T. Baubec and D. Schubeler, Genomic patterns and context specific interpretation of DNA methylation, Curr. Opin. Genet. Dev, vol.25, pp.85-92, 2014.

F. M. Piccolo and A. G. Fisher, Getting rid of DNA methylation, Trends Cell Biol, vol.24, pp.136-143, 2014.

L. M. Iyer, S. Abhiman, and L. Aravind, Natural history of eukaryotic DNA methylation systems, Prog. Mol. Biol. Transl. Sci, vol.101, pp.25-104, 2011.

L. M. Iyer, M. Tahiliani, A. Rao, and L. Aravind, Prediction of novel families of enzymes involved in oxidative and other complex modifications of bases in nucleic acids, Cell Cycle, vol.8, pp.1698-1710, 2009.

M. G. Goll and T. H. Bestor, Eukaryotic cytosine methyltransferases, Annu. Rev. Biochem, vol.74, pp.481-514, 2005.

Y. Huang and A. Rao, New functions for DNA modifications by TET-JBP, Nat. Struct. Mol. Biol, vol.19, pp.1061-1064, 2012.

W. A. Pastor, L. Aravind, and A. Rao, TETonic shift: Biological roles of TET proteins in DNA demethylation and transcription, Nat. Rev. Mol. Cell Biol, vol.14, pp.341-356, 2013.

M. Tahiliani, K. P. Koh, Y. Shen, W. A. Pastor, H. Bandukwala et al., Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1, Science, vol.324, pp.930-935, 2009.

Y. F. He, B. Z. Li, Z. Li, P. Liu, Y. Wang et al., Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA, Science, vol.333, pp.1303-1307, 2011.

S. Ito, A. C. D'alessio, O. V. Taranova, K. Hong, L. C. Sowers et al., Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification, Nature, vol.466, pp.1129-1133, 2010.

K. Williams, J. Christensen, and K. Helin, DNA methylation: TET proteins-guardians of CpG islands? EMBO Rep, vol.13, pp.28-35, 2012.

L. Hu, Z. Li, J. Cheng, Q. Rao, W. Gong et al., Crystal structure of TET2-DNA complex: Insight into TET-mediated 5mC oxidation, Cell, vol.155, pp.1545-1555, 2013.

M. Ko, J. An, H. S. Bandukwala, L. Chavez, T. Aijo et al., Modulation of TET2 expression and 5-methylcytosine oxidation by the CXXC domain protein IDAX, Nature, vol.497, pp.122-126, 2013.

A. Szwagierczak, S. Bultmann, C. S. Schmidt, F. Spada, and H. Leonhardt, Sensitive enzymatic quantification of 5-hydroxymethylcytosine in genomic DNA, Nucleic Acids Res, vol.38, 2010.

H. Zhao and T. Chen, Tet family of 5-methylcytosine dioxygenases in mammalian development, J. Hum. Genet, vol.58, pp.421-427, 2013.

S. L. Kosakovsky-pond and S. D. Frost, Not so different after all: A comparison of methods for detecting amino acid sites under selection, Mol. Biol. Evol, vol.22, pp.1208-1222, 2005.

B. Murrell, S. Moola, A. Mabona, T. Weighill, D. Sheward et al., FUBAR: A fast, unconstrained bayesian approximation for inferring selection, Mol. Biol. Evol, vol.30, pp.1196-1205, 2013.

R. Nielsen and Z. Yang, Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene, Genetics, vol.148, pp.929-936, 1998.

Z. Yang, R. Nielsen, N. Goldman, and A. M. Pedersen, Codon-substitution models for heterogeneous selection pressure at amino acid sites, Genetics, vol.155, pp.431-449, 2000.

S. Guindon, A. G. Rodrigo, K. A. Dyer, and J. P. Huelsenbeck, Modeling the site-specific variation of selection patterns along lineages, Proc. Natl. Acad. Sci, vol.101, pp.12957-12962, 2004.
URL : https://hal.archives-ouvertes.fr/lirmm-00171208

, Int. J. Mol. Sci, vol.16, pp.28472-28485, 2015.

M. Anisimova, R. Nielsen, and Z. Yang, Effect of recombination on the accuracy of the likelihood method for detecting positive selection at amino acid sites, Genetics, vol.164, pp.1229-1236, 2003.

S. L. Kosakovsky-pond, D. Posada, M. B. Gravenor, C. H. Woelk, S. D. Frost et al., A genetic algorithm for recombination detection, Bioinformatics, vol.22, pp.3096-3098, 2006.

W. Delport, A. F. Poon, S. D. Frost, S. L. Kosakovsky-pond, and . Datamonkey, A suite of phylogenetic analysis tools for evolutionary biology, Bioinformatics, vol.26, pp.2455-2457, 2010.

