
HAL Id: lirmm-01288571
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01288571v1

Submitted on 15 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Highly Scalable Parallel Algorithm for Maximally
Informative k-Itemset Mining

Saber Salah, Reza Akbarinia, Florent Masseglia

To cite this version:
Saber Salah, Reza Akbarinia, Florent Masseglia. A Highly Scalable Parallel Algorithm for Maximally
Informative k-Itemset Mining. Knowledge and Information Systems (KAIS), 2017, 50 (1), pp.1-26.
�10.1007/s10115-016-0931-2�. �lirmm-01288571�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01288571v1
https://hal.archives-ouvertes.fr


Accepted for publication by Knowledge and Information Systems journal
2016

A Highly Scalable Parallel Algorithm for
Maximally Informative k-Itemset Mining
Saber Salah, Reza Akbarinia and Florent Masseglia
Inria and Lirmm, Montpellier, France

Abstract.
The discovery of informative itemsets is a fundamental building block in data analytics and

information retrieval. While the problem has been widely studied, only few solutions scale. This
is particularly the case when i) the data set is massive, calling for large-scale distribution, and/or
ii) the length k of the informative itemset to be discovered is high. In this paper, we address the
problem of parallel mining of maximally informative k-itemsets (miki) based on joint entropy. We
propose PHIKS (Parallel Highly Informative K-ItemSet) a highly scalable, parallel miki mining
algorithm. PHIKS renders the mining process of large scale databases (up to terabytes of data)
succinct and effective. Its mining process is made up of only two efficient parallel jobs. With
PHIKS, we provide a set of significant optimizations for calculating the joint entropies of miki
having different sizes, which drastically reduces the execution time, the communication cost and
the energy consumption, in a distributed computational platform. PHIKS has been extensively
evaluated using massive real-world data sets. Our experimental results confirm the effectiveness
of our proposal by the significant scale-up obtained with high itemsets length and over very large
databases.

Keywords: Joint entropy; Informative itemsets; Massive distribution; MapReduce; Spark; Hadoop;
Big Data

1. Introduction

Featureset, or itemset, mining (Han, 2012) is one of the fundamental building bricks for
exploring informative patterns in databases. Features might be, for instance, the words
occurring in a document, the score given by a user to a movie on a social network,
or the characteristics of plants (growth, genotype, humidity, biomass, etc.) in a scien-
tific study in agronomics. A large number of contributions in the literature has been
proposed for itemset mining, exploring various measures according to the chosen rele-
vance criteria. The most studied measure is probably the number of co-occurrences of a
set of features, also known as frequent itemsets (Agrawal and Srikant, 1994). However,
frequency does not give relevant results for a various range of applications, including
information retrieval (Greengrass, 2000), since it does not give a complete overview



2 S. Salah et al

Features Documents
d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

A 1 1 1 1 1 0 0 0 0 0

B 0 1 0 0 1 1 0 1 0 1

C 1 0 0 1 0 1 1 0 1 0

D 1 0 1 1 1 1 1 1 1 1

E 1 1 1 1 1 1 1 1 1 1

Table 1. Features in The Documents

of the hidden correlations between the itemsets in the database. This is particularly
the case when the database is sparse (Heikinheimo, Hinkkanen, Mannila, Mielikäinen
and Seppänen, 2007). Using other criteria to assess the informativeness of an itemset
could result in discovering interesting new patterns that were not previously known.
To this end, information theory (Cover, 2006) gives us strong supports for measuring
the informativeness of itemsets. One of the most popular measures is the joint entropy
(Cover, 2006) of an itemset. An itemset X that has higher joint entropy brings up more
information about the objects in the database.

We study the problem of Maximally Informative k-Itemsets (miki for short) dis-
covery in massive data sets, where informativeness is expressed by means of joint en-
tropy and k is the size of the itemset (Gray, 2011; Knobbe and Ho, 2006; Zhang and
Masseglia, 2010). Miki are itemsets of interest that better explain the correlations and
relationships in the data. Example 1 gives an illustration of miki and its potential for real
world applications such as information retrieval.

