxed lifting algorithm
for this triangular set.

We compare our algorithm to the existing techniques. Our algorithm always
improves the asymptotic cost in the precision for the special case of univariate
representations.

Our goal in this paper is to extend a growing body of work on relaxed algorithms

to the context of lifting techniques for univariate representations and triangular sets .
It is well-known that, under some regularity conditions, techniques such as

Newton iteration can be used to compute a power series root of an equation such
as f(t, x(t)) = 0, with f in k[t, X ], or a p-adic root of an equation of the form
f(x)= 0 with f in Z[X ].

Relaxed methods, introduced by van der Hoeven [Hoe02, Hoe11], offer an alter-
native to Newton iteration. The case of computing one power series root, or one p-
adic root, of a system of polynomial equations was worked out in [BL12]; for this
problem, the relaxed algorithm was seen to behave better than Newton iteration in
some cases, for instance for multivariate systems with a large number of equations.

In this paper, we go beyond the case of lifting a single root of a multivariate
system: we deal with all roots at once, introducing relaxed algorithms that deal with
objects such as univariate and triangular representations.

Example 1. We consider the polynomial system f =(f1, f2) in Z[X1,X2] with

f1 7 33X2
3+ 14699X2

2+ 276148X1+ 6761112X2− 11842820

f2 7 66X1X2+X2
2− 94X1− 75X2− 22.

Let m = (7), let k = Z/7Z and let T 1 be the triangular set of k[X1, X2], that is a
lexicographical Gröbner basis for X1<X2, given by

T 17 (X1
2+5X1, X2

2+3X1X2 +2X2+4X1+6).

We lift the triangular set T 1 defined modulo 7 to triangular sets t defined modulo
72, 73,	 . At the first step, we have

T 2=(X1
2+(5+5 · 7)X1+7,X2

2+(3+2 · 7)X1X2+(2+3 ·7)X2+4X1+(6+3 ·7))

in (Z7/7
2
Z7)[X1,X2]. We iterate again and find

T 3 = (X1
2+(5+5 · 7+6 · 72)X1+ (7+ 72),

X2
2 + (3 + 2 · 7 + 72) X1 X2 + (2 + 3 · 7 + 5 · 72) X2 + (4 + 5 · 72) X1 +

(6+ 3 · 7+ 6 · 72))
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in (Z7/7
3
Z7)[X1,X2]. The precision is enough to recover the triangular set

T 7 (X1
2−9X1+ 56, X2

2+ 66X1X2− 75X2− 94X1− 22)∈Z[X1,X2].

For simplicity, we deal only with lifting power series (so our equations will involve
a parameter t). Similar techniques apply as well to p-adic lifting, but the simpler
case of power series is useful in itself (see below) and shows all useful ideas. Consider
a system of polynomial equations f =(f1,	 , fn)∈k[t][X1,	 ,Xn], where k is a field.
Denote by I the ideal generated by (f1,	 , fn) in k(t)[X1,	 , Xn]. In what follows,
we make the following assumptions, denoted (H):

• the algebraic set V =V (I)⊂ k(t)n has dimension zero;

• the Jacobian determinant of (f1,	 , fn) vanishes nowhere on V .

Equivalently, one may consider the curve defined by f in kn+1; the zero-dimensional
set V describes its generic points over k(t).

Let d be cardinality of V ; due to our non-vanishing assumption on the Jacobian
of f , the extension k(t) → A = k(t)[X1, 	 , Xn]/I is a product of separable field
extensions. As a result, A has dimension d over k(t).

In order to describe V , we will consider two data structures, which we briefly
describe now.

An element P of A= k(t)[X1,	 ,Xn]/I will be called primitive if the K-algebra
k(t)[P ]⊂A spanned by P in A is equal to A itself. If Λ is a primitive linear form
in A, a univariate representation of A consists of polynomials P=(Q,S1,	 , Sn) in
k(t)[Z], where Z is a new variable, with deg (Si)<deg (Q) for all i and such that we
have a K-algebra isomorphism

A= k(t)[X1,	 ,Xn]/I → k(t)[Z]/(Q)
X1,	 , Xn � S1,	 , Sn

Λ � Z.

