
HAL Id: lirmm-01288025
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01288025v1

Submitted on 14 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The CloudMdsQL Multistore System
Boyan Kolev, Carlyna Bondiombouy, Patrick Valduriez, Ricardo

Jiménez-Peris, Raquel Pau, José Pereira

To cite this version:
Boyan Kolev, Carlyna Bondiombouy, Patrick Valduriez, Ricardo Jiménez-Peris, Raquel Pau, et al..
The CloudMdsQL Multistore System. ACM SIGMOD, Jun 2016, San Francisco, United States.
�10.1145/2882903.2899400�. �lirmm-01288025�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01288025v1
https://hal.archives-ouvertes.fr

The CloudMdsQL Multistore System
Boyan Kolev, Carlyna Bondiombouy, Patrick Valduriez

Inria and LIRMM
Montpellier, France

firstname.lastname@inria.fr

Ricardo Jiménez-Peris
LeanXcale and UPM

Madrid, Spain

Raquel Pau
Sparsity Technologies

Barcelona, Spain

José Pereira
INESC TEC and U. Minho

Braga, Portugal

ABSTRACT
The blooming of different cloud data management infrastructures
has turned multistore systems to a major topic in the nowadays
cloud landscape. In this demonstration, we present a Cloud
Multidatastore Query Language (CloudMdsQL), and its query
engine. CloudMdsQL is a functional SQL-like language, capable
of querying multiple heterogeneous data stores (relational and
NoSQL) within a single query that may contain embedded
invocations to each data store’s native query interface. The major
innovation is that a CloudMdsQL query can exploit the full power
of local data stores, by simply allowing some local data store
native queries (e.g. a breadth-first search query against a graph
database) to be called as functions, and at the same time be
optimized.

Within our demonstration, we focus on two use cases each
involving four diverse data stores (graph, document, relational,
and key-value) with its corresponding CloudMdsQL queries. The
query execution flows are visualized by an embedded real-time
monitoring subsystem. The users can also try out different ad-hoc
queries, not necessarily in the context of the use cases.

Keywords
Cloud; multistore system; heterogeneous data stores; SQL and
NoSQL integration.

1. INTRODUCTION
The blooming of different cloud data management infrastructures,
specialized for different kinds of data and tasks, has led to a wide
diversification of DBMS interfaces and the loss of a common
programming paradigm. This makes it very hard for a user to
integrate and analyze her data sitting in different data stores, e.g.
RDBMS, NoSQL, and HDFS. For example, a media planning
application, which needs to find top influencers inside social
media communities for a list of topics, has to search for

communities by keywords from a key-value store, then analyze
the impact of influencers for each community using complex
graph database traversals, and finally retrieve the influencers’
profiles from an RDBMS and an excerpt of their blog posts from a
document database. The CoherentPaaS project1 addresses this
problem, by providing a rich platform integrating different data
management systems specialized for particular tasks, data and
workloads. The platform is designed to provide a common
programming model and language to query multiple data stores,
which we herewith present.

The problem of accessing heterogeneous data sources has long
been studied in the context of multidatabase and data integration
systems [7]. More recently, with the advent of cloud databases
and big data processing frameworks, the solution has evolved
towards multistore systems that provide integrated access to a
number of RDBMS, NoSQL and HDFS data stores through a
common query engine. Data mediation SQL engines, such as
Apache Drill, Spark SQL, and SQL++ provide common interfaces
that allow different data sources to be plugged in (through the use
of wrappers) and queried using SQL. The polystore BigDAWG
[3] goes one step further by enabling queries across “islands of
information”, where each island corresponds to a specific data
model and its language and provides transparent access to a subset
of the underlying data stores through the island’s data model.
Another family of multistore systems [2,6] has been introduced
with the goal of tightly integrating big data analytics frameworks
(e.g. Hadoop MapReduce) with traditional RDBMS, by
sacrificing the extensibility with other data sources. However,
since none of these approaches supports the ad-hoc usage of
native queries, they do not preserve the full expressivity of an
arbitrary data store’s query language. But what we want to give
the user is the ability to express powerful ad-hoc queries that
exploit the full power of the different data store languages, e.g.
directly express a path traversal in a graph database. Therefore,
the current multistore solutions do not directly apply to solve our
problem.

