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Abstract The wide attention given to the Mutual In-

formation Analysis (MIA) is often connected to its sta-

tistical genericity, denoted flexibility in this paper. In-

deed, MIA is expected to lead to successful key recov-

eries with no reliance on a priori knowledge about the

implementation (impacted by the error modeling made

by the attacker. and with as minimum assumptions as

possible about the leakage distribution (i.e. able to ex-

ploit information lying in any statistical moment and to

detect all types of functional dependencies), up to the

error modeling which impacts its efficiency (and even

its effectiveness). However, emphasis is put on the pow-

erful generality of the concept behind the MIA, as well

as on the significance of adequate Probability Density

Functions (PDF) estimation which seriously impacts

its performance. By contrast to its theoretical advan-
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tages, MIA suffers from underperformance in practice

limiting its usage. Considering that this underperfor-

mance could be explained by suboptimal estimation

procedures, we studied in-depth MIA by analyzing the

link between the setting of tuning parameters involved

in the commonly used nonparametric density estima-

tion, namely Kernel Density Estimation (KDE) with

respect to three criteria: the statistical moment where

the leakage prevails, MIA’s efficiency and its flexibil-

ity according to the classical Hamming weight model.

The goal of this paper is therefore to cast some inter-

esting light on the field of PDF estimation issues in

MIA for which much work has been devoted to finding

improved estimators having their pros and cons, while

little attempt has been made to identify whether or not

existing classical methods can be practically improved
according to the degree of freedom offered by hyperpa-

rameters (when available). We show that some ‘opti-

mal’ estimation procedures following a problem-based

approach rather than the systemic use of heuristics fol-

lowing a accuracy-based approach can make MIA more

efficient and flexible and a practical guideline for tun-

ing the hyperparameters involved in MIA should be de-

signed. The results of this analysis allowed us defining

a guideline based on a detailed comparison of MIA’s re-

sults across various simulations and real-world datasets

(including publicly available ones such as DPA contest

V2 and V4.1).

Keywords Side-Channel Analysis · Mutual Informa-

tion · Bandwidth · Statistical moments

1 Introduction

The Side Channel Attacks (SCA) are a subclass of phys-

ical cryptanalysis giving transparency about the secret
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of cryptographic device thanks the emanation of un-

intentional side channel observables. The core idea of

SCA is to take advantage of key-dependent side chan-

nel observables (e.g. power consumption or Electromag-

netic (EM) emissions) emanating from the cryptosys-

tem, i.e. key recovery objective through exploring the

data dependency between physical leakages and the in-

ternal state of the cryptosystem. Hence, the exploita-

tion of these leakages by comparing them with key-

dependent prediction models should lead to identify

which key hypothesis is the most likely to derive to

the leakage measurements. In practice, the two impor-

tant requirements are to choose a suitable prediction

model in order to highlight the dependency between

the observations and predictions and to use an ade-

quate comparison (statistical) tool, usually called dis-

tinguisher capable to detect this dependency and dis-

criminate efficiently the correct key at the end.

Since the seminal work of Kocher et al. [19], the im-

provement of SCA from the statistical view point has

gained prominence in research community. As a result,

a refinement of the initial DPA, i.e. SCA using Differ-

ence of Means (DoM) as distinguisher, was proposed

in [12] using the Pearson’s Correlation as new distin-

guisher. This leads to the so-called Correlation Power

Analysis (CPA) which aims at looking for linear (or

at least largely monotonic) relationship between side-

channel observations and predictions. More recently,

a distinghuisher based on Linear Regression Analysis

(LRA) was proposed in [15]. It can be viewed as a

non-profiling variant of the stochastic approach [36].

LRA aims at fitting the best model which linearizes

the leakage by minimizing the sum of squared residu-

als using Ordinary Least Squares (OLS) method. Al-

though LRA is perceived by a large part of the com-

munity as the most efficient attack so far in the case

where the model drifts away from the Hamming weight

model [15], [22], this approach is originally limited as

it only detects leakages hidden on the first-order sta-

tistical moment (i.e. mean) independently of the using

basis functions. However, the preprocessing explained

in [11,37,29] allows us to conduct the latter at higher

orders in univariate scenario by raising centered (and

standardized for orders ¿ 2) traces to some power cor-

responding to order. However, Knowing ‘a priori’ the

leakage order can be challenging in non-profiled con-

text. In 2008, a powerful SCA, called Mutual Informa-

tion Analysis (MIA) has been proposed in [3] and inde-

pendently formalized in [17]. Based on an information

theoretic approach, MIA aims at being a ‘generic’ at-

tack theoretically disclosing secret with no reliance on

a priori knowledge about the implementation and no

assumption on the leakage distribution. These so-called

‘generic’ methods are of interest because they indicate

in some sense the inherent vulnerability of a cryptosys-

tem independently from the physical implementation

details. In [51], authors rethink the notion of ‘genericity’

in SCA context putting emphasis on the role of the leak-

age model rather than on the distinguisher. They state

that generic strategies should follow from the properties

of the used leakage model, i.e. injectivity of the cho-

sen cryptographic functions as intermediate variable,

and such a definition facilitates conclusive statements

about attack outcomes independent of the distinguish-

ing statistic chosen. Based on this definition, the term

of ‘genericity’ for MIA is directly related to the identity

leakage model [17] but this interesting approach turns

out into an ineffective solution to mount MI-based at-

tacks targeting an AES-Sbox (because of injective prop-

erty of this target function) up to the work in [35] where

authors propose to target as a suitable non-injective

function, i.e. the MixColumns operation, for an effec-

tive attack in AES. Independently of the used leakage

model, MIA is therefore likely to efficiently exploit any

information lying on any statistical moment whatever is

the functional dependency of these information with the

adopted prediction model. In the literature, emphasis is

put on the generality of the concept behind the MIA, as

well as on the significance of adequate Probability Den-

sity Functions (PDF) estimation which seriously im-

pacts its performance. Indeed, it is usually considered

that the accuracy of PDF estimates determine MIA’s

efficiency. Several works have therefore proposed MIA

enhancements according to this intuition. All of them

aim at improving the accuracy of PDF estimates in-

volved in the computation of MI index. Various ways

to estimating PDF were followed and most publications

point out the sensitivity of MI estimator to the chosen

estimation method as well as to the setting of parame-

ters involved in it. Among all methods at disposal, two

approaches, referred to as parametric and nonparamet-

ric can be adopted according to the level of knowledge

on the underlying distributions. Parametric approaches

are especially suitable if a particular shape (e.g. Gaus-

sian assumption) of the underlying PDF is identified as

correct due to some application specific reasons. In con-

trast, nonparametric approaches do not rely on assump-

tions on the distributions from data which are drawn.

