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Abstract

FastME provides distance algorithms to infer phylogenies. FastME is based on balanced minimum evolution, which is the
very principle of Neighbor Joining (NJ). FastME improves over NJ by performing topological moves using fast, sophisti-
cated algorithms. The first version of FastME only included Nearest Neighbor Interchange. The new 2.0 version also
includes Subtree Pruning and Regrafting, while remaining as fast as NJ and providing a number of facilities: Distance
estimation for DNA and proteins with various models and options, bootstrapping, and parallel computations. FastME is
available using several interfaces: Command-line (to be integrated in pipelines), PHYLIP-like, and a Web server (http://
www.atgc-montpellier.fr/fastme/).

Key words: phylogeny inference, distance-based, fast algorithms, (balanced) minimum evolution, NNI and SPR topological
moves.

Distance algorithms infer phylogenies from matrices of
pairwise distances among taxa. These algorithms are fast
and have been shown to be fairly accurate using both real
and simulated data (e.g., Kuhner and Felsenstein 1994).
Moreover, they account for probabilistic modeling of substi-
tutions while estimating evolutionary distances. Even if they
are not as accurate as likelihood-based methods, these
algorithms are still widely used due to their speed and sim-
plicity, as assessed by the high number of citations for
Neighbor Joining (NJ, Saitou and Nei 1987; see also Studier
and Keppler 1988): Approximately 2,000 in 2014 (Web of
Science).

NJ is a greedy algorithm that builds trees by iterative
agglomeration of taxa. Gascuel and Steel (2006) showed
that the criterion being minimized by NJ is the balanced ver-
sion of minimum evolution (BME), which estimates the tree
length using Pauplin’s formula (2000). We proposed fast,
BME-based algorithms (Desper and Gascuel 2002, 2004) to
1) construct an initial tree using greedy taxon insertion and 2)
perform topological moves, namely Nearest Neighbor
Interchanges (NNIs), to improve an initial (e.g., NJ) tree.
These algorithms were implemented in FastME 1.0 and
were shown to improve accuracy substantially in comparison
to NJ’s (e.g., Vinh and von Haeseler 2005), while having a
similar computational cost. A related NNI-based approach,
using profiles of ancestral sequences instead of a distance
matrix, was proposed by Price et al. (2009) and implemented
in FastTree1. FastME has been developed over the past several
years:

� Subtree Pruning and Regrafting (SPR) topological moves
are available in FastME 2.0. SPR consists of removing a
subtree from the initial tree and reinserting this subtree
by dividing any of the remaining branches in the initial tree.

We thus have Oðn2Þ alternative trees to improve the initial
tree, where n is the number of taxa. The best SPR is selected
and the procedure is iterated until no more improving SPR
is found. SPRs are more powerful than NNIs (with OðnÞ
alternative trees) and have been shown to be useful in a
number of contexts and studies (e.g., with maximum-like-
lihood [ML]-based tree building; Guindon et al. 2010). Our
algorithm first precomputes the average distance between
every pair of subtrees of the initial topology; this can be
achieved in Oðn2Þ time. Then, the criterion value for any
new tree obtained by SPR is computed in constant time,
meaning that the total cost of the SPR-based tree search is
Oðkn2Þ, where k is the number of iterations. As k is usually
smaller than n, the computational cost is similar to that of
NJ, that is, Oðn3Þ. Experiments with real data (both DNA
and proteins) show that a substantial gain is obtained,
compared with NJ and NJ+NNIs; the best alternative is
FastTree1, which (quickly) infers trees that are less fitted
than NJ+SPR’s regarding minimum evolution, but have
similar likelihood value with DNA sequences. Details on
our SPR algorithm and these experiments are provided in
Supplementary Material online.
� A number of tree-building algorithms have been added, to

infer an initial tree or to improve that tree (or any input
tree) with topological moves. These algorithms seek to
optimize BME, but also the Ordinary Least Square version
of minimum evolution (OLSME; Rzhetsky and Nei 1993),
which may be relevant with nonsequence data. These
algorithms and their properties are summarized in table 1.
� The calculation of evolutionary distance matrices from

