D. B. Roche, M. T. Buenavista, and L. J. Mcguffin, FunFOLDQA: A quality assessment tool for protein-ligand binding site residue predictions, PLoS ONE, vol.7, 2012.

D. B. Roche, M. T. Buenavista, and L. J. Mcguffin, Predicting protein structures and structural annotation of proteomes, In Encyclopedia of Biophysics

G. C. Roberts and . Ed, , vol.1, 2012.

D. B. Roche, M. T. Buenavista, and L. J. Mcguffin, The FunFOLD2 server for the prediction of protein-ligand interactions, Nucleic Acids Res, vol.41, pp.303-307, 2013.

D. B. Roche, S. J. Tetchner, L. J. Mcguffin, and . Funfold, An improved automated method for the prediction of ligand binding residues using 3D models of proteins, BMC Bioinforma, vol.12, 2011.

H. P. Rang, J. M. Ritter, R. J. Flower, and G. Henderson, Rang and Dale's Pharmacology, 2015.

A. A. Walsh, G. D. Szklarz, and E. E. Scott, Human cytochrome P450 1A1 structure and utility in understanding drug and xenobiotic metabolism, J. Biol. Chem, vol.288, pp.12932-12943, 2013.

K. H. Yang, J. H. Lee, and M. G. Lee, Effects of CYP inducers and inhibitors on the pharmacokinetics of intravenous theophylline in rats: Involvement of CYP1A1/2 in the formation of, vol.1, p.3

, J. Pharm. Pharmacol, vol.60, pp.45-53, 2008.

G. Lopez, I. Ezkurdia, and M. L. Tress, Assessment of ligand binding residue predictions in CASP8, Proteins, vol.77, pp.138-146, 2009.

C. Kauffman and G. Karypis, Ligand-binding residue prediction, Introduction to Protein Structure Prediction: Methods and Algorithms, 2010.

E. Yuriev, J. Holien, and P. A. Ramsland, Improvements, trends, and new ideas in molecular docking: 2012-2013 in review, J. Mol. Recognit, vol.28, pp.581-604, 2015.

K. Ye, K. A. Feenstra, J. Heringa, A. P. Ijzerman, and E. Marchiori, Multi-relief: A method to recognize specificity determining residues from multiple sequence alignments using a machine-learning approach for feature weighting, Bioinformatics, vol.24, pp.18-25, 2008.

D. Yu, J. Hu, J. Yang, H. Shen, J. Tang et al., Designing template-free predictor for targeting protein-ligand binding sites with classifier ensemble and spatial clustering, IEEE/ACM Trans. Comput. Biol. Bioinform, vol.10, pp.994-1008, 2013.

P. Chen, J. H. Huang, and X. Gao, Ligandrfs: Random forest ensemble to identify ligand-binding residues from sequence information alone. BMC Bioinforma, 2014.

D. J. Yu, J. Hu, Q. M. Li, Z. M. Tang, J. Y. Yang et al., Constructing query-driven dynamic machine learning model with application to protein-ligand binding sites prediction, IEEE Trans. Nanobiosci, vol.14, pp.45-58, 2015.

S. Sankararaman, B. Kolaczkowski, and K. Sjolander, Intrepid: A web server for prediction of functionally important residues by evolutionary analysis, Nucleic Acids Res, vol.37, pp.390-395, 2009.

S. Sankararaman, F. Sha, J. F. Kirsch, M. I. Jordan, and K. Sjolander, Active site prediction using evolutionary and structural information, Bioinformatics, vol.26, pp.617-624, 2010.

H. Ashkenazy, E. Erez, E. Martz, T. Pupko, N. Ben-tal et al., Calculating evolutionary conservation in sequence and structure of proteins and nucleic acids, Nucleic Acids Res, vol.38, pp.529-533, 2010.

M. N. Wass and M. J. Sternberg, Confunc-functional annotation in the twilight zone, Bioinformatics, vol.24, pp.798-806, 2008.

T. Wierschin, K. Wang, M. Welter, S. Waack, and M. Stanke, Combining features in a graphical model to predict protein binding sites, Proteins, vol.83, pp.844-852, 2015.