Thus, their objective coincides with the one pursued

by SCA community i.e. the quest of a ‘flexible’ distin-

guisher and this even at the cost of a significant compu-

tation overheads. Nevertheless, despite all the interest-

ing and valuable former works, MIA still remains dis-

appointing in practice. Indeed, empirical evaluations of

MIA have indicated that, in scenarios favouring corre-

lation DPA (such as those where the data-dependent



Mutual Information Analysis: higher-order statistical moments, efficiency and efficacy 3

leakage is known to be well approximated by the Ham-

ming weight) it is highly unlikely to offer any advan-

tage over the latter against either simulated or real-

world traces, that the correlation-based distinguisher

continues to outperform the MI-based up to quite a

high degree of divergence between the model and the

true leakages. Besides, within this context, our contri-

bution comes from the consideration that the underper-

formance of MIA could be explained from sub-optimal

estimation procedures as it was noticed in [13] in which

some interesting light were casted on the field of esti-

mation issues in MIA. We

Our Contribution. Almost all publications on MIA

have followed an accuracy-based approach. This means

that they intuitively followed the idea according to which

the use of accurate PDF estimators in the sense of

Mean Integrated Squared Error (MISE), for which sev-

eral heuristics have been derived, is the right direction

to obtain efficient and flexible MIA. However, this does

not guarantee maximal MIA’s efficiency as shown in [13]

since at the end an attacker normally cares more about

distinguishing the correct key with a certain confidence

rather than accurately estimating the PDF involved in

the attack. In this paper, we therefore adopt a problem-

based approach to give us insights on the right way to

finetune hyperparameters in nonparametric approaches

for MIA by the use of a refinement of distinguishing cri-

terion introduced in [13].

2 Notations and Preliminaries

We use capital letters, like X, to denote a random vari-

able (RV), calligraphic letters, like X , to denote its sup-

port (set of possible values), and lowercase letters like

x, for its realizations. The expectation operator of X is

denoted by E[X]. We further denote the term key, i.e.

k, for the attacked round key byte.

We thereafter give a summary of an univariate and

non-profiled vertical SCA (i.e. a DPA-like attack) work-

flow.

1. Acquire n physical leakage traces over L denoting

as the observation space, i.e. li ∈ Ld, i = 1, . . . , n,

corresponding to cryptographic computations oper-

ated by device during encryptions or decryptions.

We hereafter suppose each leakage measurement con-

sists in d physical realizations. Each of them con-

tains information about intermediate values used

internally zk∗,i = F (xi, k
∗), i = 1, . . . , n, where

xi ∈ X is the ith public value, i.e. input (plaintext)

or output (ciphertext) byte of the cryptographic de-

vice and k∗ ∈ K the secret key byte. At a sample

point t, we assume the leakage Lt to be composed

of two parts: a deterministic part φt(·) and an inde-

pendent additive noise Bt such that

Lt = φt(Z
∗
k) +Bt ↪→ li,t = φt(zk∗,i) + bt,i (1)

where li,t ∈ L, t = 0, . . . , d − 1 denotes the leakage

value in the ith leakage trace at the sample point t

and bi denotes its leakage noise value.

2. Predict, for each key byte guess k ∈ K and for each

xi ∈ X , i = 1, . . . , n, a sensitive intermediate value

zk,i ∈ Z, e.g. zk,i = Sbox(xi ⊕ k) for block ciphers.

Usually, X ,K, Z are taken as Fm2 , where m is the

number of bits (for AES (resp. DES) m = 8 (resp.

m = 4))

3. Model, for each predicted value, the physical leak-

age φ̂(Zk) = Hk ↪→ φ̂(zk,i) = hk,i ∈ H, e.g. Ham-

ming Weight (HW) [26] or Hamming Distance (HD)

[12]. At this point, a common step often referred

as leakage partitioning allows classifying the leak-

age samples, based on predictions hk,i. The expec-

tation is that predictions obtained from the correct

key hypothesis (i.e. k = k∗) will lead to a meaning-

ful leakage partition, i.e. there will be a dependency

between Lτ and Hk, where τ represents a Point of

Interest (PoI), i.e. leaking information about k∗. By

contrast, a wrong key hypothesis k 6= k∗ should give

rise to random predictions, so that the partition will

only correspond to a random shuffling of leakages

samples. Hence, φ̂ should be a good approximation

of φτ to highlight the dependence between Lτ and

Hk.

4. Compare, using a side-channel distinguisher D, the

key-dependent models and the actual physical leak-

ages and decide which is the most probable key byte

guess k̂∗ = arg maxk∈K
(
D̂(hk,i, lτ,i

)
where τ repre-

sents a Point of Interest (PoI), i.e. leaking informa-

tion about k∗.

3 Mutual Information Analysis

Mutual Information Analysis (MIA) in SCA was intro-

duced in [3,17] in order to catch any functional and/or

statistical dependencies among random variables relax-

ing the linear assumption. Let (X,Y ) be a hybrid ran-

dom vector, that is X is discrete over X while Y is

continuous with support Y. The theoretical version of

this index is defined as

MI[Y ;X] =
∑
x

l(x)

∫
Y
f(y|x) log

(
f(y|x)

g(y)

)
dy, (2)
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where f(y|x) is the conditional (on X) PDF of Y while

g(y) (resp. l(x)) is the marginal PDF of Y (resp. X)1

and the symbol
∑
x

refers to a sum taken over values

x of X such that l(x) > 0. There are other equivalent

formulas defining the MI index, notably,

MI[Y ;X] = H[Y ]−H[Y |X], (3)

= H[Y ]−
∑
x

l(x)H[Y |x], (4)

where H[Y ] = −
∫
Y g(y) log(g(y)) dy is the (differential)

entropy of random variable Y and similarly H[Y |x] =

−
∫
Y f(y|x) log(f(y|x)) dy.

Specializing formula (3), its application as an attack

in T -domain can be framed as the expectation (with re-

spect to the conditioning value) of the Kullback-Leibler

divergence between the global and partitioned traces at

a leakage sample τ and for each key hypothesis k ∈ K

MIk(τ) = H[Lτ ]−H[Lτ |Hk] (5)

= H[Lτ ]− E
h∈H

[
H[Lτ |Hk = h]

]
. (6)

An estimate k̂∗ of k∗ is obtained as

k̂∗ = arg max
k∈K

{
M̂Ik(τ)

}
. (7)

The main difficulty in implementing a MIA is in es-

timating the values MIk(τ). In contrast to Pearson’s co-

efficient which is easily estimated via sample moments,

the estimation of the MI index requires the estima-

tion of the underlying PDF which is both theoretically

and practically, a non trivial statistical problem for the

studied nonparametric methods in this paper. Many

methods have been proposed to estimate entropy as

histograms [17], kernels [33,34,45], B-splines [48], max-

imal information coefficient [21], cumulants [20], etc.

An overview of density estimation techniques applied

in MIA is given in [20]. Neither parametric nor non-

parametric estimators are universally preferable in all

situations, however.

3.1 Estimating a PDF

Suppose a sample of independent copies {(xi, yi)}ni=1

of (X,Y ) is at disposal. The problem of estimating

the MI index in Eq. (4) requires estimators of the en-

tropies H[Y ] and H[Y |x], which in turn requires esti-

mators of the PDF g(y) and f(y|x). As stated earlier,

1 Formally l(x) is a probability mass function (PMF) be-
cause X is discrete. To simplify notation, we use the generic
acronym PDF

estimation of these underlying PDF is a difficult statis-

tical problem. In general, a PDF estimator must offer a

good trade-off between accuracy (bias) and variability

(variance). In this section, we present the classical his-

tograms and the more sophisticated KDE method. For

the interested reader, details about another nonpara-

metric method B-splines, can be found in [48]. Note

that, for simplicity, we restrict attention to the case of

univariate PDF.