DNA and protein sequences is also available. For DNA,
most models having an analytical solution (e.g., TN93)
have been implemented. For protein sequences, we use
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standard ML-based estimations, combined with a number
of rate matrices (e.g., JTT [Jones, Taylor, and Thorton]) to
accommodate various data sets (mitochondria, virus, etc.).
In both cases, distances can be estimated assuming a con-
tinuous gamma distribution of rates across sites with user-
defined parameter. Models and options are summarized in
table 1.
� Bootstrapping and analysis of multiple data sets can be

performed within a single run. FastME 2.0 implements
Felsenstein’s bootstrap, where pseudo trees are built
from resampled alignments and compared with the orig-
inal tree obtained from the input alignment. Users can also
submit a unique file containing multiple alignments (e.g.,
corresponding to different genes in phylogenomics stud-
ies) and launch tree construction for all of them using the
same program options.
� Bootstrapping is a highly parallelizable task. The same

holds for distance estimations. FastME 2.0 provides
parallel computing for these two tasks using the
OpenMP API. When compiling FastME, users can choose
to obtain a mono-thread or a parallel binary. They may

then set, on the command line, the number of cores to be
used.
� FastME 2.0 includes a menu-driven PHYLIP-like interface,

and a command-line interface, to be typically integrated in
phylogenomics pipelines. A Web server is also available for
occasional users. FastME is an open-source C program,
with binaries available for the three main operating
systems.

FastME 2.0 is thus a comprehensive program, including
all required tools (numerous algorithms, distance estimation
with various models, bootstrapping) to infer phylogenies
using a distance approach. Source code, binaries, Web
server, user guide, examples, benchmark data sets, etc., are
available from http://www.atgc-montpellier.fr/fastme/ (last
accessed July 14, 2015).

Supplementary Material
Supplementary material is available at Molecular Biology and
Evolution online (http://www.mbe.oxfordjournals.org/).

Table 1. Substitution Models and Algorithms Available in FastME 2.0.

Models

Target Method

DNA p-distance

General Analytical formula

RY symmetric
RY
JC69 (Jukes, Mam. Prot. Metab., 1969)
K2P (Kimura, J. Mol. Evol., 1980)
F81 (Felsenstein, J. Mol. Evol., 1981)
F84 (Felsenstein, Evolution, 1984)
TN93 (Tamura, MBE, 1993)
LogDet (Lockhart, MBE, 1994)

Protein p-distance General Analytical formula
F81-like General Analytical formula
LG (Le, MBE, 2008) General ML estimation
WAG (Whelan, MBE, 2001) General ML estimation
JTT (Jones, CABIOS, 1992) General ML estimation
Dayhoff (Dayhoff, A. Prot. Seq. Struct., 1978) General ML estimation
DCMut (Kosiol, MBE, 2004) General ML estimation
CpRev (Adachi, J. Mol. Evol., 2000) Chloroplast ML estimation
MtREV (Adachi, J. Mol. Evol., 1996) Mitochondria ML estimation
RtREV (Dimmic, J. Mol. Evol., 2002) Retrovirus ML estimation
HIVb/w (Nickle, PLoS One, 2007) HIV ML estimation
FLU (Dang et al., BMC Evol. Biol., 2010) Flu ML estimation

Algorithms

Optimization Criterion Method and Complexity

First tree BME (Desper, J. Comp. Biol., 2002) BME Taxon addition O(n2)
GME (Desper, J. Comp. Biol., 2002) OLSME Taxon addition O(n2)
NJ (Saitou, MBE, 1987) BME Agglomerative O(n3)
UNJ (Gascuel, Math. Hierarchies & Biol., 1997) OLSME Agglomerative O(n3)
BioNJ (Gascuel, MBE, 1997) — Agglomerative O(n3)

Topo. moves BNNI (Desper, J. Comp. Biol., 2002) BME NNI O(kn2)
FASTNNI (Desper, J. Comp. Biol., 2002) OLSME NNI O(kn2)
SPR BME SPR O(kn2)

NOTE.—All models (except p-distance and LogDet) can be used with a continuous gamma distribution of rates across sites with user-defined parameter (typically 1.0). We
distinguish models where a fast analytical formula is available to estimate evolutionary distances, from those (slower) requiring maximization of the likelihood function. For
algorithms, we distinguish 1) the criterion being optimized (BME or OLSME) and 2) the construction of a first tree (using iterative taxon addition, or the agglomerative [NJ]
scheme) versus the improvement of this initial tree using topological moves (NNIs or SPRs). We display worst case time complexities (as usual); n is the number of taxa and k
the number of iterations. With NNIs, k is usually similar to n. With SPRs, k is usually much smaller than n.
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