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ABSTRACT 
The blooming of different cloud data management infrastructures 
has turned multistore systems to a major topic in the nowadays 
cloud landscape. In this demonstration, we present a Cloud 
Multidatastore Query Language (CloudMdsQL), and its query 
engine. CloudMdsQL is a functional SQL-like language, capable 
of querying multiple heterogeneous data stores (relational and 
NoSQL) within a single query that may contain embedded 
invocations to each data store’s native query interface. The major 
innovation is that a CloudMdsQL query can exploit the full power 
of local data stores, by simply allowing some local data store 
native queries (e.g. a breadth-first search query against a graph 
database) to be called as functions, and at the same time be 
optimized. 

Within our demonstration, we focus on two use cases each 
involving four diverse data stores (graph, document, relational, 
and key-value) with its corresponding CloudMdsQL queries. The 
query execution flows are visualized by an embedded real-time 
monitoring subsystem. The users can also try out different ad-hoc 
queries, not necessarily in the context of the use cases. 
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1. INTRODUCTION 
The blooming of different cloud data management infrastructures, 
specialized for different kinds of data and tasks, has led to a wide 
diversification of DBMS interfaces and the loss of a common 
programming paradigm. This makes it very hard for a user to 
integrate and analyze her data sitting in different data stores, e.g. 
RDBMS, NoSQL, and HDFS. For example, a media planning 
application, which needs to find top influencers inside social 
media communities for a list of topics, has to search for 

communities by keywords from a key-value store, then analyze 
the impact of influencers for each community using complex 
graph database traversals, and finally retrieve the influencers’ 
profiles from an RDBMS and an excerpt of their blog posts from a 
document database. The CoherentPaaS project1 addresses this 
problem, by providing a rich platform integrating different data 
management systems specialized for particular tasks, data and 
workloads. The platform is designed to provide a common 
programming model and language to query multiple data stores, 
which we herewith present. 

The problem of accessing heterogeneous data sources has long 
been studied in the context of multidatabase and data integration 
systems [7]. More recently, with the advent of cloud databases 
and big data processing frameworks, the solution has evolved 
towards multistore systems that provide integrated access to a 
number of RDBMS, NoSQL and HDFS data stores through a 
common query engine. Data mediation SQL engines, such as 
Apache Drill, Spark SQL, and SQL++ provide common interfaces 
that allow different data sources to be plugged in (through the use 
of wrappers) and queried using SQL. The polystore BigDAWG 
[3] goes one step further by enabling queries across “islands of 
information”, where each island corresponds to a specific data 
model and its language and provides transparent access to a subset 
of the underlying data stores through the island’s data model. 
Another family of multistore systems [2,6] has been introduced 
with the goal of tightly integrating big data analytics frameworks 
(e.g. Hadoop MapReduce) with traditional RDBMS, by 
sacrificing the extensibility with other data sources. However, 
since none of these approaches supports the ad-hoc usage of 
native queries, they do not preserve the full expressivity of an 
arbitrary data store’s query language. But what we want to give 
the user is the ability to express powerful ad-hoc queries that 
exploit the full power of the different data store languages, e.g. 
directly express a path traversal in a graph database. Therefore, 
the current multistore solutions do not directly apply to solve our 
problem. 

In this demonstration, we present Cloud multidatastore query 
language (CloudMdsQL), a functional SQL-like language, 
designed for querying multiple heterogeneous databases (e.g. 
relational and NoSQL) within a single query containing nested 
subqueries [5]. Each subquery addresses directly a particular data 
store and may contain embedded invocations to the data store’s 
native query interface. Thus, the major innovation is that a 
CloudMdsQL query can exploit the full power of local data stores, 
by simply allowing some local data store native queries (e.g. a 
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breadth-first search query against a graph database) to be called as 
functions, and at the same time be optimized based on a simple 
cost model, e.g. by pushing down select predicates, using bind 
join, performing join ordering, or planning intermediate data 
shipping. CloudMdsQL has been extended [1] to address 
distributed processing frameworks such as Apache Spark by 
enabling the ad-hoc usage of user defined map/filter/reduce 
operators as subqueries, yet allowing for pushing down predicates 
and bind join conditions. 