Example 1. In this application, we would like to retrieve documents from Table 1, in
which the columns d1, d10 are documents, and the attributes A, B, C, D, E are some
features (items, keywords) in the documents. The value “1” means that the feature
occurs in the document, and “0” not. It is easy to observe that the itemset (D, E) is
frequent, because features D and E occur together in almost every document. How-
ever, it provides little help for document retrieval. In other words, given a document
dx in our data set, one might look for the occurrence of the itemset (D, E) and, de-
pending on whether it occurs or not, she will not be able to decide which document
it is. By contrast, the itemset (A, B, C) is infrequent, as its member features rarely or
never appear together in the data. And it is troublesome to summarize the value patterns
of the itemset (A, B, C). Providing it with the values < 1, 0, 0 > we could find the
corresponding document O3; similarly, given the values < 0, 1, 1 > we will have the
corresponding document O6. Although (A, B, C) is infrequent, it contains lots of use-
ful information which is hard to summarize. By looking at the values of each feature in
the itemset (A, B, C), it is much easier to decide exactly which document they belong
to. (A, B, C) is a maximally informative itemset of size k = 3.

Miki mining is a key problem in data analytics with high potential impact on various
tasks such as supervised learning (Kotsiantis, 2007), unsupervised learning (Ghahramani,
2004) or information retrieval (Greengrass, 2000), to cite a few. A typical application is
the discovery of discriminative sets of features, based on joint entropy (Cover, 2006),
which allows distinguishing between different categories of objects. Unfortunately, it
is very difficult to maintain good results, in terms of both response time and quality,
when the number of objects becomes very large. Indeed, with massive amounts of data,



A Highly Scalable Parallel Algorithm for Maximally Informative k-Itemset Mining 3

computing the joint entropies of all itemsets in parallel is a very challenging task for
many reasons. First, the data is no longer located in one computer, instead, it is dis-
tributed over several machines. Second, the number of iterations of parallel jobs would
be linear to k (i.e., the number of features in the itemset to be extracted (Knobbe and
Ho, 2006)), which needs multiple database scans and in turn violates the parallel exe-
cution of the mining process. We believe that an efficient miki mining solution should
scale up with the increase in the size of the itemsets, calling for cutting edge parallel
algorithms and high performance evaluation of an itemset’s joint entropy in massively
distributed environments.

We propose a deep combination of both information theory and massive distribu-
tion by taking advantage of parallel programming frameworks such as MapReduce
(Dean and Ghemawat, 2008) or Spark (Zaharia, Chowdhury, Franklin, Shenker and
Stoica, 2010). To the best of our knowledge, there has been no prior work on parallel
informative itemsets discovery based on joint entropy. We designed and developed an
efficient parallel algorithm, namely Parallel Highly Informative K-itemSet (PHIKS in
short), that renders the discovery of miki from a very large database (up to Terabytes of
data) simple and effective. It performs the mining of miki in two parallel jobs. PHIKS
cleverly exploits available data at each mapper to efficiently calculate the joint entropies
of miki candidates. For more efficiency, we provide PHIKS with optimizations that al-
low for very significant improvements of the whole process of miki mining. The first
technique estimates the upper bound of a given set of candidates and allows for a dra-
matic reduction of data communications, by filtering unpromising itemsets without hav-
ing to perform any additional scan over the data. The second technique reduces signif-
icantly the number of scans over the input database of each mapper, i.e., only one scan
per step, by incrementally computing the joint entropy of candidate features. This re-
duces drastically the work that should be done by the mappers, and thereby the total
execution time.

PHIKS has been extensively evaluated using massive real-world data sets. Our ex-
perimental results show that PHIKS significantly outperforms alternative approaches,
and confirm the effectiveness of our proposal over large databases containing for exam-
ple one Terabyte of data.

The rest of the paper is structured as follows. Section 2 discusses related work. Sec-
tion 3 gives formal definitions of informative itemsets, basic used notations, and the
necessary background is given in Section 4. In Section 5, we propose our PHIKS algo-
rithm, and depict its whole core mining process. Section 6 reports on our experimental
validation over real-world data sets. and Section 7 concludes.

