The CloudMdsQL Multistore System
Boyan Kolev, Carlyna Bondiombouy, Patrick Valduriez, Ricardo Jiménez-Peris, Raquel Pau, José Pereira

To cite this version:

HAL Id: lirmm-01288025
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01288025
Submitted on 14 Mar 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
The CloudMdsSQL Multistore System

Boyan Kolev, Carlyna Bondiombouy, Patrick Valduriez

Inria and LIRMM
Montpellier, France
firstname.lastname@inria.fr

Ricardo Jiménez-Peris
LeanXcale and UPM
Madrid, Spain

Raquel Pau
Sparsity Technologies
Barcelona, Spain

José Pereira
INESC TEC and U. Minho
Braga, Portugal

ABSTRACT

The blooming of different cloud data management infrastructures has turned multistore systems to a major topic in the nowadays cloud landscape. In this demonstration, we present a Cloud Multidatastore Query Language (CloudMdsSQL), and its query engine. CloudMdsSQL is a functional SQL-like language, capable of querying multiple heterogeneous data stores (relational and NoSQL) within a single query that may contain embedded invocations to each data store’s native query interface. The major innovation is that a CloudMdsSQL query can exploit the full power of local data stores, by simply allowing some local data store native queries (e.g. a breadth-first search query against a graph database) to be called as functions, and at the same time be optimized.

Within our demonstration, we focus on two use cases each involving four diverse data stores (graph, document, relational, and key-value) with its corresponding CloudMdsSQL queries. The query execution flows are visualized by an embedded real-time monitoring subsystem. The users can also try out different ad-hoc queries, not necessarily in the context of the use cases.

Keywords

Cloud; multistore system; heterogeneous data stores; SQL and NoSQL integration.

1. INTRODUCTION

The blooming of different cloud data management infrastructures, specialized for different kinds of data and tasks, has led to a wide diversification of DBMS interfaces and the loss of a common programming paradigm. This makes it very hard for a user to integrate and analyze her/his data sitting in different data stores, e.g. RDBMS, NoSQL, and HDFS. For example, a media planning application, which needs to find top influencers inside social media communities for a list of topics, has to search for communities by keywords from a key-value store, then analyze the impact of influencers for each community using complex graph database traversals, and finally retrieve the influencers’ profiles from an RDBMS and an excerpt of their blog posts from a document database. The CoherentPaas project¹ addresses this problem, by providing a rich platform integrating different data management systems specialized for particular tasks, data and workloads. The platform is designed to provide a common programming model and language to query multiple data stores, which we herewith present.

The problem of accessing heterogeneous data sources has long been studied in the context of multidatabase and data integration systems [7]. More recently, with the advent of cloud databases and big data processing frameworks, the solution has evolved towards multistore systems that provide integrated access to a number of RDBMS, NoSQL and HDFS data stores through a common query engine. Data mediation SQL engines, such as Apache Drill, Spark SQL, and SQL++ provide common interfaces that allow different data sources to be plugged in (through the use of wrappers) and queried using SQL. The polystore BigDAWG [3] goes one step further by enabling queries across “islands of information”, where each island corresponds to a specific data model and its language and provides transparent access to a subset of the underlying data stores through the island’s data model. Another family of multistore systems [2,6] has been introduced with the goal of tightly integrating big data analytics frameworks (e.g. Hadoop MapReduce) with traditional RDBMS, by sacrificing the extensibility with other data sources. However, since none of these approaches supports the ad-hoc usage of native queries, they do not preserve the full expressivity of an arbitrary data store’s query language. But what we want to give the user is the ability to express powerful ad-hoc queries that exploit the full power of the different data store languages, e.g. directly express a path traversal in a graph database. Therefore, the current multistore solutions do not directly apply to solve our problem.