2. LANGUAGE OVERVIEW 
The CloudMdsQL language is SQL-based with the extended 
capabilities for embedding subqueries expressed in terms of each 
data store’s native query interface. The common data model 
respectively is table-based, with support of rich datatypes that can 
capture a wide range of the underlying data stores’ datatypes, such 
as arrays and JSON objects, in order to handle non-flat and nested 
data, with basic operators over such composite datatypes. 

Queries that integrate data from several data stores usually consist 
of subqueries and an integration SELECT statement. A subquery 
is defined as a named table expression, i.e. an expression that 
returns a table and has a name and signature. The signature 
defines the names and types of the columns of the returned 
relation. Thus, each query, although agnostic to the underlying 
data stores’ schemas, is executed in the context of an ad-hoc 
schema, formed by all named table expressions within the query. 
A named table expression can be defined by means of either an 
SQL SELECT statement (that the query compiler is able to 
analyze and possibly rewrite) or a native expression (that the 
query engine considers as a black box and delegates its processing 
directly to the data store). For example, the following simple 
CloudMdsQL query contains two subqueries, defined by the 
named table expressions T1 and T2, and addressed respectively 
against the data stores rdb (an SQL database) and mongo (a 
MongoDB database): 
T1(x int, y int)@rdb = ( SELECT x, y FROM A ) 
T2(x int, z array)@mongo = {* 
  db.B.find( {$lt: {x, 10}}, {x:1, z:1, _id:0} ) 
*} 
SELECT T1.x, T2.z 
FROM T1, T2 
WHERE T1.x = T2.x AND T1.y <= 3 

The purpose of this query is to perform relational algebra 
operations (expressed in the main SELECT statement) on two 
datasets retrieved from a relational and a document database. The 
two subqueries are sent independently for execution against their 
data stores in order the retrieved relations to be joined by the 
common query engine. The SQL table expression T1 is defined by 
an SQL subquery, while T2 is a native expression (identified by 
the special bracket symbols {* *}) expressed as a native 
MongoDB call. Note that subqueries to some NoSQL data stores 
can also be expressed as SQL statements; in such cases, the 
wrapper must provide the mapping from relational operators to 
native calls. In our demonstration, unlike in the example above, 
we use an SQL wrapper to query MongoDB, which also benefits 
from subquery rewriting. 

CloudMdsQL allows named table expressions to be defined as 
Python functions, which is useful for querying data stores that 
have only API-based query interface. A Python expression yields 
tuples to its result set much like a user-defined table function. It 
can also use as input the result of other subqueries. Furthermore, 
named table expressions can be parameterized by declaring 
parameters in the expression’s signature. For example, the 

following Python expression uses the intermediate data retrieved 
by T2 to return another table containing the number of 
occurrences of the parameter v in the array T2.z. 
T3(x int, c int WITHPARAMS v string)@python = {* 
  for (x, z) in CloudMdsQL.T2: 
    yield( x, z.count(v) ) 
*} 

A (parameterized) named table can then be instantiated by passing 
actual parameter values from another native/Python expression, as 
a table function in a FROM clause, or even as a scalar function (e.g. 
in the SELECT list). Calling a named table as a scalar function is 
useful e.g. to express direct lookups into a key-value data store. 

Note that parametrization and nesting is also available in SQL and 
native named tables. In our demonstration, we give an example 
that involves the Sparksee graph database and we use its Python 
API to express subqueries that benefit from all of the features 
described above. In fact, our initial query engine implementation 
enables Python integration; however support for other languages 
(e.g. JavaScript) for user-defined operations can be easily added. 

3. SYSTEM OVERVIEW 
The query engine follows a mediator/wrapper architecture. The 
query compiler decomposes the query into a query execution plan 
(QEP), which appears as a directed acyclic graph of relational 
operators where leaf nodes correspond to subqueries for the 
wrappers to execute directly against the data stores. 

3.1 Query Optimization 
Before its actual execution, a QEP may be rewritten by the query 
optimizer. To compare alternative rewritings of a query, the 
optimizer uses basic cost information exposed by the wrappers in 
the form of cost functions or database statistics, and a simple cost 
model. In addition, the query language provides a possibility for 
the user to define cost and selectivity functions whenever they 
cannot be derived from the catalog, mostly in the case of using 
native subqueries. 