2. Related Work

In data mining literature, several endeavors have been made to explore informative
itemsets (or featuresets, or set of attributes) in databases (Agrawal and Srikant, 1994)
(Han, Pei and Yin, 2000) (Heikinheimo et al., 2007) (Knobbe and Ho, 2006). Differ-
ent measures of itemset informativeness (e.g., frequency of itemset co-occurrence in
the database etc.) have been used to identify and distinguish informative itemsets from
non-informative ones. For instance, by considering the itemsets co-occurrence, several
conclusions can be drawn to explain interesting, hidden relationships between different
itemsets in the data.

Mining itemsets based on the co-occurrence frequency (e.g., frequent itemset min-
ing) measure does not capture all dependencies and hidden relationships in the database,
especially when the data is sparse (Heikinheimo et al., 2007). Therefore, other measures



4 S. Salah et al

must be taken into account. Low and high entropy measures of itemsets informativeness
were proposed (Heikinheimo et al., 2007). The authors of (Heikinheimo et al., 2007)
have proposed the use of a tree based structure without specifying a length k of the infor-
mative itemsets to be discovered. However, as the authors of (Heikinheimo et al., 2007)
mentioned, such an approach results in a very large output.

Beyond using a regular co-occurrence frequency measure to identify the itemsets
informativeness, the authors of (Brin, Motwani and Silverstein, 1997) have proposed
an efficient technique that is more general. The main motivation is to get better in-
sight and understanding of the data by figuring out other hidden relationships between
the itemsets (i.e., the inner correlation between the itemsets themselves), in particular
when determining the itemsets’ rules. To this end, the authors of (Brin et al., 1997)
did not focus only on the analysis of the positive implications between the itemsets in
the data (i.e., implications between supported itemsets), but also they take into account
the negative implications. To determine the significance of such itemsets implications,
the authors of (Brin et al., 1997) have used a classic statistical chi-squared measure to
efficiently figure out the interestingness of such itemsets rules.

Generally, in the itemset mining problem there is a trade-off between the itemset in-
formativeness and the pattern explosion (i.e., number of itemsets to be computed). Thus,
some itemset informativeness measures (e.g., the co-occurrence frequency measure with
very low minimum support) would allow for a potential high number of useless patterns
(i.e., itemsets), and others would highly limit the number of patterns. The authors of
(Tatti, 2010) proposed an efficient approach that goes over regular used itemset infor-
mativeness measures, by developing a general framework of statistical models allowing
the scoring of the itemsets in order to determine their informativeness. In particular, in
(Tatti, 2010), the initial focus is on the exponential models to score the itemsets. How-
ever these models are inefficient in terms of execution time, thus, the authors propose to
use decomposable models. On the whole, the techniques proposed in (Tatti, 2010) and
(Brin et al., 1997) are mainly dedicated to mining in centralized environments, while
our techniques are dedicated to parallel data mining in distributed environments.

The authors of (Knobbe and Ho, 2006) suggest to use a heuristic approach to extract
informative itemsets of length k based on maximum joint entropy. Such maximally in-
formative itemsets of size k is called miki. This approach captures the itemsets that have
high joint entropies. An itemset is a miki if all of its constructing items shatter the data
maximally. The items within a miki are not excluding, and do not depend on each other.
(Knobbe and Ho, 2006) proposes a bunch of algorithms to extract miki. A brute force
approach consists of performing an exhaustive search over the database to determine all
miki of different sizes. However, this approach is not feasible due to the large number of
itemsets to be determined, which results in multiple database scans. Another algorithm
proposed in (Knobbe and Ho, 2006) consists of fixing a parameter k that denotes the
size of the miki to be discovered. This algorithm proceeds by determining a top n miki
of size 1 having highest joint entropies, then, the algorithm determines the combina-
tions of 1-miki of size 2 and returns the top n most informative itemsets. The process
continues until it returns the top n miki of size k.