In this demonstration, we present Cloud multidatastore query
language (CloudMdsQL), a functional SQL-like language,
designed for querying multiple heterogeneous databases (e.g.
relational and NoSQL) within a single query containing nested
subqueries [5]. Each subquery addresses directly a particular data
store and may contain embedded invocations to the data store’s
native query interface. Thus, the major innovation is that a
CloudMdsQL query can exploit the full power of local data stores,
by simply allowing some local data store native queries (e.g. a

1 http://coherentpaas.eu

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.
SIGMOD'16, June 26-July 01, 2016, San Francisco, CA, USA
Copyright is held by the owner/author(s). Publication rights licensed to
ACM.
ACM 978-1-4503-3531-7/16/06…$15.00 .
DOI: http://dx.doi.org/10.1145/2882903.2899400

breadth-first search query against a graph database) to be called as
functions, and at the same time be optimized based on a simple
cost model, e.g. by pushing down select predicates, using bind
join, performing join ordering, or planning intermediate data
shipping. CloudMdsQL has been extended [1] to address
distributed processing frameworks such as Apache Spark by
enabling the ad-hoc usage of user defined map/filter/reduce
operators as subqueries, yet allowing for pushing down predicates
and bind join conditions.

2. LANGUAGE OVERVIEW
The CloudMdsQL language is SQL-based with the extended
capabilities for embedding subqueries expressed in terms of each
data store’s native query interface. The common data model
respectively is table-based, with support of rich datatypes that can
capture a wide range of the underlying data stores’ datatypes, such
as arrays and JSON objects, in order to handle non-flat and nested
data, with basic operators over such composite datatypes.

Queries that integrate data from several data stores usually consist
of subqueries and an integration SELECT statement. A subquery
is defined as a named table expression, i.e. an expression that
returns a table and has a name and signature. The signature
defines the names and types of the columns of the returned
relation. Thus, each query, although agnostic to the underlying
data stores’ schemas, is executed in the context of an ad-hoc
schema, formed by all named table expressions within the query.
A named table expression can be defined by means of either an
SQL SELECT statement (that the query compiler is able to
analyze and possibly rewrite) or a native expression (that the
query engine considers as a black box and delegates its processing
directly to the data store). For example, the following simple
CloudMdsQL query contains two subqueries, defined by the
named table expressions T1 and T2, and addressed respectively
against the data stores rdb (an SQL database) and mongo (a
MongoDB database):
T1(x int, y int)@rdb = (SELECT x, y FROM A)
T2(x int, z array)@mongo = {*
 db.B.find({$lt: {x, 10}}, {x:1, z:1, _id:0})
*}
SELECT T1.x, T2.z
FROM T1, T2
WHERE T1.x = T2.x AND T1.y <= 3

The purpose of this query is to perform relational algebra
operations (expressed in the main SELECT statement) on two
datasets retrieved from a relational and a document database. The
two subqueries are sent independently for execution against their
data stores in order the retrieved relations to be joined by the
common query engine. The SQL table expression T1 is defined by
an SQL subquery, while T2 is a native expression (identified by
the special bracket symbols {* *}) expressed as a native
MongoDB call. Note that subqueries to some NoSQL data stores
can also be expressed as SQL statements; in such cases, the
wrapper must provide the mapping from relational operators to
native calls. In our demonstration, unlike in the example above,
we use an SQL wrapper to query MongoDB, which also benefits
from subquery rewriting.