CloudMdsQL uses bind join as an efficient method for performing 
semi-joins across heterogeneous data stores that uses subquery 
rewriting to push the join conditions. For example, the list of 
distinct values of the join attribute(s), retrieved from the left-hand 
side subquery, is passed as a filter to the right-hand side subquery.  
To illustrate it, let us consider the following CloudMdsQL query: 
A(id int, x int)@DB1 = (SELECT a.id, a.x FROM a) 
B(id int, y int)@DB2 = (SELECT b.id, b.y FROM b) 
SELECT a.x, b.y FROM b JOIN a ON b.id = a.id 

Let us assume that the optimizer has decided to use the bind join 
method and that the join condition will be bound to the right-hand 
side of the join operation. First, the relation B is retrieved from the 
corresponding data store using its query mechanism. Then, the 
distinct values of B.id are used as a filter condition in the query 
that retrieves the relation A from its data store. Assuming that the 
distinct values of B.id are b1 … bn, the query to retrieve the 
right-hand side relation of the bind join uses the following SQL 
approach (or its equivalent according to the data store’s query 
language), thus retrieving from A only the rows that match the 
join criteria: 
SELECT a.id, a.x FROM a WHERE a.id IN (b1, …, bn) 

The way to do the bind join analogue for native/Python queries is 
through the use of a JOINED ON clause in the named table 
signature. For example, if A is defined as the Python function 
below, as A.id participates in an equi-join, the values b1 … bn 
will be provided to the Python code through the iterator Outer: 



A(id int, x int JOINED ON id)@DB1 = {* 
  for id in CloudMdsQL.Outer: 
    yield ( id, db.get_x(id) ) 
*} 

3.2 Query Engine Implementation 
For the current implementation of the query engine, we modified 
the open source Apache Derby database to accept CloudMdsQL 
queries and transform the corresponding execution plan into 
Derby SQL operations. We developed the query planner and the 
query execution controller and linked them to the Derby core, 
which we use as the operator engine. Derby allows extending the 
set of SQL operations by means of CREATE FUNCTION 
statements. This type of statements creates an alias, with an 
optional set of parameters, to invoke a specific Java component as 
part of an execution plan. Thus, for each named table expression 
in a query, a table function is created dynamically, which invokes 
the corresponding wrapper as a Java class. Thus, Derby handles 
global execution, delegating local optimization and execution to 
the underlying data stores. As a second step, the query engine 
evaluates which named expressions are queried more than once 
and must be cached into the temporary table storage, which will 
be always queried and updated from the specified Java functions 
to reduce the query execution time. Finally, the last step consists 
of translating all operation nodes that appear in the execution plan 
into a Derby specific SQL execution plan. 

4. DEMONSTRATION 
The demonstration concentrates on two CloudMdsQL use case 
scenarios from different information systems: a social network 
analysis tool for marketing companies and a bibliographic 
recommendation system. The users will have the possibility to 
experience the use case scenarios through their web interfaces. 
They will be also able to try out custom CloudMdsQL queries, to 
follow their corresponding query execution plans, and to monitor 
their execution flow through X-Ray [4] – a subsystem of the 
CoherentPaaS platform for real-time visualization of performance 
and resource usage integrated with all the components of the 
platform (the query engine and the underlying data stores). 

Scenario 1. The first use case aims at finding the communities in 
a social network, for a specific set of topics, with their top 
influencers. Marketing companies are interested in discovering the 
people they need to convince about the quality of a specific brand. 
The dataset of this use case is a sample of Twitter, but it allows 
working with other social networks like Facebook or blogs. The 
application runs a Twitter listener of a set of topics in real-time; it 
modifies the database for each tweet it receives. The schema of 
this application contains a generic entity called Document to store 
text-items (tweets, messages, etc.), which can appear copies or 
references. An Entity (person or company) is an author of a 
document or a mention of a social-network account. The people 
interactions in social networks with copies, references or 
mentions, can be understood as a set of graph of influences. In 
other words, we can infer who influences who and about what. 
These Influences and the Communities are incrementally 
computed when a new tweet comes to the application and thus, 
these concepts are part of the application schema. 

The specification of the main query Q1 the application uses is as 
follows: given a set of keywords k1, k2, k3, find the 10 biggest 
communities and, for each community, find the 20 most 
influencers. For each of these influencers, the system must return 
the number of influenced entities inside the community, the 
influencer’s id, name and account creation date and the last 
published document.  