I. Kononenko, Estimating attributes: Analysis and extensions of relief, Proceedings of the European Conference on Machine Learning, pp.171-182, 1994.

S. Kawashima, P. Pokarowski, M. Pokarowska, A. Kolinski, T. Katayama et al., Amino acid index database, vol.36, pp.202-205, 2008.

S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang et al., Gapped BLAST and PSI-BLAST: A new generation of protein database search programs, Nucleic Acids Res, vol.25, pp.3389-3402, 1997.

C. Uniprot, UniProt: A hub for protein information, Nucleic Acids Res, vol.43, pp.204-212, 2015.

L. J. Mcguffin, K. Bryson, and D. T. Jones, The PSIPRED protein structure prediction server, Bioinformatics, vol.16, pp.404-405, 2000.

M. Brylinski and J. Skolnick, A threading-based method (FINDSITE) for ligand-binding site prediction and functional annotation, Proc. Natl. Acad. Sci, vol.105, pp.129-134, 2008.

J. C. Fuller, M. Martinez, S. Henrich, A. Stank, S. Richter et al., Ligdig: A web server for querying ligand-protein interactions, Bioinformatics, vol.13, pp.1147-1149, 2015.

Z. R. Xie, C. K. Liu, F. C. Hsiao, A. Yao, M. J. Hwang et al., A server using ligand-interacting and site-enriched protein triangles for prediction of ligand-binding sites, Nucleic Acids Res, vol.41, pp.292-296, 2013.

X. Zhu, Y. Xiong, and D. Kihara, Large-scale binding ligand prediction by improved patch-based method patch-surfer2.0, Bioinformatics, vol.31, pp.707-713, 2015.

R. Spitzer, A. E. Cleves, and A. N. Jain, Surface-based protein binding pocket similarity, Proteins, vol.79, pp.2746-2763, 2011.

S. Erdin, R. M. Ward, E. Venner, and O. Lichtarge, Evolutionary trace annotation of protein function in the structural proteome, J. Mol. Biol, vol.396, pp.1451-1473, 2010.

R. Krivak and D. Hoksza, Improving protein-ligand binding site prediction accuracy by classification of inner pocket points using local features, J. Cheminform, vol.7, p.12, 2015.

H. Kokubo, T. Tanaka, and Y. Okamoto, Two-dimensional replica-exchange method for predicting protein-ligand binding structures, J. Comput. Chem, vol.34, pp.2601-2614, 2013.

L. Chang, T. Ishikawa, K. Kuwata, and S. Takada, Protein-specific force field derived from the fragment molecular orbital method can improve protein-ligand binding interactions, J. Comput. Chem, vol.34, pp.1251-1257, 2013.

T. Estrada, B. Zhang, P. Cicotti, R. S. Armen, and M. Taufer, A scalable and accurate method for classifying protein-ligand binding geometries using a mapreduce approach, Comput. Biol. Med, vol.42, pp.758-771, 2012.

J. Desaphy, E. Raimbaud, P. Ducrot, and D. Rognan, Encoding protein-ligand interaction patterns in fingerprints and graphs, J. Chem. Inf. Model, vol.53, pp.623-637, 2013.

J. C. Santos, H. Nassif, D. Page, S. H. Muggleton, and M. J. Sternberg, Automated identification of protein-ligand interaction features using inductive logic programming: A hexose binding case study, BMC Bioinform, vol.13, 2012.

L. Jacob and J. P. Vert, Protein-ligand interaction prediction: An improved chemogenomics approach, Bioinformatics, vol.24, pp.2149-2156, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00433572

M. H. Seifert, F. Schmitt, T. Herz, and B. Kramer, Propose: A docking engine based on a fully configurable protein-ligand interaction model, J. Mol. Model, vol.10, pp.342-357, 2004.

S. Das, I. Sillitoe, D. Lee, J. G. Lees, N. L. Dawson et al., Cath funfhmmer web server: Protein functional annotations using functional family assignments, Nucleic Acids Res, vol.43, pp.148-153, 2015.