In particular, Q has degree d in Z; we will say that P has degree d.
Such representations, or slight modifications thereof (using for instance a rational

form for the Si’s) have been used for decades in computer algebra, under the names
of Shape Lemma, Rational Univariate Representation, Geometric Resolution, etc
[GM89, GH91, GHH+97, Rou99, GLS01, HMW01].

On the other side, one finds triangular representations. A triangular set is a
set of n polynomials T = (T1, 	 , Tn) ⊆ k(t)[X1, 	 , Xn] such that for all i, Ti is in
k(t)[X1, 	 , Xi], monic and reduced with respect to (T1, 	 , Ti−1). This is thus a
reduced Gröbner basis for the lexicographic order X1 < 
 < Xn. The notion of
triangular set comes from [Rit66] in the context of differential algebra. Many similar
notions were introduced afterwards [Wu84, Laz91, Kal93, ALM99]; although all
these notions do not coincide in general, they are the same for zero-dimensional
ideals.

Assume that I admits a triangular family of generators T , and write di=deg (Ti,

Xi) for all i. Then, we have the equality d= d1
 dn; we will say that T has multi-
degree (d1,	 , dn).
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Both kinds of data structures have found numerous applications, and it is not our
purpose here to compare their respective merits. Univariate representations always
exist, provided the base field is large enough. On the other hand, the ideal I may
not admit a triangular family of generators: such issues are handled using triangular

decompositions of I [DMS+05]. We will not enter this discussion here, and we will
simply suppose when needed that I admits one or the other such representation.

Let us for instance suppose that I admits a univariate representation P. Let
further m=(t− t0) be a maximal ideal in k[t], with residual field k, for some t0∈ k.
We make the following assumptions, denoted by (H′)P ,t0:

• none of the denominators appearing in P vanishes modulo m; we write P 1

for the reduction of P modulo m;

• the polynomials f modm still satisfy (H);

• P 1 is a univariate representation of k[X1,	 ,Xn]/(fmodm).

Then, given P 1=P modm and f , our objective is to compute objects of the form
PN =P modmN, for higher powers of N . Note that, without loss of generality, we
could assume t0=0 (by shifting the origin in t of the input polynomials).

Similar questions can be asked for triangular representations: suppose that I
admits a triangular representation T , and that the natural analogue (H′)T ,t0 of (H

′)P
holds; we will show how to compute TN =T modmN, for high powers of N , starting
from T 1=T modm and f .

Remark that for both the univariate and the triangular case, assumption (H′)P ,t0,
resp. (H′)T ,t0, holds for all values of t0 except finitely many: this is analyzed in detail
in [Sch03a, Sch03b]; thus, these are very mild assumptions.

Let us say a few words about applications of this kind of techniques. One direct
application is naturally to solve polynomial systems that depend on a parameter t:
the techniques discussed here allow one to compute a description of V over k(t) by
computing it modulo (t− t0) (which we expect to be an easier problem) and lifting
it to a sufficient precision (and possibly applying rational reconstruction to recover
coefficients in k(t) from their power series expansion).

Such lifting techniques are also at the core of many further algorithms: for
instance, it is used in the geometric resolution algorithm [GLS01, HMW01] that
computes univariate representations. This algorithm relies on an iterative lifting
/ intersection process: the lifting part involves lifting univariate representation, as
explained in this paper, while the intersection part uses resultant computations.
On the triangular side, a similar lifting / intersection process is used in the change
of order algorithm of [DJMS08].

In order to analyze the cost of our lifting algorithms, we will need the following
notations for polynomial and power series arithmetic.

• We denote by M:N→N a function such that one can multiply polynomials
in k[t] of degree at most N in M(N) operations in k; we also ask that M

satisfies the super-linearity conditions of [GG03]. Using FFT techniques, one
can take M(N)=O(N log (N) loglog(N)).
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• We denote by R:N→N a function such that online (or equivalently, relaxed)
multiplication of power series over k can be done at precision N using R(N)
operations in k. Using the algorithm of [FS74, Hoe02], one can take R(N)=
O(M(N) log (N)).