CloudMdsQL allows named table expressions to be defined as
Python functions, which is useful for querying data stores that
have only API-based query interface. A Python expression yields
tuples to its result set much like a user-defined table function. It
can also use as input the result of other subqueries. Furthermore,
named table expressions can be parameterized by declaring
parameters in the expression’s signature. For example, the

following Python expression uses the intermediate data retrieved
by T2 to return another table containing the number of
occurrences of the parameter v in the array T2.z.
T3(x int, c int WITHPARAMS v string)@python = {*
 for (x, z) in CloudMdsQL.T2:
 yield(x, z.count(v))
*}

A (parameterized) named table can then be instantiated by passing
actual parameter values from another native/Python expression, as
a table function in a FROM clause, or even as a scalar function (e.g.
in the SELECT list). Calling a named table as a scalar function is
useful e.g. to express direct lookups into a key-value data store.

Note that parametrization and nesting is also available in SQL and
native named tables. In our demonstration, we give an example
that involves the Sparksee graph database and we use its Python
API to express subqueries that benefit from all of the features
described above. In fact, our initial query engine implementation
enables Python integration; however support for other languages
(e.g. JavaScript) for user-defined operations can be easily added.

3. SYSTEM OVERVIEW
The query engine follows a mediator/wrapper architecture. The
query compiler decomposes the query into a query execution plan
(QEP), which appears as a directed acyclic graph of relational
operators where leaf nodes correspond to subqueries for the
wrappers to execute directly against the data stores.

3.1 Query Optimization
Before its actual execution, a QEP may be rewritten by the query
optimizer. To compare alternative rewritings of a query, the
optimizer uses basic cost information exposed by the wrappers in
the form of cost functions or database statistics, and a simple cost
model. In addition, the query language provides a possibility for
the user to define cost and selectivity functions whenever they
cannot be derived from the catalog, mostly in the case of using
native subqueries.

CloudMdsQL uses bind join as an efficient method for performing
semi-joins across heterogeneous data stores that uses subquery
rewriting to push the join conditions. For example, the list of
distinct values of the join attribute(s), retrieved from the left-hand
side subquery, is passed as a filter to the right-hand side subquery.
To illustrate it, let us consider the following CloudMdsQL query:
A(id int, x int)@DB1 = (SELECT a.id, a.x FROM a)
B(id int, y int)@DB2 = (SELECT b.id, b.y FROM b)
SELECT a.x, b.y FROM b JOIN a ON b.id = a.id

Let us assume that the optimizer has decided to use the bind join
method and that the join condition will be bound to the right-hand
side of the join operation. First, the relation B is retrieved from the
corresponding data store using its query mechanism. Then, the
distinct values of B.id are used as a filter condition in the query
that retrieves the relation A from its data store. Assuming that the
distinct values of B.id are b1 … bn, the query to retrieve the
right-hand side relation of the bind join uses the following SQL
approach (or its equivalent according to the data store’s query
language), thus retrieving from A only the rows that match the
join criteria:
SELECT a.id, a.x FROM a WHERE a.id IN (b1, …, bn)

The way to do the bind join analogue for native/Python queries is
through the use of a JOINED ON clause in the named table
signature. For example, if A is defined as the Python function
below, as A.id participates in an equi-join, the values b1 … bn
will be provided to the Python code through the iterator Outer:

A(id int, x int JOINED ON id)@DB1 = {*
 for id in CloudMdsQL.Outer:
 yield (id, db.get_x(id))
*}

3.2 Query Engine Implementation
For the current implementation of the query engine, we modified
the open source Apache Derby database to accept CloudMdsQL
queries and transform the corresponding execution plan into
Derby SQL operations. We developed the query planner and the
query execution controller and linked them to the Derby core,
which we use as the operator engine. Derby allows extending the
set of SQL operations by means of CREATE FUNCTION
statements. This type of statements creates an alias, with an
optional set of parameters, to invoke a specific Java component as
part of an execution plan. Thus, for each named table expression
in a query, a table function is created dynamically, which invokes
the corresponding wrapper as a Java class. Thus, Derby handles
global execution, delegating local optimization and execution to
the underlying data stores. As a second step, the query engine
evaluates which named expressions are queried more than once
and must be cached into the temporary table storage, which will
be always queried and updated from the specified Java functions
to reduce the query execution time. Finally, the last step consists
of translating all operation nodes that appear in the execution plan
into a Derby specific SQL execution plan.