W. He, Z. Liang, M. Teng, and L. Niu, Mfasd: A structure-based algorithm for discriminating different types of metal-binding sites, Bioinformatics, vol.31, 1938.

J. Konc and D. Janezic, Probis-2012: Web server and web services for detection of structurally similar binding sites in proteins, Nucleic Acids Res, vol.40, pp.214-221, 2012.

J. Konc and D. Janezic, Probis algorithm for detection of structurally similar protein binding sites by local structural alignment, Bioinformatics, vol.26, pp.1160-1168, 2010.

T. Krotzky, T. Fober, E. Hullermeier, and G. Klebe, Extended graph-based models for enhanced similarity search in cavbase, IEEE/ACM Trans. Comput. Biol. Bioinform, vol.11, pp.878-890, 2014.

S. Schmitt, D. Kuhn, and G. Klebe, A new method to detect related function among proteins independent of sequence and fold homology, J. Mol. Biol, vol.323, pp.387-406, 2002.

M. Hernandez, D. Ghersi, and R. Sanchez, Sitehound-web: A server for ligand binding site identification in protein structures, Nucleic Acids Res, vol.37, pp.413-416, 2009.

S. Amari, M. Aizawa, J. Zhang, K. Fukuzawa, Y. Mochizuki et al., Visualized cluster analysis of protein-ligand interaction based on the ab initio fragment molecular orbital method for virtual ligand screening, J. Chem. Inf. Model, vol.46, pp.221-230, 2006.

Y. Lin, S. Yoo, and R. Sanchez, Sitecomp: A server for ligand binding site analysis in protein structures, Bioinformatics, vol.28, pp.1172-1173, 2012.

D. Kozakov, L. E. Grove, D. R. Hall, T. Bohnuud, S. E. Mottarella et al., The FTMap family of web servers for determining and characterizing ligand-binding hot spots of proteins, Nat. Protoc, vol.10, pp.733-755, 2015.

J. Yang, A. Roy, and Y. Zhang, Protein-ligand binding site recognition using complementary binding-specific substructure comparison and sequence profile alignment, Bioinformatics, vol.29, pp.2588-2595, 2013.

A. Roy, J. Yang, and Y. Zhang, Cofactor: An accurate comparative algorithm for structure-based protein function annotation, Nucleic Acids Res, vol.40, pp.471-477, 2012.

L. Heo, W. H. Shin, M. S. Lee, C. Seok, and . Galaxysite, Ligand-binding-site prediction by using molecular docking, Nucleic Acids Res, vol.42, pp.210-214, 2014.

S. C. Izidoro, R. C. De-melo-minardi, G. L. Pappa, and . Gass, Identifying enzyme active sites with genetic algorithms, Bioinformatics, 2014.

Z. Guo, B. Li, L. T. Cheng, S. Zhou, J. A. Mccammon et al., Identification of protein-ligand binding sites by the level-set variational implicit-solvent approach, J. Chem. Theory Comput, vol.11, pp.753-765, 2015.

S. Salentin, S. Schreiber, V. J. Haupt, M. F. Adasme, and M. Schroeder, Plip: Fully automated protein-ligand interaction profiler, Nucleic Acids Res, vol.43, pp.443-447, 2015.

B. Huang, M. Schroeder, and . Ligsitecsc, Predicting ligand binding sites using the connolly surface and degree of conservation, BMC Struct. Biol, vol.6, 2006.

C. D. Andersson, B. Y. Chen, and A. Linusson, Mapping of ligand-binding cavities in proteins, Proteins, vol.78, pp.1408-1422, 2010.

D. B. Roche and L. J. Mcguffin, In silico identification and characterization of protein-ligand binding sites, methods in molecular biology, Structure based and Computational Design of Ligand Binding Proteins

B. Stoddard, D. Baker, and . Eds, , 2015.

J. Hastings, P. De-matos, A. Dekker, M. Ennis, B. Harsha et al., The ChEBi reference database and ontology for biologically relevant chemistry: Enhancements for, Nucleic Acids Res, vol.41, pp.456-463, 2013.