3.1.1 Histograms.

The most used and studied nonparametric PDF tech-

nique is probably the histogram method. The histogram

estimator of g(y) is obtained by partitioning the sup-

port of Y , noted Y, into m bins Bj = [bj−1, bj), with

b0 < b1 < · · · < bm such that Y ∈ [b0, bm). Then

ĝhist(y) =
1

n

n∑
i=1

I{yi ∈ B(y)}
`(B(y))

, (8)

where I{A} = 1 if event A is realized and 0 otherwise,

B(y) is the bin that contains y, `(B(y)) is its length and

n is the sample size. The resulting estimator of H[Y ] is

Hhist[Y ] = −
m∑
j=1

ĝhist (qj) log ĝhist (qj) `(Bj), (9)

where qj = (bj−1 + bj)/2. Likewise, to obtain the his-

togram estimator of H[Y |x], let nx =
∑n
i=1 I{xi = x}.

Estimate l(x) by nx/n and f(y|x) by

f̂hist(y|x) =
1

nx

n∑
i=1

I{yi ∈ B(y)}I{xi = x}
`(B(y))

, (10)

so that

Hhist[Y |x] = −
m∑
j=1

f̂hist (qj |x) log f̂hist (qj |x) `(Bj).

(11)

These quantities are plugged into (4) to get the his-

togram estimator of the MI index.

Various methods for optimal binning (i.e. bin width,

bin size) in statistical literature have been proposed.

When the underlying distribution is Gaussian, typical

and reasonable choices are Scott’s rule [40]

`scott = 3.49 σ̂ n−1/3 (12)

and Freedman-Diaconis rule [16] `fd = 2 ˆIQR n−1/3 in

case of equal binning where σ̂ and ˆIQR are denoted as

the sample standard deviation and interquartile range

of the data {yi}ni=1, respectively.
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3.1.2 Kernels.

Another commonly used and also well-studied PDF tech-

nique is the kernel method. The KDE of g(y) is then

given by

ĝKDE(y) =
1

n

n∑
i=1

Kh (y − yi) , y ∈ R, (13)

where Kh(y) = h−1K(y/h) with K : R → R is a sym-

metric, non negative function called the kernel func-

tion, and satistyfing

∫
R
K(x) dx = 1 and for which

h > 0 is a real parameter, called the kernel bandwidth

or also-called smoothing parameter. Regarding the ker-

nel function, classical choices are the bell curve, best

known as Gaussian function : K(y) = 1√
2π
e−y

2/2 or the

clipped upside-down parabola, i.e. Epanechnikov func-

tion : K(y) = 3
4 (1 − y2) for |y| ≤ 1. In general, the

shape of the kernel function K has little influence on

the estimated density [41] compared to the choice of the

bandwidth h which is crucial in controlling the trade-off

between bias and variance (i.e. degree of smoothing). A

relatively good estimator of an optimal bandwidth (in

the sense of minimizing an approximation of the inte-

grated mean squared error) is obtained by Silverman’s

rule [42]

hS = c σ̂ n−1/5, (14)

where c = 1.06 (resp. 2.34) for Gaussian’s (resp. Epanech-

nikov’s) kernel and σ̂ the sample standard deviation of

the data {yi}ni=1. More details can be found in [18] for

interested readers. From Eq. (4), HKDE [Y ] can be es-

timated by

HKDE [Y ] = −
∫
Y
ĝKDE (y) log ĝKDE(y) dy, (15)

and similarly

HKDE [Y |x] = −
∫
Y
f̂KDE (y|x) log f̂KDE (y|x) dy,

(16)

where f̂KDE (y|x) is obtained in the same manner as

ĝ(y) but with the part of the data having xi = x while

l(x) can be estimated by nx/n where nx =
∑n
i=1 I{xi =

x}. At the end, these are plugged into Eq. (4) to pro-

duce the kernel estimator of the MI index.

At this stage, another hurdle is encountered be-

cause the above computations require integration. To

reduce the computational cost, one can choose points

Q = {q0 < . . . < qb} (referred to as query points) and

estimate H[Y ] by

ĤKDE [Y ] = −
b∑
j=1

ĝKDE(qj) log ĝKDE(qj)(qj − qj−1),

(17)

and similarly with ĤKDE [Y |x] in place of Eq. (16). It

is noteworthy that this processing plays no role in the

key discrimination process as it does not depend on the

predictions. These query points in Q must be properly

chosen to provide mathematical accuracy of the inte-

gral principally depending on their number which can

be made arbitrarily good by increasing |Q|, at the ex-

pense of computational costs. Hence, one should nat-

urally choose these query points to be systematically

fixed along a mesh grid covering all the sample points,

whose coarseness depends on the available computing

power and especially by the selected bandwidth value.

Indeed, it is noteworthy that |Q| depends heavily on the

bandwidth value, i.e. small bandwidths require a finer

grid. These points are not chosen to provide statisti-

cal accuracy of the estimator (a difficult problem) but

solely mathematical accuracy of the integral, a different

problem for which various solutions exist, for example

via the rectangular method (used in the remaining the-

sis) or through more sophisticated quadrature formu-

las. Besides, one makes KDE method iterative like his-

togram method differentiating reference data {yi}ni=1

with query points {qj}bj=0. We stress that heuristics

have been developed with the view of getting a globally

good estimate of a PDF [41] that should be unsuitable

in all scenarios in SCA context yielding to a loss of ef-

ficiency and flexibility of MIA. Recall that selection of

tuning parameters has always been a dilemma: on the

one hand, asymptotic arguments and reference distribu-

tions lead to plug-in and reference rules whereby tuning

parameters can be easily calculated, but these perform

poorly on finite samples and when reference distribu-

tions do not match reality. On the other hand, data-

driven selection criteria should give appropriate tuning

parameters as proposed in [13] focusing on a suitable

adaptive bandwidth selection from the viewpoint of the

attack, i.e. a problem-based approach.

4 Influence of tuning parameters involved in

KDE

4.1 Statement

To show the effect of the choice of the bandwidth value,

the number of query points and the kernel type on
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kernel-based MIA, a small simulation study in a perfect

(classical) scenario with synthetic data was first con-

ducted. Two thousand simulated leakage measurements

were drawn from the following ‘linear’ leakage function

according to the Hamming Weight leakage model of a

typical AES S-box output HW(Zk∗) with additional in-

dependent additive Gaussian noise with mean 0 and

variance σ2

L = HW(Zk∗) +B (18)

Although not always realistic, the preliminary inves-

tigation of this scenario is justified by the numerous

works carried out under this assumption, as a reference.

We used here synthetic data by fixing σ = 8 and consid-

ering that HW(Zk∗) follows binomial distribution with

parameters 8 and 0.5, i.e. B(8, 0.5) so that the exact

value of the theoretical MI index (= 0.0153) could be

computed.
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Fig. 1 Behavior of the estimator of the MI index with respect
to the number of query points (qu) and to the constant c from
Eq. (14) using Epanechnikov (top) and Gaussian (bottom)
kernels. Each Silverman-based heuristic hs depends of the
used kernel function.