The problem of extracting informative itemsets was not only proposed for mining
static databases. There have been also interesting works in extracting informative item-
sets in data streams (Giannella, Han, Pei, Yan and Yu, 2002) (Teng, Chen and Yu, 2003).
The authors of (Zhang and Masseglia, 2010) proposed an efficient method for discover-
ing maximally informative itemsets (i.e., highly informative itemsets) from data streams
based on sliding window.

Extracting informative itemsets has a prominent role in feature selection
(Chandrashekar and Sahin, 2014). Various techniques and methods have been proposed



A Highly Scalable Parallel Algorithm for Maximally Informative k-Itemset Mining 5

in the literature to solve the problem of selecting relevant features to be used in clas-
sification tasks. These methods fall into two different categories, namely Filter and
Wrapper methods (Guyon and Elisseeff, 2003). Filter methods serve to pre-process the
data before being used for a learning purpose. They aim to determine a small set of
relevant features. However, these methods capture only the correlations between each
feature (i.e., independent variable, attribute or item) and the target class (i.e., predictor).
They do not take into account the inter correlation between the selected features (i.e., if
the features are inter correlated then they are redundant). In the other hand, to determine
an optimal set of relevant features, wrapper methods perform a feature’s set search that
maximizes an objective function (i.e., classifier performance). However, these methods
yield in heavy computations (i.e., selecting each time a set of features and evaluate an
objective function). To solve this problem, Embedded (Chandrashekar and Sahin, 2014)
methods have been proposed. The main goal is to incorporate the wrapper methods in
the learning process.

Processing very large amount of data with high number of features (i.e., billions
of items) to select most relevant once’s is not trivial. Miki are very good challenging
candidates to select relevant features in large-scale databases. The items (i.e., features)
that a set of miki contains have very low inter correlations, thus they highly discriminate
the whole database together. This property of miki make them of a highly potential
success in improving different data mining tasks such as subgroup discovery (Herrera,
Carmona, González and del Jesus, 2011) and classification (Berry and Castellanos, n.d.)
problems etc.

Parallel mining of informative itemsets from large databases based on frequency in-
formativeness measure has received much attention recently (Li, Wang, Zhang, Zhang
and Chang, 2008) (Riondato, DeBrabant, Fonseca and Upfal, 2012) (Tanbeer, Ahmed
and Jeong, 2009). For instance, In (Li et al., 2008), the authors have proposed an effi-
cient parallel solution to extract frequent itemsets based on FP-Growth algorithm (Han
et al., 2000). Their algorithm PFP-Growth has gained a popular success in mining large
databases. In (Riondato et al., 2012), the authors have proposed an improvement of PFP-
Growth algorithm by performing approximations of the candidate frequent itemsets.

To the best of our knowledge, there has been no prior work on parallel discovery of
maximally informative k-itemsets in large databases.

3. Definitions

The following definitions introduce the basic requirements for mining maximally infor-
mative k-itemsets (Knobbe and Ho, 2006).

Definition 1. LetF = {f1, f2, . . . , fn} be a set of literals called features. An itemset
X is a set of features from F , i.e., X ⊆ F . The size or length of the itemset X is
the number of features in it. A transaction T is a set of elements such that T ⊆ F
and T 6= ∅. A database D is a set of transactions.

Definition 2. The entropy (Cover, 2006) of a feature i in a database D measures the
expected amount of information needed to specify the state of uncertainty or disorder
for the feature i in D. Let i be a feature in D, and P (i = n) be the probability that i has
value n in D (we consider categorical data, where the value will be ’1’ if the object has
the feature and ’0’ otherwise). The entropy of the feature i is given by

H(i) = −(P (i = 0)log(P (i = 0)) + P (i = 1)log(P (i = 1)))
where the logarithm base is 2.



6 S. Salah et al

Definition 3. The binary projection, or projection of an itemset X in a transaction T
(proj(X, T )) is the set of size |X|where each item (i.e., feature) of X is replaced by ’1’
if it occurs in T and by ’0’ otherwise. The projection counting of X in a database D is
the set of projections of X in each transaction ofD, where each projection is associated
with its number of occurrences in D.