H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat et al., The protein data bank, Nucleic Acids Res, vol.28, pp.235-242, 2000.

S. Okuda, T. Yamada, M. Hamajima, M. Itoh, T. Katayama et al., KEGG Atlas mapping for global analysis of metabolic pathways, Nucleic Acids Res, vol.36, pp.423-426, 2008.

Z. R. Xie and M. J. Hwang, An interaction-motif-based scoring function for protein-ligand docking, BMC Bioinform, vol.11, 2010.

D. Petrey, T. S. Chen, L. Deng, J. I. Garzon, H. Hwang et al., Template-based prediction of protein function, Curr. Opin. Struct. Biol, vol.32, pp.33-38, 2015.

D. B. Roche, M. T. Buenavista, S. J. Tetchner, and L. J. Mcguffin, The intfold server: An integrated web resource for protein fold recognition, 3D model quality assessment, intrinsic disorder prediction, domain prediction and ligand binding site prediction, Nucleic Acids Res, vol.39, pp.171-176, 2011.

L. J. Mcguffin, J. D. Atkins, B. R. Salehe, A. N. Shuid, and D. B. Roche, IntFOLD: An integrated server for modelling protein structures and functions from amino acid sequences, Nucleic Acids Res, 2015.
URL : https://hal.archives-ouvertes.fr/lirmm-01287105

J. Haas, S. Roth, K. Arnold, F. Kiefer, T. Schmidt et al., The protein model portal-A comprehensive resource for protein structure and model information, Database, 2013.

Y. Zhang and J. Skolnick, Tm-align: A protein structure alignment algorithm based on the TM-score, vol.33, pp.2302-2309, 2005.

J. Yang, A. Roy, and Y. Zhang, Biolip: A semi-manually curated database for biologically relevant ligand-protein interactions, Nucleic Acids Res, vol.41, pp.1096-1103, 2013.

D. B. Roche, S. J. Tetchner, and L. J. Mcguffin, The binding-site distance test score: A robust method for the assessment of predicted protein binding sites, Bioinformatics, vol.26, pp.2920-2921, 2010.

B. W. Matthews, Comparison of the predicted and observed secondary structure of T4 phage lysozyme, Biochim. Biophys. Acta, vol.405, pp.442-451, 1975.

M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler et al., Gene ontology: Tool for the unification of biology, Nat. Genet, vol.25, pp.25-29, 2000.

G. Ontology-consortium, Gene ontology consortium: Going forward, Nucleic Acids Res, vol.43, pp.1049-1056, 2015.

J. A. Capra, R. A. Laskowski, J. M. Thornton, M. Singh, and T. A. Funkhouser, Predicting protein ligand binding sites by combining evolutionary sequence conservation and 3D structure, PLoS Comput. Biol, vol.5, 2009.

N. Furnham, G. L. Holliday, T. A. De-beer, J. O. Jacobsen, W. R. Pearson et al., The catalytic site atlas 2.0: Cataloging catalytic sites and residues identified in enzymes, Nucleic Acids Res, vol.42, pp.485-489, 2014.

D. Talavera, R. A. Laskowski, and J. M. Thornton, Wssas: A web service for the annotation of functional residues through structural homologues, Bioinformatics, vol.25, pp.1192-1194, 2009.

T. Schmidt, J. Haas, T. Gallo-cassarino, and T. Schwede, Assessment of ligand-binding residue predictions in casp9, Proteins, vol.79, pp.126-136, 2011.

T. Gallo-cassarino, L. Bordoli, and T. Schwede, Assessment of ligand binding site predictions in CASP10, Proteins, vol.82, pp.154-163, 2014.

A. G. Mcdonald and K. F. Tipton, Fifty-five years of enzyme classification: Advances and difficulties, FEBS J, vol.281, pp.583-592, 2014.

D. Piovesan, M. Giollo, E. Leonardi, C. Ferrari, S. C. Tosatto et al., Protein function prediction combining interaction networks, domain assignments and sequence similarity, Nucleic Acids Res, vol.43, pp.134-140, 2015.