Recall that online power series multiplication computes the product of two power
series

∑
i>0

ci t
i
7

∑
i>0

ai t
i ×

∑
i>0

bi t
i, with the constraint that for all i, the

coefficient ci of the output is written before the coefficients ai+1, ai+2, 	 or bi+1,

bi+2,	 of the inputs are read [Hen66, FS74, Hoe02].

We will further need linear algebra operations. We denote by ω the constant
such that one can multiply matrices of size n over a ring R using O(nω) operations
{+,−,×} in R. Similarly, we denote Ω the constant such that one can compute the
determinant and the adjoint matrix using O(nΩ) operations {+,−,×} in R. Using
the algorithms of [CW90, Sto10, Vas11] for the multiplication and of [Ber84, Kal92,
KV04] for the determinant and the adjoint matrix, one can take ω 6 2.38 and Ω6

2.70. The computation of the determinant and the adjoint matrix is used to compute
an unevaluated inverse of a matrix A−1 via the formula A−1=1/det (A)Adjoint(A),
i.e. the division by the determinant has yet to be performed.

The bulk of the computations will rely on modular arithmetic: we will need to
perform arithmetic operations, mostly additions / multiplications, modulo either a
univariate polynomial (in the case of univariate representations) or a whole trian-
gular set.

• In the former case, it is known that if Q∈R[Z] has degree d (for some ring
R), additions and multiplications modulo Q can be done using O(M(d)) oper-
ations in R [GG03]. When R is a field, inversion modulo Q, when possible,
can be done in time O(M(d) log (d)) [GG03].

• If T = (T1,	 , Tn) is a triangular set in R[X1,	 , Xn] with degrees d1,	 , dn,
where R is a ring, we will let MT(d1, 	 , dn) denote an upper bound on the
number of operations in R needed to perform multiplication modulo T . If R
is a field, we let IT(d1,	 , dn) denote an upper bound for the cost of inversion
modulo T (when possible).

These operations are less straightforward than in the univariate case.
Known upper bounds are MT(d1, 	 , dn) = O(4n d log (d) loglog(d)) where
d = d1
 dn and IT(d1, 	 , dn) = O(cn d log (d)3 ), for some (large) constant c
[DMSX06, DJMS08, LMS09].

We seize the occasion to state our first result. We propose an algorithm, which
modifies slightly the algorithm of [LMS09], that saves a recursive call.

Proposition 2. The multiplication modulo a triangular set T of multidegree (d1,	 ,

dn) can be done in MT(d1,	 , dn) =O(3n d log (d) loglog(d)) operations in R.

Finally, we will make the following assumption on the representation of the input
system: we assume that f is given by a straight-line program with inputs t, X1,	 ,

Xn and n outputs corresponding to f1,	 , fn, using operations in {+,−,×}. We let
L be the size of this straight-line program.
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With this notation being introduced, we can state our first result, which deals
with lifting univariate representations.

Theorem 3. Let f =(f1,	 , fn) be a polynomial system in k[t][X1,	 ,Xn] given by

a straight-line program Γ of size L. Suppose that f satisfies assumption (H) and

admits a univariate representation P with coefficients in k(t) and degree d.

Let further t0 be in k, let m=(t− t0), and suppose that assumption (H′)P ,t0 holds.

Given P 1=P modm, one can compute PN =P modmN in time

O((M(d) log (d) +nΩ
M(d))+ (LR(N)+ (n2+nL)N)M(d)).

In the running time, the first term corresponds to the inversion of the Jacobian
matrix of f modulo P 1, with coefficients in k; this allows us to initialize the lifting.
Then, to reach precision N , most of the work consists in relaxed multiplications for
power series in k[[t]] at precision N , coupled with polynomial multiplication in the
variable Z in degree d. The overall cost is quasi-linear in N .