Figure 1 shows the results of estimating the MI in-

dex as the bandwidth h and the number of (equispaced)

query points are changed. The setting of bandwidth

value is evaluated over a grid ranging from some point of

the neighborhood of the hS (bandwidth obtained from

the Silverman’s rule) to some small/large multiple of

this value by varying the constant c in Eq (14). For
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Fig. 2 Plots of Minimum Trace to Disclose (MTD) of kernel-
based MIA with respect to the number of query points (qu),
to the constant c from Eq. (14) using Epanechnikov (top) and
Gaussian (bottom) kernels.

sake of readability, we stop at c = 10 but it is notewor-

thy that this practical choice does not affect the insights

given by the further results. As expected, there is link

between the bandwidth size and the choice of the num-

ber of query points. The higher the number of query

points the more accurate the MI estimate is when the

bandwidth value is lower than the Silverman’s heuristic

hS . This circumvents the choice of their position when
PDF are under-smoothed. However, this effect tends to

vanish when the bandwidth value increases, i.e. near

and greater than Silverman’s heuristic hS . This sug-

gests that a reduction of the number of query points

could be considered in order to reduce the computa-

tional costs. Besides, no impact is observed regarding

the kernel type used and the main focus must be on

the bandwidth value which notably influences the re-

sulting MI estimate. Interestingly, Silverman’s rule hS
with the constant c selected according to the kernel type

(i.e. c = 1.06 (resp. c = 2.34) for Epanechnikov (resp.

Gaussian) kernel) yields a good estimate of the actual

MI index. Note also that as the bandwidth is increased,

the bias of the MI estimator increases (hence its vari-

ance decreases) as the estimator (i.e. MI) decays to

zero. This is explained by the fact that, as h increases,

all KDE get over-smoothed and converge to the same

function that resemble the initial kernel spreaded over

the support Y, with the entropies converging to the

same value and the MI index vanishing. All this dove-
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tails nicely with intuition and the admonishments in

almost all publications on MIA that, in order to have

a good estimator of the MI index, one should use ade-

quate PDF estimators. However, this does not guaran-

tee maximal MIA’s efficiency.

By mounting an attack using Eq. (18), Figure 2 in-

terestingly shows that increasing the bandwidth results

in more efficient attacks, in terms of Minimum Trace to

Disclose (MTD), i.e. less number of measurements is re-

quired to disclose the correct key hypothesis. The MTD

condition is considered to be fulfilled when the correct

key hypothesis is accurately disclosed after the process-

ing of the 2000 measurements (i.e. with a relative mar-

gin > 10%). Besides, the number of query points do

not significantly impacts the attack’s efficiency when it

sufficiently sets large. Summarizing, this suggests that

good PDF estimation does not necessarily translate in

efficiency of the attack, where larger bandwidths and

smoother PDF estimators, seem to yield better results

in this simulation case.

To sustain these results, we performed the same

framework using real-world measurements from DPA

Contest v2 campaign [1] which is expected to be close

to the latter simulation in Eq. (18). We used HD leak-

age model (word level) targeting the output of S-box 2

at the last round and setting Epanechnikov kernel and

400 equidistant query points to perform the KDE. The

actual results in Figure 3 showing evolution of the suc-

cess rates with respect to different bandwidth values

(according to the constant c), match with those from

the simulation.
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Fig. 3 Plot of success rates of kernel-based MIA with respect
to the constant c from Eq. (14) using the measurements from
DPA Contest V2.

It is this counterintuitive behavior that has led to

the realization that the bandwidth could be seen, not

as a nuisance parameter to be dealt with in a statisti-

cal estimation procedure, but more profitably as a lever

that could be used to fine-tune a SCA. Some results in

[6,34] go in the same direction showing that the tradi-

tional criterion for minimizing the approximation error

is irrelevant since the most efficient attacks are those

using the histogram method with a bad choice of bin

parametrization for this criterion.

4.2 Distinguishing rule

Our proposed distinguishing rule follows a problem-

based approach (specific to SCA) which explicitly ex-

ploits the fact that there is exactly one correct key hy-

pothesis k∗ trying to maximize the contrast between

this key and all the remaining others according to a dis-

tinguisher and a leakage model. In MIA, to successfully

distinguish the correct key hypothesis k∗ from others,

M̂Ik∗(θ) > M̂Ik(θ), ∀k ∈ K\{k∗} (except for a spe-

cial case reported in [49,50] where authors showed that

using ‘identity’ model based on drop-bit approach can

lead to a different key candidate selection). Note that

we now denote by θ the tuning parameter of a PDF

estimation tool (e.g. number of bins for histogram or

bandwidth value for KDE).

By letting M̂Ik(θ) be an estimator of MIk parame-

terized by θ in all PDF involved in Eq. (6), an alternate

bounded expression 2 into [−1; 1] of (15) in [13] is

k̂∗ =

arg max
k∈K

max
θ∈Θ

 |M̂Ik(θ)− M̂I−k(θ)|(∑
k∈K

(
M̂Ik(θ)− M̂I−k(θ)

)2)1/2

 ,

(19)

where M̂I−k(θ) stands for the mean of all estimators

except M̂Ik(θ), Θ represents the set of a running PDF

tuning parameter (here, different bandwidth values). In

order to prevent the special case reported in [49,50] and

give a general definition of our distinguishing rule in

view of other applications, we considered the absolute

value of the numerator. The following maximization on

θ ∈ Θ aims at making this discrimination independent

of its choice (value) of θ (i.e. quality of PDF estimation)

resulting in an automatic (without ‘a priori’ knowledge

k∗) selection procedure targeting the goal of getting

a good estimate of k∗, in contrast to Silverman’s rule

that aims at getting good estimates of the PDF in-

volved in M̂Ik(θ), i.e. focusing on a problem-based ap-

proach rather than an accuracy-based approach in the

2 To avoid over-fitting θ in some cases, i.e. when leakage is
embedded on higher-order statistical moment (not explored
in [13]) leading to an incorrect key distinguishability
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SCA context. Also, when analyzing a set of traces over

many sample points t ∈ {0, . . . , d−1} in Eq. (19), a dou-

ble maximization operation over θ and t must be per-

formed, with the result being the operand of arg max
k∈K

.

By looking for a outlier behavior, our approach aims at

efficiently and methodically deriving ‘optimal’ setting

of a tuning parameter in the sense of distinguishability

rather than the distinguisher value itself. In practice,

this distinguishing rule can be viewed as an ‘on-the-fly’

attack focusing on the flexibility aspect or as a way to

characterize an optimal PDF tuning parameter value

and give insights according to a scenario focusing on

the efficiency aspect, i.e. the value of θ where the inner

max operator over all k ∈ K is attained, denoted as

θopt =

arg max
θ∈Θ

max
k∈K

 |M̂Ik(θ)− M̂I−k(θ)|(∑
k∈K

(
M̂Ik(θ)− M̂I−k(θ)

)2)1/2

 ,

(20)

200

400

600

800

1000

1200

1400

1600

1800

2000

1/10 1/8 1/6 1/4 1/2 2 4 6 8 10

 

c

 

N
um

be
r 

of
 m

ea
su

re
m

en
ts

0.15

0.2

0.25

0.3

0.35

0.4

200

400

600

800

1000

1200

1400

1600

1800

2000

1/10 1/8 1/6 1/4 1/2 2 4 6 8 10

 

c

 

N
um

be
r 

of
 m

ea
su

re
m

en
ts

   Failed
   Successful

Fig. 4 Evolution of maximization over k ∈ K of the distin-
guishing rule (top) and the key recovery status (bottom) with
respect of the constant c and number of measurements using
simulated data from Eq. (18).
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Fig. 5 Evolution of maximization over k ∈ K of the distin-
guishing rule (top) and the key recovery status (bottom) with
respect of the constant c and number of measurements using
real-world data from DPA contest v2.