4. DEMONSTRATION
The demonstration concentrates on two CloudMdsQL use case
scenarios from different information systems: a social network
analysis tool for marketing companies and a bibliographic
recommendation system. The users will have the possibility to
experience the use case scenarios through their web interfaces.
They will be also able to try out custom CloudMdsQL queries, to
follow their corresponding query execution plans, and to monitor
their execution flow through X-Ray [4] – a subsystem of the
CoherentPaaS platform for real-time visualization of performance
and resource usage integrated with all the components of the
platform (the query engine and the underlying data stores).

Scenario 1. The first use case aims at finding the communities in
a social network, for a specific set of topics, with their top
influencers. Marketing companies are interested in discovering the
people they need to convince about the quality of a specific brand.
The dataset of this use case is a sample of Twitter, but it allows
working with other social networks like Facebook or blogs. The
application runs a Twitter listener of a set of topics in real-time; it
modifies the database for each tweet it receives. The schema of
this application contains a generic entity called Document to store
text-items (tweets, messages, etc.), which can appear copies or
references. An Entity (person or company) is an author of a
document or a mention of a social-network account. The people
interactions in social networks with copies, references or
mentions, can be understood as a set of graph of influences. In
other words, we can infer who influences who and about what.
These Influences and the Communities are incrementally
computed when a new tweet comes to the application and thus,
these concepts are part of the application schema.

The specification of the main query Q1 the application uses is as
follows: given a set of keywords k1, k2, k3, find the 10 biggest
communities and, for each community, find the 20 most
influencers. For each of these influencers, the system must return
the number of influenced entities inside the community, the
influencer’s id, name and account creation date and the last
published document.

In order to implement this use case, we use a graph database
(Sparksee) to store the graph of Influences and compute the
Communities; a relational database (MonetDB) for all the basic
information about Entities and Documents (only metadata); a
document database (MongoDB) to store the Document contents;
and a key-value data store (HBase) to index communities per
keyword. Following the execution plan for the CloudMdSQL
query Q1, the query engine first invokes an HBase query to
retrieve the communities preliminarily computed for a specific
keyword; then, for each community, runs a Sparksee query using
the Sparksee Python API to find the top 20 influencers, the
number of influenced entities inside the community, and the
maximum influence propagation depth. Finally, the basic
information of each influencer (id, name, account creation date)
and the last published document is retrieved by running queries to
MonetDB and MongoDB. Figure 1 summarizes the described
execution plan using a notation where each box represents a table
expression as a data store subquery with its signature and a
fragment, (pseudo)statement, or description of the subquery.

Figure 1. Execution plan for Q1.

For this execution plan, the query optimization plays an important
role to assign the bind join method to all the join operations. The
reason is that the selected communities relevant to the keywords
k1, k2 and k3 are always a few, and thus the Sparksee query is
evaluated only for a few communities, which significantly reduces
the number of executions of expensive graph computations.
Analogously, using bind join to retrieve the latest documents only
for the filtered influencers increases the overall efficiency
significantly by pushing bind join conditions to the MonetDB and
MongoDB subqueries that take advantage of the existing indexes
in both databases. Note that the MongoDB subquery is expressed
in SQL, but the wrapper maps its sub-plan to a chain of
invocations of MongoDB native API.

Within the results of this query, there is a nested level of
information and the ranking of the suggested communities and
influencers are important. For this reason, the Q1 results are
shown using a chart (see Figure 2) where the outer level of circles
represents communities whereas the inner one corresponds to the
influencers of those communities. The sizes of the community
circles correspond to the relevance of the specified keywords with
a community, while the sizes of the influencer circles correspond
to the impact a person has on the community regarding the
keywords.

Figure 2. Visualization of communities and influencers.

The query execution can be monitored using the integrated system
for real-time monitoring and analysis X-Ray (see Figure 3), where
the user can view details for each operation running within the
process, including relative start/end times of operation executions,
intermediate cardinalities, rewritten queries, etc.