A. L. De-matos, G. Mcfadden, and P. J. Esteves, Positive evolutionary selection on the RIG-I-like receptor genes in mammals, PLoS ONE, vol.8, 2013.

G. Wlasiuk and M. W. Nachman, Adaptation and constraint at Toll-like receptors in primates, Mol. Biol. Evol, vol.27, pp.2172-2186, 2010.

Y. Muto, S. Guindon, T. Umemura, L. Kohidai, and H. Ueda, Adaptive evolution of formyl peptide receptors in mammals, J. Mol. Evol, vol.80, pp.130-141, 2015.

A. Lu and S. Guindon, Performance of standard and stochastic branch-site models for detecting positive selection among coding sequences, Mol. Biol. Evol, vol.31, pp.484-495, 2014.

T. A. Castoe, A. P. De-koning, H. M. Kim, W. Gu, B. P. Noonan et al., Evidence for an ancient adaptive episode of convergent molecular evolution, Proc. Natl. Acad. Sci, vol.106, pp.8986-8991, 2009.

K. T. Davies, G. Tsagkogeorga, N. C. Bennett, L. M. Davalos, C. G. Faulkes et al., Molecular evolution of growth hormone and insulin-like growth factor 1 receptors in long-lived, small-bodied mammals, Gene, vol.549, pp.228-236, 2014.

S. Nguyen, K. Meletis, D. Fu, S. Jhaveri, and R. Jaenisch, Ablation of de novo DNA methyltransferase Dnmt3a in the nervous system leads to neuromuscular defects and shortened lifespan, Dev. Dyn, vol.236, pp.1663-1676, 2007.

A. Shukla, M. Sehgal, and T. R. Singh, Hydroxymethylation and its potential implication in DNA repair system: A review and future perspectives, Gene, vol.564, pp.109-118, 2015.

T. Endo, K. Ikeo, and T. Gojobori, Large-scale search for genes on which positive selection may operate, Mol. Biol. Evol, vol.13, pp.685-690, 1996.

A. M. Jankowska, H. Szpurka, R. V. Tiu, H. Makishima, M. Afable et al., Loss of heterozygosity 4q24 and TET2 mutations associated with myelodysplastic/myeloproliferative neoplasms, Blood, vol.113, pp.6403-6410, 2009.

S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang et al., Gapped BLAST and PSI-BLAST: A new generation of protein database search programs, Nucleic Acids Res, vol.25, pp.3389-3402, 1997.

A. Stabenau, G. Mcvicker, C. Melsopp, G. Proctor, M. Clamp et al., The Ensembl core software libraries, Genome Res, vol.14, pp.929-933, 2004.

K. Katoh and H. Toh, Recent developments in the MAFFT multiple sequence alignment program, Brief. Bioinform, vol.9, pp.286-298, 2008.

S. Capella-gutierrez, J. M. Silla-martinez, and T. Gabaldon, trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses, Bioinformatics, vol.25, pp.1972-1973, 2009.

M. Suyama, D. Torrents, and P. Bork, PAL2NAL: Robust conversion of protein sequence alignments into the corresponding codon alignments, Nucleic Acids Res, vol.34, pp.609-612, 2006.

S. Guindon, J. F. Dufayard, V. Lefort, M. Anisimova, W. Hordijk et al., New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0, Syst. Biol, vol.59, pp.307-321, 2010.
URL : https://hal.archives-ouvertes.fr/lirmm-00511784

D. Darriba, G. L. Taboada, R. Doallo, and D. Posada, jModelTest 2: More models, new heuristics and parallel computing, Nat. Methods, vol.9, p.772, 2012.

H. Kishino and M. Hasegawa, Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea, J. Mol. Evol, vol.29, pp.170-179, 1989.

S. Yoshizaki, T. Umemura, K. Tanaka, K. Watanabe, M. Hayashi et al., Genome-wide evidence of positive selection in Bacteroides fragilis, Comput. Biol. Chem, vol.52, pp.43-50, 2014.

Z. Yang, Phylogenetic analysis by maximum likelihood, Mol. Biol. Evol, vol.24, pp.1586-1591, 2007.

Z. Yang, W. S. Wong, and R. Nielsen, Bayes empirical bayes inference of amino acid sites under positive selection, Mol. Biol. Evol, vol.22, pp.1107-1118, 2005.

B. Murrell, J. O. Wertheim, S. Moola, T. Weighill, K. Scheffler et al., Detecting individual sites subject to episodic diversifying selection, PLoS Genet, vol.8, 2012.

U. Consortium, UniProt: A hub for protein information, Nucleic Acids Res, vol.43, pp.204-212, 2015.