The action of our distinguishing rule is illustrated in

Figures (4) and (5) for simulated from Eq. (18) and real-

world data from DPA contest v2, respectively. We used

Epanechnikov kernel and 400 query points for KDE es-

timation procedure. It can be noticed that a maximiza-

tion over θ ∈ Θ = {c σ̂ n−1/5 : c ∈ { 1
10 ,

1
9 , . . . , 9, 10}}

and k ∈ K allows a good probability of discrimination

for k∗ as warm colors in left part of Figures 4 match

with location where k∗ is disclosed in right part of Fig-

ures 5. In practice, since the adversary does not neces-

sarily possess a copy of the DUT (i.e. profiling step) for

which he knows ‘a priori ’ the secret key, the definition

of our rule remains suitable in non-profiled scenario to

find ‘optimal’ setting of a tuning parameter. In [31],

authors assume a (semi-)profiled scenario for a similar

optimization criterion of the filter coefficients on CPA.

Figure 6 displays the distinguishing rule in Eq. (19)

(i.e. term into brackets in Eq. (19)) overΘ = {c σ̂ n−1/5 :

c ∈ { 1
10 ,

1
9 , . . . , 9, 10}} and for each key hypothesis after

the processing of 2000 measurements corresponding to

the simulation from Eq. (18). It is noteworthy that this

approach allows verifying previous observations regard-

ing bandwidth setting, i.e. larger bandwidth than the

commonly used Silverman’s rule-of-thumb hS was ex-

pected to give better results in this case. Even if the key
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is disclosed using hS , one should notice that increase

bandwidth value lead to a more accurate discrimina-

tion as the relative margin also grows.
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Fig. 6 Plot of distinguishing rule with respect to the con-
stant c from Eq. (14), i.e. hS = c σ̂ n−1/5 and for each
key hypothesis after the processing of 2000 measurements
(top) (red line: correct key guess, blue lines: incorrect key
guesses). Plots of normalized MI values over all key hypothe-
sis according to different bandwidth values: hS , i.e. c = 2.34
(for Epanechnikov kernel) and θKDE

opt , i.e. c = 10 after the
same processing of 2000 measurements (bottom) (red cross:
correct key guess, red circle: nearest-rival key guess).

Same observations were made using the real-world

measurements from DPA contest v2 focusing on the

first data set (among the 32 available data sets) and

targeting the key byte 1 (output of the S-box 2) at the

last round using a HD leakage model as depicted in

Figure 7.

This behavior was replicated with many other data

sets for which successful key recoveries were also ob-

served with CPA [12] or LRA using linear basis function

[15]. However at this stage, rather than displaying these

results, it appears more interesting to further explore

how to set the bandwidth h in a broader case where

the latters could fail in the presence of more complex

leakage.
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Fig. 7 Plot of distinguishing rule with respect to the con-
stant c from Eq. (14), i.e. hS = c σ̂ n−1/5 and for each key
hypothesis after the processing of 20000 measurements (top)
(red line: correct key, blue lines: incorrect key guesses). Plots
of normalized MI values over all key hypothesis according to
different bandwidth values: hS , i.e. c = 2.34 (for Epanech-
nikov kernel) and θKDE

opt , i.e. c = 10 after the processing of
20000 measurements (bottom) (red cross: correct key guess,
red circle: nearest-rival key guess).

5 Practical investigation of efficiency/flexibility

of MIA

In this section, we report results obtained by simula-

tions before reporting experiments done with real-world

datasets in order to give guidelines on how to set tun-

ing parameters for MIA using nonparametric method:

KDE. The goal was to analyze the evolution of both

efficiency and flexibility of various distinguishers with

respect to the statistical moment containing the leak-

age but also with respect to the values of the different

tuning parameters of these distinguishers if any. These

examples are expected to be reflective of the variety of

leakage functions that one can find in SCA context. We

proceed by a pragmatic approach based on a two-stage

procedure as follows

Firstly, simulations (experiments on synthetic data

sets) were conducted with different scenarios in order

to control the drift from linearity of the functional de-

pendency on the univariate leakage based on the first-

order statistical moment. Secondly, leakage measure-

ments have been simulated using on the specific coun-

termeasure, called Rotating Sboxes Masking [30] which
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Fig. 8 An example of boxplot illustrating each scenario: 1 (left), 2 (middle) and 3 (right) with log2(SNR) = 0 for the correct
key hypothesis.

is an instance of LEMS where the univariate leakage is

embedded on higher-order statistical moment, i.e. 4th

according to the chosen mask table. The real world data

sets were finally chosen to validate observations based

on simulations.

Following the definition in [14,32], we recall that

an univariate leakage is embedded in oth-order statis-

tical moment if the distributions of the random vari-

ables (Lt|Hk = j), j ∈ H differ when k ranges over K
whereas the (o− 1)th-order statistical moments do not,

i.e. minimal order statistical moment exploitable in the

univariate leakage.

5.1 General setting of DPA-like attacks

Side Channel Distinguishers. We considered seven

non-profiled distinguishers: DPA, [8,25], CPA [12], AoV

[47,43]), LRA [15] and finally three MI-based distin-

guishers, i.e. one using parametric approach of cumu-

lants [20] and two using nonparametric approaches based

on histograms [17] and KDE [33,34,44] as PDF estima-

tion tool.

For the Histogram-based MIA, we considered the

Gierlichs’ heuristic rule which consists in choosing num-

ber of bins according to size of predictions, i.e. predic-

tion space: H corresponding to 9 bins for AES. This

method was used as benchmark without taking into ac-

count an optimization of the number of bins.

For the related KDE-MIA,

– the number of query points was set to 400 so as to

define a grid of equidistant points covering all the

observations.

– we adopted the Epanechnikov kernel. It should be

stated that similar results were obtained with the

Gaussian kernel.

– we considered two different values of the kernel band-

width. The first one was computed using Silver-

man’s heuristic, i.e. hS from Eq. (14) while the sec-

ond one was computed using the distinguishing rule

in Eq. 20, i.e. θKDEopt .

Attacks target. The typical AES S-box output,

i.e. Zk∗ = Sbox(X ⊕ k∗), where Sbox : F8
2 → F8

2 cor-

responding to the SubBytes operation, X is uniformly

distributed over F8
2, and represents a varying plaintext

byte while k∗ ∈ F8
2 represents the key byte to recover.

Model choice. We chose the very classical model

proven efficient in practice, i.e. Hamming Weight func-

tion (HW), for the model-based attacks, i.e. all except

LRA and DPA

5.2 Resuls on simulated datasets

In the SCA literature, most of the reported simulation

results were obtained by considering an independent

Gaussian noise added to a more or less complex func-

tion of the Hamming Weight representing the leakage

behavior with processed data.

5.2.1 Leakage embedded on first-order statistical

moment

Leakage simulations. We adopted the same approach

to generate various functions integrating the leakage in

the first-order statistical moment. More precisely, three

different leakage functions φ(·) in Eq. (1) were consid-

ered. Box plots of each scenario are given in Figure 8.