In this demonstration, we present Cloud multidatastore query language (CloudMdsSQL), a functional SQL-like language, designed for querying multiple heterogeneous databases (e.g. relational and NoSQL) within a single query containing nested subqueries [5]. Each subquery addresses directly a particular data store and may contain embedded invocations to the data store’s native query interface. Thus, the major innovation is that a CloudMdsSQL query can exploit the full power of local data stores, by simply allowing some local data store native queries (e.g. a

¹ http://coherentpaas.eu
breadth-first search query against a graph database) to be called as
functions, and at the same time be optimized based on a simple
cost model, e.g. by pushing down select predicates, using bind
join, performing join ordering, or planning intermediate data
shipping. CloudMdsQL has been extended [1] to address
distributed processing frameworks such as Apache Spark by
enabling the ad-hoc usage of user defined map/filter/reduce
operators as subqueries, yet allowing for pushing down predicates
and bind join conditions.

2. LANGUAGE OVERVIEW

The CloudMdsQL language is SQL-based with the extended
capabilities for embedding subqueries expressed in terms of each
data store’s native query interface. The common data model
respectively is table-based, with support of rich datatypes that
can capture a wide range of the underlying data stores’ datatypes, such
as arrays and JSON objects, in order to handle non-flat and nested
data, with basic operators over such composite datatypes.

Queries that integrate data from several data stores usually consist
of subqueries and an integration SELECT statement. A subquery
is defined as a named table expression, i.e. an expression that
returns a table and has a name and signature. The signature
defines the names and types of the columns of the returned
relation. Thus, each query, although agnostic to the underlying
data stores’ schemas, is executed in the context of an ad-hoc
schema, formed by all named table expressions within the query.
A named table expression can be defined by means of either an
SQL SELECT statement (that the query compiler is able to
analyze and possibly rewrite) or a native expression (that the
query engine considers as a black box and delegates its processing
directly to the data store). For example, the following simple
CloudMdsQL query contains two subqueries, defined by the
named table expressions T1 and T2, and addressed respectively
against the data stores rdb (an SQL database) and mongo (a
MongoDB database):

```sql
T1(x int, y int)rdb = ( SELECT x, y FROM A )
T2(x int, z array)mongo = {
  db.B.find( {lt: {x: 10}}, {x:1, z:1, _id:0} )
}
SELECT T1.x, T2.z
FROM T1, T2
WHERE T1.x = T2.x AND T1.y <= 3
```

The purpose of this query is to perform relational algebra
operations (expressed in the main SELECT statement) on two
datasets retrieved from a relational and a document database.
The two subqueries are sent independently for execution against their
data stores in order the retrieved relations to be joined by the
common query engine. The SQL table expression T1 is defined by
an SQL subquery, while T2 is a native expression (identified by
the special bracket symbols {* *} that captures a native
MongoDB call. Note that subqueries to some NoSQL data stores
can also be expressed as SQL statements; in such cases, the
wrapper must provide the mapping from relational operators to
native calls. In our demonstration, unlike in the example above,
we use an SQL wrapper to query MongoDB, which also benefits
from subquery rewriting.

CloudMdsQL allows named table expressions to be defined as
Python functions, which is useful for querying data stores that
have only API-based query interface. A Python expression yields
tuples to its result set much like a user-defined table function. It
can also use as input the result of other subqueries. Furthermore,
named table expressions can be parameterized by declaring
parameters in the expression’s signature. For example, the
following Python expression uses the intermediate data retrieved
by T2 to return another table containing the number of
occurrences of the parameter v in the array T2.z.

```python
T3(x int, c int WITHPARAMS v string)@python = {*
  for (x, z) in CloudMdsQL.T2:
    yield( x, z.count(v) )*
}
```

A (parameterized) named table can then be instantiated by passing
actual parameter values from another native/Python expression, as
a table function in a FROM clause, or even as a scalar function (e.g.
in the SELECT list). Calling a named table as a scalar function is
useful e.g. to express direct lookups into a key-value data store.

Note that parameterization and nesting is also available in SQL and
native named tables. In our demonstration, we give an example
that involves the Sparksee graph database and we use its Python
API to express subqueries that benefit from all of the features
described above. In fact, our initial query engine implementation
enables Python integration; however support for other languages
(e.g. JavaScript) for user-defined operations can be easily added.

3. SYSTEM OVERVIEW

The query engine follows a mediator/wrapper architecture. The
query compiler decomposes the query into a query execution plan
(QEP), which appears as a directed acyclic graph of relational
operators where leaf nodes correspond to subqueries for the
wrappers to execute directly against the data stores.