Example 2. Let us consider Table 1. The projection of (B, C, D) in d1 is (0, 1, 1). The
projections of (D, E) on the database of Table 1 are (1, 1) with nine occurrences and
(0, 1) with one occurrence.

Definition 4. Given an itemset X = {x1, x2, . . . , xk} and a tuple of binary values
B = {b1, b2, . . . , bk} ∈ {0 1}k. The joint entropy of X is defined as:

H(X) = −
∑

B∈{0,1}|k|

J × log(J)

Where J= P (x1 = b1, . . . , xk = bk) is the joint probability of X = {x1, x2, . . . , xk}.

Given a database D, the joint entropy H(X) of an itemset X in D is proportional
to its size k i.e., the increase in the size of X implies an increase in its joint entropy
H(X). The higher the value of H(X), the more information the itemset X provides in
D. For simplicity, we use the term entropy of an itemset X to denote its joint entropy.

Example 3. Let us consider the database of Table 1. The joint entropy of (D, E) is
given by H(D, E) = − 9

10 log( 9
10 ) − 1

10 log( 1
10 ) = 0.468. Where the quantities 9

10 and
1

10 respectively represent the joint probabilities of the projection values (1, 1) and (0, 1)
in the database.

Definition 5. Given a set F = {f1, f2, . . . , fn} of features, an itemset X ⊆ F of
length k is a maximally informative k-itemset, if for all itemsets Y ⊆ F of size k,
H(Y ) ≤ H(X). Hence, a maximally informative k-itemset is the itemset of size k with
the highest joint entropy value.

The problem of mining maximally informative k-itemsets presents a variant of item-
set mining, it relies on the joint entropy measure for assessing the informativeness
brought by an itemset.

Definition 6. Given a database D which consists of a set of n attributes (features)
F = {f1, f2, . . . , fn}. Given a number k, the problem of miki mining is to return a
subset F ′ ⊆ F with size k, i.e., |F ′| = k, having the highest joint entropy in D, i.e.,
∀F ′′ ⊆ F ∧ |F ′′| = k, H(F ′′) ≤ H(F ′).

4. Background

In this Section, first we detail the miki discovery in a centralized environment. Second,
we detail the working principle of MapReduce, in particular, we depict the execution
process of a MapReduce job.

4.1. Miki Discovery in a Centralized Environment

In (Knobbe and Ho, 2006), an effective approach is proposed for miki discovery in a
centralized environment. Their ForwardSelection heuristic uses a "generating-pruning"



A Highly Scalable Parallel Algorithm for Maximally Informative k-Itemset Mining 7

approach, which is similar to the principle of Apriori (Agrawal and Srikant, 1994). i1,
the feature having the highest entropy is selected as a seed. Then, i1 is combined with
all the remaining features, in order to build candidates. In other words, there will be
|F − 1| candidates (i.e., (i1, i2), (i1, i3), . . . , (i1, i|F−1|)). The entropy of each candi-
date is given by a scan over the database, and the candidate having the highest en-
tropy, say (i1, i2), is kept. A set of |F − 2| candidates of size 3 is generated (i.e.,
(i1, i2, i3), (i1, i2, i4), . . . , (i1, i2, i|F−2|)) and their entropy is given by a new scan over
the database. This process is repeated until the size of the extracted itemset is k.