J. A. Gerlt, J. T. Bouvier, D. B. Davidson, H. J. Imker, B. Sadkhin et al., Enzyme function initiative-enzyme similarity tool (EFI-EST): A web tool for generating protein sequence similarity networks, Biochim. Biophys. Acta, vol.1854, pp.1019-1037, 2015.

S. M. Sahraeian, K. R. Luo, and S. E. Brenner, Sifter search: A web server for accurate phylogeny-based protein function prediction, Nucleic Acids Res, vol.43, pp.141-147, 2015.

G. W. Gundersen, M. R. Jones, A. D. Rouillard, Y. Kou, C. D. Monteiro et al., Geo2enrichr: Browser extension and server app to extract gene sets from geo and analyze them for biological functions, Bioinformatics, 2015.

P. Koskinen, P. Toronen, J. Nokso-koivisto, L. Holm, and . Pannzer, High-throughput functional annotation of uncharacterized proteins in an error-prone environment, Bioinformatics, vol.31, pp.1544-1552, 2015.

G. Yu, H. Zhu, and C. Domeniconi, Predicting protein functions using incomplete hierarchical labels, BMC Bioinform, vol.16, 2015.

T. Wang, H. Mori, C. Zhang, K. Kurokawa, X. H. Xing et al., Domsign: A top-down annotation pipeline to enlarge enzyme space in the protein universe, BMC Bioinforma, vol.16, p.96, 2015.

P. Radivojac, W. T. Clark, T. R. Oron, A. M. Schnoes, T. Wittkop et al., A large-scale evaluation of computational protein function prediction, Nat. Methods, vol.10, pp.221-227, 2013.

M. Oh, K. Joo, and J. Lee, Protein-binding site prediction based on three-dimensional protein modeling, Proteins, vol.77, pp.152-156, 2009.

M. N. Wass, L. A. Kelley, and M. J. Sternberg, Predicting ligand-binding sites using similar structures, Nucleic Acids Res, vol.38, pp.469-473, 2010.

Y. Zhou, S. Xue, and J. J. Yang, Calciomics: Integrative studies of Ca 2+ -binding proteins and their interactomes in biological systems, Metallomics, vol.5, pp.29-42, 2013.

C. G. Don and S. Riniker, Scents and sense: In silico perspectives on olfactory receptors, J. Comput. Chem, vol.35, pp.2279-2287, 2014.

J. Arredondo, M. Lara, F. Ng, D. A. Gochez, D. C. Lee et al., Cooh-terminal collagen Q (COLQ) mutants causing human deficiency of endplate acetylcholinesterase impair the interaction of ColQ with proteins of the basal lamina, Hum. Genet, vol.133, pp.599-616, 2014.

Q. Dong, R. Menon, G. S. Omenn, and Y. Zhang, Structural bioinformatics inspection of nextprot PE5 proteins in the human proteome, J. Proteome Res, vol.14, pp.3750-3761, 2015.

L. V. Bindschedler, L. J. Mcguffin, T. A. Burgis, P. D. Spanu, and R. Cramer, Proteogenomics and in silico structural and functional annotation of the barley powdery mildew blumeria graminis f. sp. hordei, Methods, vol.54, pp.432-441, 2011.

C. Pedersen, E. Ver-loren-van-themaat, L. J. Mcguffin, J. C. Abbott, T. A. Burgis et al., Structure and evolution of barley powdery mildew effector candidates, BMC Genomics, vol.13, 2012.

N. Pavlidi, V. Tseliou, M. Riga, R. Nauen, T. Van-leeuwen et al., Functional characterization of glutathione S-transferases associated with insecticide resistance in Tetranychus urticae, Pestic. Biochem. Physiol, vol.121, pp.53-60, 2015.

T. B. Taylor, G. Mulley, A. H. Dills, A. S. Alsohim, L. J. Mcguffin et al., Evolutionary resurrection of flagellar motility via rewiring of the nitrogen regulation system, Science, vol.347, pp.1014-1017, 2015.