Figure 3. Monitoring of the query execution.

Scenario 2. The second use case application recommends
reviewers for a specific European project taking into account the
DBLP and CORDIS knowledge base. DBLP is a bibliographic
dataset focused in computer science that currently contains 1,8
million publications and 1 million authors. CORDIS is the
European projects dataset, which currently contains 40000
projects and 1000 institutions. The main query Q2 is one of the
key functionalities of a system built by Sparsity-Technologies to
offer recommendations for researchers. The system visualizes the
results from a web browser using HTML5 because it provides a
clear way to analyze the results.

The schema of this information system contains Projects, whose
participants are Institutions and one of them is the coordinator.
On the other hand, a part of the schema stores a bibliographic
dataset, which contains Documents (papers) and their authors
(People) with the corresponding affiliations (Institutions) for each
year. This information system also indexes Projects and
Documents by Keywords; analyzes which are the top expert
Institutions and People for each Keyword.

The application and the query Q2 use a graph database (Sparksee)
to resolve the conflicting interests with the members of the project
because graph databases are efficient solving paths/joins; a
relational data store (LeanXcale) to store and retrieve the
complete list of fields about the recommended reviewers; a key-
value data store (HBase) to find the top experts in a list of topics
taking advantage of a fast search by keywords; and a document
data store (MongoDB) to retrieve the contents of the last paper
produced by the suggested reviewers.
The specification of Q2 is as follows: given a specific project p
and a set of keywords k1, k2, k3, find the people that have never
worked in the same institutions as the participants of p that are
also experts in k1, k2, k3. For these people, return their name, last
affiliation and last paper title.

5. ACKNOWLEDGEMENTS
This research has been partially funded by the European
Commission under projects CoherentPaaS and LeanBigData
(grants FP7-611068, FP7-619606), the Madrid Regional Council,
FSE and FEDER, project Cloud4BigData (grant S2013TIC-2894),
and the Spanish Research Agency MICIN project BigDataPaaS
(grant TIN2013-46883).

6. REFERENCES
[1] Bondiombouy, C., Kolev, B., Levchenko, O., Valduriez, P.

2015. Integrating Big Data and Relational Data with a
Functional SQL-like Query Language. DEXA, 170-185.

[2] DeWitt, D., Halverson, A., Nehme, R., Shankar, S., Aguilar-
Saborit J., Avanes, A., Flasza, M., Gramling, J. 2013. Split
Query Processing in Polybase. In ACM SIGMOD (2013),
1255-1266.

[3] Duggan, J., Elmore, A. J., Stonebraker, M., Balazinska, M.,
Howe, B., Kepner, J., Madden, S., Maier, D., Mattson, T.,
Zdonik, S. 2015. The BigDAWG Polystore System.
SIGMOD Rec. 44, 2 (August 2015), 11-16.
DOI=http://dx.doi.org/10.1145/2814710.2814713

[4] Guimarães, P., Pereira, J. 2015. X-Ray: Monitoring and
Analysis of Distributed Database Queries, In 15th IFIP WG
6.1 International Conference, DAIS, 80-93.

[5] Kolev, B., Valduriez, P., Bondiombouy, C., Jiménez-Peris,
R., Pau, R., Pereira, J. 2015. CloudMdsQL: Querying
Heterogeneous Cloud Data Stores with a Common
Language. Distributed and Parallel Databases, pp 1-41,
http://hal-lirmm.ccsd.cnrs.fr/lirmm-01184016.

[6] LeFevre, J., Sankaranarayanan, J., Hacıgümüs, H., Tatemura,
J., Polyzotis, N., Carey, M. 2014. MISO: Souping Up Big
Data Query Processing with a Multistore System. In ACM
SIGMOD (2014), 1591-1602.

[7] Özsu, T., Valduriez, P. 2011. Principles of Distributed
Database Systems – Third Edition. Springer, 850 pages.