3.1 Query Optimization

Before its actual execution, a QEP may be rewritten by the query
optimizer. To compare alternative rewritings of a query, the
optimizer uses basic cost information exposed by the wrappers in
the form of cost functions or database statistics, and a simple cost
model. In addition, the query language provides a possibility for the
user to define cost and selectivity functions whenever they
cannot be derived from the catalog, mostly in the case of using
native subqueries.

CloudMdsQL uses bind join as an efficient method for performing
semi-joins across heterogeneous data stores that uses subquery
rewriting to push the join conditions. For example, the list of
distinct values of the join attribute(s), retrieved from the left-hand
side subquery, is passed as a filter to the right-hand side subquery.
To illustrate it, let us consider the following CloudMdsQL query:

```sql
SELECT a.x, b.y FROM b JOIN a ON b.id = a.id
```

Let us assume that the optimizer has decided to use the bind
join method and that the join condition will be bound to the right-hand
side of the join operation. First, the relation `B` is retrieved from the
corresponding data store using its query mechanism. Then, the
distinct values of B.id are used as a filter condition in the query
that retrieves the relation `A` from its data store. Assuming that the
distinct values of B.id are b1 ... bn, the query to retrieve the
right-hand side relation of the bind join uses the following SQL
approach (or its equivalent according to the data store’s query
language), thus retrieving from `A` only the rows that match the
join criteria:

```sql
SELECT a.id, a.x FROM a WHERE a.id IN (b1, ..., bn)
```

The way to do the bind join analogue for native/Python queries is
through the use of a JOINED ON clause in the named table
signature. For example, if `A` is defined as the Python function
below, as `A.id` participates in an equi-join, the values b1 ... bn
will be provided to the Python code through the iterator `Outer:`
In order to implement this use case, we use a graph database (Sparksee) to store the graph of Influences and compute the Communities; a relational database (MonetDB) for all the basic information about Entities and Documents (only metadata); a document database (MongoDB) to store the Document contents; and a key-value data store (HBase) to index communities per keyword. Following the execution plan for the CloudMdsQL query Q_1, the query engine first invokes an HBase query to retrieve the communities preliminarily computed for a specific keyword; then, for each community, runs a Sparksee query using the Sparksee Python API to find the top 20 influencers, the number of influenced entities inside the community, and the maximum influence propagation depth. Finally, the basic information of each influencer (id, name, account creation date) and the last published document is retrieved by running queries to MonetDB and MongoDB. Figure 1 summarizes the described execution plan using a notation where each box represents a table expression as a data store subquery with its signature and a fragment, (pseudo)statement, or description of the subquery.

Figure 1. Execution plan for Q_1.

For this execution plan, the query optimization plays an important role to assign the bind join method to all the join operations. The reason is that the selected communities relevant to the keywords k_1, k_2 and k_3 are always a few, and thus the Sparksee query is evaluated only for a few communities, which significantly reduces the number of executions of expensive graph computations. Analogously, using bind join to retrieve the latest documents only for the filtered influencers increases the overall efficiency significantly by pushing bind join conditions to the MonetDB and MongoDB subqueries that take advantage of the existing indexes in both databases. Note that the MongoDB subquery is expressed in SQL, but the wrapper maps its sub-plan to a chain of invocations of MongoDB native API.

Within the results of this query, there is a nested level of information and the ranking of the suggested communities and influencers is important. For this reason, the Q_1 results are shown using a chart (see Figure 2) where the outer level of circles represents communities whereas the inner one corresponds to the influencers of those communities. The sizes of the community circles correspond to the relevance of the specified keywords with a community, while the sizes of the influencer circles correspond to the impact a person has on the community regarding the keywords.
Scenario 2. The second use case application recommends reviewers for a specific European project taking into account the DBLP and CORDIS knowledge base. DBLP is a bibliographic dataset focused in computer science that currently contains 1.8 million publications and 1 million authors. CORDIS is the European projects database, which currently contains 40000 projects and 1000 institutions. The main query \(Q_2 \) is one of the key functionalities of a system built by Sparsity-Technologies to offer recommendations for researchers. The system visualizes the results from a web browser using HTML5 because it provides a clear way to analyze the results.