The other known algorithm to perform this kind of task is a suitable version of
Newton iteration, introduced in [GLS01, HMW01]. To compute the same output,
it runs in time

O((M(d) log (d)+nΩ
M(d))+ (nL+nω)M(N)M(d)).

As the term nω
M(N) M(d) suggests, this algorithm requires one to do matrix

multiplications, with entries that are univariate polynomials of degree d, having
themselves power series coefficients of precision N . Our solution requires no such
matrix multiplication.

On the other hand, Newton’s iteration can use plain power series multiplication,
which is slightly faster than the online product used in our algorithm. Thus, there
exists a trade-off between the dependencies in n and N for both algorithms.

Let us next turn to the case of triangular representations. Our main result for
this problem is the following.

Theorem 4. Let f =(f1,	 , fn) be a polynomial system in k[t][X1,	 ,Xn] given by a

straight-line program Γ of size L. Suppose that f satisfies assumption (H) and admits

a triangular representation T with coefficients in k(t) and multidegree (d1,	 , dn).
Let further t0 be in k, let m=(t− t0), and suppose that assumption (H′)T ,t0 holds.

Given T 1=T modm, one can compute TN =T modmN in time

O((IT(d1,	 , dn) +nΩ
MT(d1,	 , dn)) + (nLR(N)+n2N)MT(d1,	 , dn)).

Once more, this is quasi-linear in the precision N . For comparison, an adaptation
of Newton’s iteration for triangular sets [Sch02] computes the same output in time

O((IT(d1,	 , dn) +nΩ
MT(d1,	 , dn)) + (nL+nω)M(N)MT(d1,	 , dn)).

Thus, as in the univariate case, the relaxed approach avoids matrix multiplication
with multivariate entries; the price to pay is that we have to replace classical power
series multiplication by its relaxed variant.
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A univariate representation can be seen as a particular case of a triangular one,
through the introduction of an extra unknown Z , and the equation expressing Z as
a linear form in X1,	 ,Xn. However, the result in our first theorem is not obtained
by specializing the triangular case to the univariate one; further considerations are
actually needed.

Let us now give the outline of the proofs of these two theorems. We apply the
fundamental theorem concerning relaxed recrusive power series that states that
the computation of a recursive power series y=Φ(y) at precision N takes the time
necessary to evaluate Φ at y at the same precision by a shifted algorithm [Wat89,
Hoe02, BL12]. The idea behind this theorem is simple : at the Nth step, we know
the coefficients y0,	 , yN−1 of y and we have already computed the coefficients Φ(y)i
for 06 i<N . Because a shifted algorithm for Φ reads at most the coefficients y0,	 ,

yN−1 to compute Φ(y)N, we can compute one more coefficient of Φ(y). Then we
write the new coefficient yN =Φ(y)N of the input. And we can continue the process.

Our contribution consists in finding a recursive equation of which the triangular
set we seek to lift is a fixed point. More precisely, the challenge was to find a shifted
algorithm that computes an operator Φ satisfying y=Φ(y).

The computer algebra software Mathemagix [HLM+02] provides a C++
library named Algebramix implementing the relaxed recursive power series frame-
work [Hoe02, Hoe07, BHL11, BL12]. This representation allows the computation of
recursive power series. The efficiency of this approach is partially due to the relaxed
multiplication algorithm, which gives a fast method for multiplication in this rep-
resentation. On this basis, we implemented the lifting of univariate representations
over the power series ringFp[[t]] for both our relaxed approach and Newton iteration.

Our implementation is available in the files lift_series.hpp and
lifting_fiber_relaxed.hpp in the C++ library Geomsolvex of Mathemagix.
Our relaxed lifting algorithm is connected to the implementation of the geometric
resolution algorithm available in Mathemagix, with the help of G. Lecerf.

We now give some implementation details:

• For the multiplication of polynomials of power series in Fp[[t]][Z], we first
converted them to power series of polynomials in Fp[Z][[t]]. Then, the relaxed
multiplication algorithm reduces to multiplications of finite precision power
series of polynomials, that is polynomials of polynomials in Fp[Z][t]. We
classically used a Kronecker substitution to reduce these products to multi-
plications of univariate polynomials in Fp[Z]. Univariate polynomial multipli-
cation uses FFT techniques.