This resulted in three leakage model scenarios, in which

B ∼ N (0, σ2) models a Gaussian additive noise with

mean 0 and variance σ2:

– in scenario no1 , φ(·) is simply the Hamming Weight

function; a perfect linear leakage model is therefore

considered in this reference scenario:

L = HW(Zk∗) +B (21)

– in scenario no2 , φ(·) is assumed to be an unevenly

weighted Hamming Weight function; this model there-

fore introduces an arbitrarily chosen error in the

HW model. In our case, we adopted as in [45,50]:

L = HW([Zk∗ ]1≤i≤7) + 10 · [Zk∗ ]8 +B (22)
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– in scenario no3 , φ(·) is a balanced non-linear leak-

age function obtained using a fixed permutation:

Perm =

(
0 1 2 3 4 5 6 7 8

8 0 5 6 2 3 1 7 4

)
of the Hamming weight

function:

L = Perm(HW(Zk∗)) +B (23)

Experimental results. In each scenario, when a

distinguishability of a key candidate is sufficiently high-

lighted (heuristically determined) according to the SNR

as defined in [24], we observed θKDEopt is always signif-

icantly larger than the commonly used hS value when

looking at the optimal value in the setΘ = {hS

20 ,
hS

19 , . . . , 19·
hS , 20 · hS}. Thereafter we systematically set θKDEopt to

12 ·hS to obtain a version of KDE-MIA completely free

of parameters. This suggests that over-smoothing PDF

during a MIA leads to a better discrimination of the

correct key. Note that results for LRA are evaluated

using the linear basis functions but also discussed ac-

cording to higher basis functions.

Figure 9 reports the Success Rate (SR) metric cal-

culated from 100 independent attacks performed with

the seven considered distinguishers for each leakage sce-

nario. All attacks were evaluated with 2000 simulated

values of the leakage. For all the scenarios, the efficiency

curves of each attack have the same evolution. This sug-

gests us that the noise similarly impacts the efficiency

of the attacks. In scenario no1 , CPA is the most ef-

ficient attack while the LRA, DPA, AoV, Cumulant-

MIA and KDE-MIA parameterized by θKDEopt are equiv-

alently ranked second followed by the KDE-MIA using

hS and Histo-MIA ranked last. As already observed in

[15], the dominance of CPA is due to the hypothesis
made over φ̂(·) that induces an optimal tracking of the

linear model, i.e. a model that exactly corresponds to

the leakage function. As expected LRA outperforms all

other attacks in scenario no2 because the hypothesis

φ̂(·) imperfectly models the leakage (i.e. the model is

built under the incorrect hypothesis φ(·) = HW(·), re-

sulting in a loss of efficiency for model-based attacks.

Nevertheless, LRA and CPA are no longer the best at-

tacks in scenario no3 . This may be caused by the fact

that the leakage is non-linear and that it is therefore

becoming more and more difficult to find a monotonic

trend in the data which could be exploited by the CPA

and LRA using the linear basis to succeed. Besides, the

failure of these latter attacks is expected when they face

to the highly non-linear nature of a leakage, as reported

in [49] using a (simulated) dual-rail logic style. This in-

dicates that the impact of assuming false leakage behav-

ior (in terms of non-linearity) can be as catastrophic as

misleading the adversary. However, one should increase

the size of the basis involved in LRA (e.g. using not only

linear, but quadratic, cubic,. . . terms) but this leads to

an unexpected feature of LRA regarding the key can-

didate selection, similarly observed in [49,50]. Indeed,

the behavior of the LRA, when increasing the basis, can

be interpreted/understood thanks to a careful analysis

of the algebraic description of the target device leakage

which does not take any advantage in this scenario. In

our results, this observation regarding LRA is indepen-

dent of the SNR level. Basically, LRA which requires a

 

 

DPA
CPA
AoV
LRA
Cumul−MIA
Histo−MIA (9bins)

KDE−MIA (θ
opt
KDE)

KDE−MIA (h
S
)

−12 −10 −8 −6 −4 −2 0
0

0.2

0.4

0.6

0.8

1

log
2
(SNR)

S
R

Scenario 1

−12 −10 −8 −6 −4 −2 0
0

0.2

0.4

0.6

0.8

1

log
2
(SNR)

S
R

 

 

Scenario 2

−12 −10 −8 −6 −4 −2 0
0

0.2

0.4

0.6

0.8

1

log
2
(SNR)

S
R

Scenario 3

Fig. 9 Plots of SR for each scenario with respect to
log2(SNR).

set of well-chosen basis functions to perform efficiently

more importantly needs to be justified by a reasonable

physical intuition (i.e. having a connection with the ac-
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tual leakages) as refining the model using larger basis

is performed for all key candidates (i.e. not only the

correct one). Consequently, we meet ideas developed in

[49] in order to perform successful key recoveries, adver-

saries may be more interested in the ‘outlier’ behavior

of the correct key model than in its distinguishing score

with the measured leakages. Note that authors in [35]

mitigate the impact of the negative results in [49,50]

regarding the bit drop trick (for MIA using ‘identity

model’). It is noteworthy that our distinguishing rule

could also be used to efficiently select the size of the

basis functions for the LRA.

At this stage, the main observation resulting from

these experiments is that choosing a bandwidth value

larger than hS leads to a more efficient KDE-MIA (but

also more resistant to noise) when the leakage is en-

closed in the first-order statistical moment. Moreover,

it is noteworthy that MIA parameterized by θKDEopt (i.e.

using large h) is closely equivalent to AoV for all the

scenarios. This surprising behavior related to the over-

smoothing of PDF could be explained by the fact that

when the Gaussian assumption is adopted, the key dis-

tinguishability is based on the respective shifts between

the distributions associated to each HW values, and

in this case the rate of convergence towards their real

density functions does not play a key role. The pos-

sibility to use large bandwidth values when the leak-

age is embedded on the first-order statistical moment

has also an impact on the computational costs. Indeed,

it is not necessary to choose a large number of query

points when the bandwidth value is large. Therefore,

the computational costs of KDE-MIA can be drasti-

cally reduced when the first-order statistical moment

embeds the leakage by simply reducing the number of

query points. As regards other attacks, the three MIA

using various nonparametric PDF approaches are more

noise-resistant than parametric Cumulant-MIA. Inter-

estingly, but as expected, KDE-MIA using θKDEopt per-

forms better than KDE-MIA using hS and Histo-MIA

when the leakage is enclosed in the first-order statisti-

cal moment. The explanation should lie in the power

of PDF smoothing which is impacted by the choice of

the estimation method and the setting of θ. Moreover,

we observed that θhistoopt value is generally smaller than

Gierlichs’ heuristic (9 bins) over Θ = {3, . . . , 300} con-

sidering θhisto as the number of equal-width bins in

each scenario. This empirically confirms our intuition

of adopting an over-smoothing trend in PDF estimation

procedure to obtain better MIA’s efficiency. Note that

using θhistoopt leads to similar results to using Gierlichs’

heuristic. The choice of the bandwidth value when look-

ing for a leakage embedded on the first-order statistical

moment being clarified, let’s analyze the impact of this

choice when the leakage is embedded only in a higher-

order statistical moment. As follows, we considered the

fourth-order statistical moment related to the Low En-

tropy Masking scheme (LEMS) for which we consider

the instance of Rotating Sboxes Masking (RSM) coun-

termeasure [30].