4.2. MapReduce and Job Execution

MapReduce has gained increasing popularity, as shown by the tremendous success of
Hadoop (White, 2012), an open-source implementation. It is one of the most popular so-
lutions for big data processing (Bizer, Boncz, Brodie and Erling, 2011), in particular due
to its automatic management of parallel execution in clusters of machines. Initially pro-
posed in (Dean and Ghemawat, 2008), it was popularized by Hadoop (Hadoop, 2014),
an open-source implementation. MapReduce divides the computation in two phases,
namely map and reduce, which in turn are carried out by several tasks that process
the data in parallel. The idea behind MapReduce is simple and elegant. Given an input
file, and two functions map and reduce, each MapReduce job is executed in two main
phases: map and reduce. In the first phase, called map, the input data is divided into a set
of splits, and each split is processed by a map task in a given worker node. These tasks
apply the map function on every key-value pair of their split and generate a set of in-
termediate pairs. In the second phase, called reduce, all the values of each intermediate
key are grouped and assigned to a reduce task. Reduce tasks are also assigned to worker
machines and apply the reduce function on the created groups to produce the final re-
sults. Each MapReduce job includes two functions: map and reduce. For executing the
job, we need a master node for coordinating the job execution, and some worker nodes
for executing the map and reduce tasks. When a MapReduce job is submitted by a user
to the cluster, after checking the input parameters, e.g., input and output directories, the
input splits (blocks) are computed. The number of input splits can be personalized, but
typically there is one split for each 64MB of data. The location of these splits and some
information about the job are submitted to the master. The master creates a job object
with all the necessary information, including the map and reduce tasks to be executed.
One map task is created per input split. When a worker node, say w, becomes idle, the
master tries to assign a task to it. The map tasks are scheduled using a locality-aware
strategy. Thus, if there is a map task whose input data is kept on w, then the sched-
uler assigns that task to w. If there is no such task, the scheduler tries to assign a task
whose data is in the same rack as w (if any). Otherwise, it chooses any task. Each map
task reads its corresponding input split, applies the map function on each input pair
and generates intermediate key-value pairs. , which are firstly maintained in a buffer
in main memory. When the content of the buffer reaches a threshold (by default 80%
of its size), the buffered data is stored on the disk in a file called spill. Once the map
task is completed, the master is notified about the location of the generated interme-
diate key-values. In the reduce phase, each intermediate key is assigned to one of the
reduce workers. Each reduce worker retrieves the values corresponding to its assigned
keys from all the map workers, and merges them using an external merge-sort. Then,
it groups pairs with the same key and calls the reduce function on the corresponding
values. This function will generate the final output results. When, all tasks of a job are
completed successfully, the client is notified by the master.



8 S. Salah et al

5. PHIKS Algorithm

In a massively distributed environment, a possible naive approach for miki mining would
be a straightforward implementation of ForwardSelection (Knobbe and Ho, 2006) (see
Section 4.1). However, given the "generating-pruning" principle of this heuristic, it is
not suited for environments like Spark (Zaharia et al., 2010) or MapReduce (Dean and
Ghemawat, 2008) and would lead to very bad performances. The main reason is that
each scan over the data set is done through a distributed job (ı.e., there will be k jobs,
one for each generation of candidates that must be tested over the database). Our ex-
periments, in Section 6, give an illustration of the catastrophic response times of For-
wardSelection in a straightforward implementation on MapReduce (the worst, for all
of our settings). This is not surprising since most algorithms designed for a centralized
itemset mining do not perform well in massively distributed environments in a direct im-
plementation (Moens, Aksehirli and Goethals, 2013), (Berberich and Bedathur, 2013),
(Miliaraki, Berberich, Gemulla and Zoupanos, 2013), and miki don’t escape that rule.

Such an inadequacy calls for new distributed algorithmic principles. To the best of
our knowledge, there is no previous work on distributed mining of miki. However, we
may build on top of cutting edge studies in frequent itemset mining, while considering
the very demanding characteristics of miki.

Interestingly, in the case of frequent itemsets in MapReduce, a mere algorithm con-
sisting of two jobs outperforms most existing solutions (Anand, 2012) by using the
principle of SON (Savasere, Omiecinski and Navathe, 1995), a divide and conquer algo-
rithm. Unfortunately, despite its similarities with frequent itemset mining, the discovery
of miki is much more challenging. Indeed, the number of occurrences of an itemset X in
a databaseD is additive and can be easily distributed (the global number of occurrences
of X is simply the sum of its local numbers of occurrences on subsets of D). Entropy
is much more combinatorial since it is based on the the projection counting of X in
D and calls for efficient algorithmic advances, deeply combined with the principles of
distributed environments.