• For the matrix multiplication used in Newton iteration, whose entries are
polynomials reduced modulo a univariate Q, we delayed the reductions until
after the matrix multiplication to reduce their numbers from n3 to n2.
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We report here timings of our implementation (in milliseconds), which are mea-
sured using one core of an Intel Xeon X5650 at 2.67 GHz running Linux 64 bits,
Gmp 5.0.2 [G+91] and setting p= 16411 (a 15-bit prime number).

Before considering lifting itself, we start by giving some comparison of timings
between the relaxed and classical (zealous) product in Fp[[t]][Z], depending on the
degree in Z and the precision N of power series.

Degree 32 in Z Degree 64 in Z Degree 128 in Z Degree 256 in Z

N zealous relaxed zealous relaxed zealous relaxed zealous relaxed

8 0 0 0 1 1 1 2 4
16 0 1 0 3 1 5 3 11
32 0 3 1 7 2 14 6 34
64 1 8 3 18 6 41 12 100
128 3 21 6 49 12 110 30 270
256 6 56 12 130 29 300 70 700
512 12 150 30 340 71 790 170 1800
1024 29 370 71 860 170 2000 340 4500
2048 72 920 170 2100 350 4800 750 11000

Table 1. Timings of zealous and relaxed multiplication in (Fp[[t]])[Z]

We observe that the ratio of the timings between the relaxed and zealous algo-
rithms grows as log (N), as predicted by the estimate R(N) = O(M(N) log (N))
[FS74, Hoe02].

We applied our algorithm on two families of polynomial systems of low com-
plexity of evaluation. The Katsura polynomials systems comes from a problem of
magnetism in physics [Kat90]. We have added some power series coefficients to the
original system in order to have a non trivial power series univariate representation.
The system Katsura-n has n+1 unknowns X0,	 ,Xn and n+1 equations:

for 06m<n,
∑

ℓ=−n

n

X|ℓ|X|m−ℓ|=αmXm

and X0+2
∑

ℓ=1

n
Xℓ=αn where the αi are random coefficients in Fp[[t]].

The other family of polynomial system MulLinForm-n has n unknowns and n

equations of the form

(λ1X1+
 + λnXn) (µ1X1+
 + µnXn)=α

where the λi, µi and α are random coefficients in Fp[[t]].

For both these examples, we lift a univariate representation on power series at
different precision N . We indicate with a bold font the theoretical bound for the
precision of power series required in the lifting step of the geometric resolution
algorithm.
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Katsura-3 Katsura-4 Katsura-5 Katsura-6
N zealous relaxed zealous relaxed zealous relaxed zealous relaxed

2 21 7 75 20 250 58 780 170
4 31 11 106 29 350 78 1100 220
8 49 18 170 48 550 130 1700 360
16 82 36 290 92 940 240 1900 700
32 140 74 510 200 1700 530 5200 1500
64 260 160 970 440 3300 1200 10000 3600

128 510 360 1900 1000 6600 2800 21000 8600
256 1000 820 4000 2400
512 2200 1900 8600 5500

Table 2. Timings in milliseconds of zealous/relaxed lifting of univariate representations
for Katsura-n.

MulLinForm-4 MulLinForm-5 MulLinForm-6
N zealous relaxed zealous relaxed zealous relaxed

2 44 16 160 45 520 130
4 64 23 230 63 720 180
8 96 38 340 100 1000 300
16 150 69 520 180 1700 540
32 230 140 850 380 2900 1000
64 370 180 1400 780 5200 2300

128 670 580 2600 1600 9500 4800

Table 3. Zealous/relaxed lifting timings in milliseconds of univariate representations of
MulLinForm-n.

We remark that, on these examples, relaxed algorithms always perform better
than zealous algorithms, especially when they are many variables. However, for a
given polynomials system, the gap between the two algorithms reduces as the pre-
cision gets bigger and we expect zealous algorithms to be faster when the precision
tends to infinity.
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