5.2.2 Leakage embedded on higher-order statistical

moment

Leakage simulations.To analyze the impact of the

choice of h on the flexibility and efficiency of KDE-MIA

when the leakage is enclosed on higher-order statistical

moments, we generated synthetic leakage data associ-

ated to an instance of LEMS, called Rotating Sboxes

Masking (RSM) countermeasure [30] which allows the

cancellation of leakage based on the first three higher-

order statistical moments. This was done using the fol-

lowing leakage scenario:

LRSM = HW(Zk∗ ⊕Mi) +B, i ∈ [0; 15] (24)

where Mi∈[0;15] denotes the sixteen 8-bit base masks

chosen in such a way that the exploited leakage of the

masked variable is perceptible at the degree 4 (i.e. based

on the fourth-order statistical moment). As explained

in [9], a mask distribution taken as the 16 codewords

of the [8, 4, 4] linear code (extension with one parity

bit of the [7, 4, 3] Hamming code) satisfies this secu-

rity level. We considered the same one used in the im-

plementation of DPA Contest V4.1, i.e. Mi∈[0;15] =

{0x00, 0x0f, 0x36, 0x39, 0x53, 0x5c, 0x65, 0x6a, 0x95,
0x9a, 0xa3, 0xac, 0xc6, 0xc9, 0xf0, 0xff} and an offset

i ∈ [0; 15] randomly picked at each new simulated en-
cryption.

Experimental results. In contrast with the case

of a leakage embedded on the first-order statistical mo-

ment, we observed that the distinguishability of a key

candidate is faster achieved in case of leakage embedded

on the fourth-order statistical moment when θKDEopt ≈
hS . This suggests that a sufficient well-estimated PDF

is required to catch a higher-order statistical moment.

Figure 10 shows SR computed over 100 independent

experiments in free-noise case. First of all, we observed

that all the classical SCA exploiting leakage embed-

ded on the first-order statistical moment in this con-

text even in absence of noise, i.e. CPA, AoV, KDE-

MIA with large bandwidth value (12 · hS) and LRA,

whatever higher basis functions are used, fail as well

as DPA for which no model is required. Moreover, it

can also be seen that Cumulant-MIA do not survive

in this case making the Gaussianity assumption ar-

guable. This sustains the results presented in [30] for

DPA, CPA and AoV (called VPA in [30]) and grants
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an immunity to LRA and (parametric) MIA using cu-

mulants but it should be noticed that MI-based attacks

using nonparametric methods can be easily mounted

making questionable the countermeasure in this case as

depicted in Figure 10. Indeed, Histo-MIA using 9 bins

outperforms all other attacks due to the fact that the

observation space is based on 9 possible values ensur-

ing that no information is lost. This follows the first

intuition in [17] which aimed at estimating the proba-

bility distributions as good as possible using as many

bins as there are distinct values in the domain covered

by the sample set. To sustain our purpose, we observed

that θhistoopt ≈ 9 over Θ = {3, . . . , 300} considering θhisto

as the number of equal-width bins. Nevertheless, Histo-

MIA is less noise-resistant than KDE-MIA as displayed

in Figure 11. Evidently, we also observed that alterna-

tive distribution based-attack to MIA, KSA succeed in

recovering the correct key hypothesis.
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Fig. 10 Plot of Success Rate for all the attacks in free-noise
case.

Besides, all the studied univariate first-order attacks

can be extended to higher orders by introducing a pre-

processing stage for the traces. In our context, This

preprocessing involves the computation of mean-free

standardized values which are then raised to power 4

(for a univariate 4th-order DPA-like attacks), e.g. as

underlined in [38] for CPA. Unfortunately, as reported

in [28,11], a higher-order attack typically requires huge

number of traces, i.e. several (hundreds of) millions of

traces to be successful and they become more suscep-

tible to noise as the latter increases. Even in our free-

noise case, all remains at a success rate of roughly 0

and a guessing entropy of 128, i.e. the quantity for a

random guess without using side channel leakage af-

ter the processing of several thousands of traces thus

giving an indubitable advantage for distribution-based

attacks in this scenario. Besides the latters do not need

to know at which order of the leakage prevails as they

are expected to capture any PDF characteristics at the

expense of using more traces by the increasing of the

leakage order.
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Fig. 11 Plots of SR for Histo-MIA (9 bins) and KDE-MIA
using the distinguishing rule θKDE

opt (here, hS) across different
level noise log2(SNR).

We also used the class of Normal Inverse Gaussian

(NIG) distributions [4] for which its parametrization

allows controlling higher-order statistical moments and

therefore building simulated leakages until fourth-order

statistical moment. Let LNIG be a RV following a NIG

distribution with parameter vector (α, β, µ, σ) as

LNIG ∼ NIG(α, β, µ, σ), (25)

µ ∈ R, α, δ, β ∈ R∗+, 0 < |β| < α,
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with µ, σ, α and β the respective location, scale, tail

heaviness and asymmetry parameters. For the sake of

clarity, we set γ =
√
α2 − β2 and its statistical mo-

ments are

Mean(LNIG) = µ+ σ
β

γ
Var(LNIG) = σ

α2

γ3

Skew(LNIG) = 3
β

α
√
σγ

Kurt(LNIG) = 3
α2 + 4β2

σα2γ
,

The leakage measurements have been independently

simulated for second, third and fourth-order statistical

moment by evaluating one and taking the remaining

ones (almost) constant. We noticed that θKDEopt value is

close to hS when looking at the optimal value in the set

Θ = {hS

20 ,
hS

19 , . . . , 19·hS , 20·hS}. This gives insights into

the way of setting tuning parameters involved in PDF

estimation when the leakage is embedded on higher-

order statistical moment.

5.3 Results on Real-world datasets

To sustain the observations obtained on synthetic data,

some experiments on real measurements were conducted.

Attacked Datasets. We focused on three differ-

ent AES implementations (denoted by DUT #1, #2

and #3) with leakage characteristics similar to those of

some of the scenarios we analyzed in section 5.2. Mea-

surements of DUT #1 and #3 are publicly available

from the second (v2) and fourth version (v4.1) of DPA

contest campaign [1] while measurements of DUT #2

were acquired by ourselves. Here are some characteris-

tics of these DUT:

– DUT #1: an unprotected hardware AES-128 imple-

mentation on Xilinx Virtex-5 FPGA.

– DUT #2: an unprotected AES-128 designed with

a 65nm Low Power High Threshold Voltage CMOS

technology integrating an in-house communication

protocol and supplied by 16 pads so that the power

consumed by the AES is not drawn from a single

power pad. A Xilinx Spartan 3 FPGA board is used

to drive the integrated chip. Our acquisition cam-

paign setup provided us 150000 power traces which

were acquired with a differential probe measuring

the variations of Vdd and Gnd, using a 8-bit oscil-

loscope with a 20GS/s sampling rate and a band-

width of 1MHz-4GHz. A picture of the IC showing

the location of the AES on the die and the experi-

ment set-up used to collect power traces is given in

Figure 12.
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Fig. 12 Picture of the test chip DUT#2 showing the position
of the 16 Vdd and Gnd pads (top) and measurement setup
(left).

– DUT #3: a protected software AES-256 implemen-

tation on a 350nm metal-3 layer ATMEL AVR-163

microcontroller where the protection applied was an

instance of low entropy masking scheme (LEMS):

Rotating Sboxes Masking (RSM) [30].