In order to implement this use case, we use a graph database 
(Sparksee) to store the graph of Influences and compute the 
Communities; a relational database (MonetDB) for all the basic 
information about Entities and Documents (only metadata); a 
document database (MongoDB) to store the Document contents; 
and a key-value data store (HBase) to index communities per 
keyword. Following the execution plan for the CloudMdSQL 
query Q1, the query engine first invokes an HBase query to 
retrieve the communities preliminarily computed for a specific 
keyword; then, for each community, runs a Sparksee query using 
the Sparksee Python API to find the top 20 influencers, the 
number of influenced entities inside the community, and the 
maximum influence propagation depth. Finally, the basic 
information of each influencer (id, name, account creation date) 
and the last published document is retrieved by running queries to 
MonetDB and MongoDB. Figure 1 summarizes the described 
execution plan using a notation where each box represents a table 
expression as a data store subquery with its signature and a 
fragment, (pseudo)statement, or description of the subquery. 

 
Figure 1. Execution plan for Q1. 

For this execution plan, the query optimization plays an important 
role to assign the bind join method to all the join operations. The 
reason is that the selected communities relevant to the keywords 
k1, k2 and k3 are always a few, and thus the Sparksee query is 
evaluated only for a few communities, which significantly reduces 
the number of executions of expensive graph computations. 
Analogously, using bind join to retrieve the latest documents only 
for the filtered influencers increases the overall efficiency 
significantly by pushing bind join conditions to the MonetDB and 
MongoDB subqueries that take advantage of the existing indexes 
in both databases. Note that the MongoDB subquery is expressed 
in SQL, but the wrapper maps its sub-plan to a chain of 
invocations of MongoDB native API. 

Within the results of this query, there is a nested level of 
information and the ranking of the suggested communities and 
influencers are important. For this reason, the Q1 results are 
shown using a chart (see Figure 2) where the outer level of circles 
represents communities whereas the inner one corresponds to the 
influencers of those communities. The sizes of the community 
circles correspond to the relevance of the specified keywords with 
a community, while the sizes of the influencer circles correspond 
to the impact a person has on the community regarding the 
keywords. 



 
Figure 2. Visualization of communities and influencers. 

The query execution can be monitored using the integrated system 
for real-time monitoring and analysis X-Ray (see Figure 3), where 
the user can view details for each operation running within the 
process, including relative start/end times of operation executions, 
intermediate cardinalities, rewritten queries, etc. 

 

 
Figure 3. Monitoring of the query execution. 

Scenario 2. The second use case application recommends 
reviewers for a specific European project taking into account the 
DBLP and CORDIS knowledge base. DBLP is a bibliographic 
dataset focused in computer science that currently contains 1,8 
million publications and 1 million authors. CORDIS is the 
European projects dataset, which currently contains 40000 
projects and 1000 institutions. The main query Q2 is one of the 
key functionalities of a system built by Sparsity-Technologies to 
offer recommendations for researchers. The system visualizes the 
results from a web browser using HTML5 because it provides a 
clear way to analyze the results. 

The schema of this information system contains Projects, whose 
participants are Institutions and one of them is the coordinator. 
On the other hand, a part of the schema stores a bibliographic 
dataset, which contains Documents (papers) and their authors 
(People) with the corresponding affiliations (Institutions) for each 
year. This information system also indexes Projects and 
Documents by Keywords; analyzes which are the top expert 
Institutions and People for each Keyword.  

The application and the query Q2 use a graph database (Sparksee) 
to resolve the conflicting interests with the members of the project 
because graph databases are efficient solving paths/joins; a 
relational data store (LeanXcale) to store and retrieve the 
complete list of fields about the recommended reviewers; a key-
value data store (HBase) to find the top experts in a list of topics 
taking advantage of a fast search by keywords; and a document 
data store (MongoDB) to retrieve the contents of the last paper 
produced by the suggested reviewers. 
The specification of Q2 is as follows: given a specific project p 
and a set of keywords k1, k2, k3, find the people that have never 
worked in the same institutions as the participants of p that are 
also experts in k1, k2, k3. For these people, return their name, last 
affiliation and last paper title.  
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