5.1. Distributed Projection Counting

Before presenting the details of our contribution, we need to provide tools for computing
the projection of an itemset X on a database D, when D is divided into subsets on
different splits, in a distributed environment, and entropy has to be encoded in the key-
value format. We have to count, for each projection p of X , its number of occurrences
on D. This can be solved with an association of the itemset as a key and the projection
as a value. On a split, for each projection of an itemset X , X is sent to the reducer as
the key coupled with its projection. The reducer then counts the number of occurrences,
on all the splits, of each (key:value) couple and is therefore able to calculate the entropy
of each itemset. Communications may be optimized by avoiding to emit a key : val
couple when the projection does not appear in the transaction and is only made of ’0’
(on the reducer, the number of times that a projection p of X does not appear in D is
determined by subtracting the number projections of X in D from |D|).

Example 4. Let us consider D, the database of Table 1, and the itemset X = (D, E).
Let us consider that D is divided into two splits S1 = {d1..d5} and S2 = {d6..d10}.
With one simple MapReduce job, it is possible to calculate the entropy of X . The
algorithm of a mapper would be the following: for each document d, emit a couple
(key : val) where key = X and val = proj(X, d). The first mapper (corresponding



A Highly Scalable Parallel Algorithm for Maximally Informative k-Itemset Mining 9

to S1) will emit the following couples: ((D, E) : (1, 1)) 4 times and ((D, E) : (0, 1))
once. The second mapper will emit ((D, E) : (1, 1)) 5 times. The reducers will do the
sum and the final result will be ((D, E) : (1, 1)) occurs 9 times and (((D, E) : (0, 1))
once.

5.2. Discovering miki in Two Rounds

Our heuristic will use at most two MapReduce jobs in order to discover the k-itemset
having the highest entropy. The goal of the first job is to extract locally, on the distributed
subsets ofD, a set of candidate itemsets that are likely to have a high global entropy. To
that end, we apply the principle of ForwardSelection locally, on each mapper, and grow
an itemset by adding a new feature at each step. After the last scan, for each candidate
itemset X of size k we have the projection counting of X on the local data set. A
straightforward approach would be to emit the candidate itemset having the highest
local entropy. We denote by local entropy, the entropy of an itemset in a subset of the
database that is read by a mapper (i.e., by considering only the projections of X in
the mapper). Then the reducers would collect the local miki and we would check their
global entropy (i.e., the entropy of the itemset X in the entire database D) by means
of a second MapReduce job. Unfortunately, this approach would not be correct, since
an itemset might have the highest global entropy, while actually not having the highest
entropy in each subset. Example 5 gives a possible case where a global miki does not
appear as a local miki on any subset of the database.

Example 5. Let us consider D, the database given by Table 2, which is divided into
two splits of six transactions. The global miki of size 3 in this database is (A, B, E).
More precisely, the entropy of (A, B, E) on D is given by − 1

12 × log( 1
12 )× 4− 2

12 ×
log( 2

12 )× 4 = 2.92. However, if we consider each split individually, (A, B, E) always
has a lower entropy compared to at least one different itemset. For instance, on the split
S1, the projections of (A, B, E) are (0, 0, 0), (0, 1, 0), (1, 1, 0) and (0, 1, 1) with one
occurrence each, and (1, 0, 0) with two occurrences. Therefore the entropy of (A, B, E)
on S1 is 2.25 (i.e., − 1

6 × log( 1
6 ) × 4 − 2

6 × log( 2
6 ) = 2.25). On the other hand, the

projections of (A, B, C) on S1 are (0, 0, 1), (0, 1, 0), (1, 0, 1), (1, 1, 0), (0, 1, 1) and
(1, 0, 0) with one occurrence each, and the entropy of (A, B, C) on S1 is 2.58 (i.e.,
− 1

6 × log( 1
6 )× 6 = 2.58). This is similar on S2 where the entropy of (A, B, E) is 2.25

and the entropy of (A, B, D) is 2.58. However, (A, B, C) and (A, B, D) both have a
global entropy of 2.62 on D, which is lower than 2.92, the global entropy of (A, B, E)
on D.