Datasets Analysis. Before running further ana-

lyzes, it is noteworthy that each tested DUT represents

a specific leakage simulation previously studied in Sec-

tion 5.2. Indeed, DUT #1 should be identified to a lin-

ear leakage embedded on first-order statistical moment

as in scenario no1 , whereas DUT #2 to a non-linear

leakage embedded on first-order statistical moment as

in scenario no3 . Indeed, a leakage precharacterization

at the word level (HD) using the Akaike Criterion (AIC)

[2] with the weighted least squares method, showed us a

non-linear leakage for almost all the S-box according to

high (resp. low) degree of the polynomials ranging from

4 to 8 for DUT #2 (resp. from 1 to 3 for DUT #1) at

the word level. More details can be found in [47]. DUT

#3 should be identified to leakage based on a higher-
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order statistical moment, i.e. fourth, as also underlined

in [52] and [27], corresponding to a real-world applica-

tion of the simulated leakage in Section 5.2.2.

Leakage Detection. For DUT #1 and #2 (which

is attempted to leak on the first-order statistical mo-

ment), we used the NICV [10] as a leakage detection

technique. In contrast, for DUT #3, we naively selected

τ as the sample point which maximizes the CPA results

knowing the offset masks over the whole sample points

of the online available campaign. For the sake of fair-

ness, but not optimality, we selected one (the same)

single PoI τ for the comparison of all the investigated

attacks. An extension of NICV using MI to select PoI

for which the leakage is embedded in higher-order sta-

tistical moment could be exploited.

Experimental results. We carried out univariate

attacks on the key byte 0 (arbitrarily chosen) for each

DUT. For sake of clarity and terminology in view of gen-

eralizing our insights to other nonparametric methods

(e.g. histograms), we denote low (resp. high) resolution

KDE-MIA, MIA for which the PDF estimation is done

with a large (resp. small) bandwidth value. Here ‘large’

(resp. ‘small’) means typically that the bandwidth value

≈ 12 · hS (resp. hS).

The results of these attacks are provided in Figure

13. To compute SR, we conducted on, DUT #1, 32

independent attacks since public acquisition campaign

contains 640000 power measurements divided in 32 sets

of 20000 measurements, i.e. each of them corresponds to

a (different) random key used to encrypt 20000 random

plaintexts. Regarding DUT #2 (resp. #3), we divided
the 150000 (resp. 100000) acquired power (resp. EM)

measurements with the same key into 100 subsets. As

it can be noticed, results on real-world scenarios match

with those obtained in simulated cases. More precisely,

low resolution KDE-MIA performs better for DUT #1

and #2 than high resolution KDE-MIA since the lin-

ear and non-linear leakage is enclosed on the first-order

statistical moment, respectively. High resolution KDE-

MIA clearly outperforms all the other attacks for DUT

#3. This can be explained by the fact that the leakage

is based on the fourth-order statistical moment which

can be captured by a MIA doing an accurate PDF es-

timation. The ease of this successful key recovery (i.e.

the low number of measurements) is due to the used

of a software implementation: ATMega 163 microcon-

troller for which the Signal-to-Noise ratio is very high

[24]. Furthermore, less than 30 measurements were re-

quired to reach an success rate of 80% by univariate

CPA attack knowing the mask as presented in [7]. All

these experimental results confirm the observations we

did in Section 5.2. We also conducted experiments on

other key bytes following the same framework. Results

are displayed in Figure 14. As attacks against masking

are difficult [39] when the noise level is high, which is

typically the case of hardware implementation (mainly

due to algorithmic noise), one should rather implement-

ing RSM countermeasure in hardware than in software

implementation to increase its SCA robustness. In or-

der to prevent SCA, another known technique called

Shuffling, i.e. a random execution order of sensitive op-

erations e.g. S-box. Note this countermeasure has been

exactly used for the next version (v4.2) of the DPA con-

test [1].
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Fig. 13 Plots of SR for all investigated DUT.
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Remark 1: By mounting a high resolution Histogram-

based MIA using 256 bins for DUT #3 following the

insights previously made, we obtained similar results

with high resolution KDE-MIA sustaining the way of

finely estimating probability distributions whatever the

used PDF estimation tool. Moreover, we also observed

that θhistoopt is high considering θhisto as the number of

equiwidth bins and Θ = {3, . . . , 300}.
Remark 2: For DUT #3, since the mask distribution

is not uniformly distributed over F8
2, one can raise the

centered and standardized leakage to the fourth power

in order to exploit a noisy leakage embedded on the

first-order statistical moment. Nevertheless, this leads

in practice to an unsuccessful key recovery with CPA

even when all the available measurements are used be-

cause of the noise which is also raised to the fourth

power as well.
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Fig. 14 Plots of partial Success Rate (pSR) for all the key
bytes for DUT #3.

6 Conclusion

The introduction of the MIA was motivated by its the-

oretical ability in capturing all structures of functional

and statistical dependencies between leakage and sen-

sitive intermediate values; these latter being sometimes

based on higher-order statistical moment because of the

usage of some countermeasures. But the cost of this

MIA feature lies in the difficulty in choosing adequately

some tuning parameters. By focusing on the goal of op-

timizing KDE-MIA efficiency and flexibility instead of

the auxiliary task of estimating PDF, we have defined

practical guidelines for the implementation of efficient

KDE-MIA through the proper selection of the band-

width. These guidelines are based on the statistical mo-

ments in which the adversary aims at finding the leak-

age. The resulting bandwidths are usually larger than

the commonly used hS (obtained by Silverman’s rule

in Eq. (14)) and give better results in terms of attack

efficiency across various simulations and real world ex-

periments when the leakage is based on the first-order

statistical moment (i.e. mean) which is usually the case

in practice for unprotected implementations. In con-

trast smaller bandwidths (reported close to hS) are re-

quired when the leakage is embedded on higher-order

statistical moments in presence of some countermea-

sures (e.g. fourth-order in case of RSM with specific

mask distribution) due to a need of an accurate PDF

estimation. As a result, a trade-off between flexibility

and efficiency can be adopted by adversaries accord-

ing to a prior knowledge on the leakage characteristics.

More generally, this work provides a characterization of

MIA’s efficiency/flexibility according to the resolution

(based on tuning parameters) involved in nonparamet-

ric PDF estimation methods. Interestingly, one should

note that low resolution MIA gives very similar results

than AoV. We have shown that MIA conducted fol-

lowing these guidelines compares favorably with DPA

[8,25], CPA [12], LRA [15] and AoV [43,5,23,46] and

are even superior in some cases where the latters fail.

The purpose of the distinguishing rule presented in this

paper is mainly to formalize the intuition behind our

results related to the PDF estimation step and pro-

vide study cases for which an a priori accuracy-based

approach is not the straightforward way to achieve ef-

ficiency in SCA context. Note that the application of

this rule depends on the a priori knowledge on the

statistical moment embedding the leakage and finetune

hyperparameters for some MI-based distinguishers ac-

cording to the latter is not essential in practice since

more general practical guideline can be drawn based on

our conclusions. Through this work, we feel that vari-

ous hyperparameters in the SCA contexts will be able

to be set using this proposed rule and we believe that

some benefits can be achieved in adapting the principles

of statistical methods to the task at end: SCA in the

present case. The formal investigation of our results to

further talk about optimality for MIA should be an in-

teresting perspective as well as formally define in which

context MIA is more efficient than CPA.
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