Since it is possible that a global miki is never found as a local miki, we need to
consider a larger number of candidate itemsets. This can be done by exploiting the set
of candidates that are built in the very last step of ForwardSelection. This step aims
to calculate the projection counting of F − k candidates and then compute their local
entropy. Instead of only emitting the itemset having the larger entropy, we will emit,
for each candidate X , the projection counting of X on the split, as explained in Section
5.1. The reducers will then be provided with, for each local candidate Xi (1 ≤ i ≤ m,
where m is the number of mappers, or splits), the projection counting of X on a subset
of D. The main idea is that the itemset having the highest entropy is highly likely to
be in that set of candidates. For instance, in the database given by Table 2 and k = 3,
the global miki is (A, B, E), while the local miki are (A, B, C) on S1 and (A, B, D) on
S2. However, with the technique described above, the itemset (A, B, E) will be a local
candidate, and will be sent to the reducers with the whole set of projections encountered



10 S. Salah et al

Split A B C D E

S1 0 0 1 0 0
0 1 0 0 0
1 0 1 0 0
1 1 0 0 0
0 1 1 0 1
1 0 0 0 0

S2 0 0 0 0 1
0 1 0 1 1
1 0 0 0 1
1 1 0 1 1
0 1 0 0 0
1 0 0 1 1

Table 2. Local Vs. Global Entropy

so far in the splits. The reducer will then calculate its global entropy, compare it to the
entropy of the other itemsets, and (A, B, E) will eventually be selected as the miki on
this database.

Unfortunately, it is possible that X has not been generated as a candidate itemset on
the entire set of splits (consider a biased data distribution, where a split contains some
features with high entropies, and these features have low entropies on the other splits).
Therefore, we have two possible cases at this step:

1. X is a candidate itemset on all the splits and we are able to calculate its exact projec-
tion counting on D, by means of the technique given in Section 5.1.

2. There is (at least) one split where X has not been generated as a candidate and we
are not able to calculate its exact projection counting on D.

The first case does not need more discussion, since we have collected all the nec-
essary information for calculating the entropy of X on D. The second case is more
difficult since X might be the miki but we cannot be sure, due to lack of information
about its local entropy on (at least) one split. Therefore, we need to check the entropy of
X on D with a second MapReduce job intended to calculate its exact projection count-
ing. The goal of this second round is to check that no local candidate has been ignored
at the global scale. At the end of this round, we have the entropy of all the promising
candidate itemsets and we are able to pick the one with the highest entropy. This is the
architecture of our approach, the raw version of which (without optimization) is called
Simple-PHIKS. So far, we have designed a distributed architecture and a miki extraction
algorithm that, in our experiments reported in Section 6 outperforms ForwardSelection
by several orders of magnitude. However, by exploiting and improving some concepts
of information theory, we may significantly optimize this algorithm and further accel-
erate its execution at different parts of the architecture, as explained in the following
sections.

5.3. Candidate Reduction Using Entropy Upper Bound

One of the shortcomings of the basic version of our two rounds approach is that the
number of candidate itemsets, which should be processed in the second job, may be



A Highly Scalable Parallel Algorithm for Maximally Informative k-Itemset Mining 11

high for large databases as it will be illustrated by our experiments in Section 6. This
is particularly the case when the features are not uniformly distributed in the splits of
mappers. These candidate itemsets are sent partially by the mappers (i.e., not by all of
them), thus we cannot compute their total entropy in the corresponding reducer. This is
why, in the basic version of our approach, we compute their entropy in the second job
by reading again the database.

Here, we propose an efficient technique for significantly reducing the number of
candidates. The main idea is to compute an upper bound for the entropy of the partially
sent itemsets, and discard them if they have no chance to be a global miki. For this, we
exploit the available information about the miki candidates sent by the mappers to the
corresponding reducer.

Let us describe formally our approach. Let X be a partially sent itemset, and m
be a mapper that has not sent X and its projection frequencies to the reducer R that
is responsible for computing the entropy of X . In the reducer R, the frequency of X
projections for a part of the database is missing, i.e., in the split of m. We call these
frequencies as missing frequencies. We compute an upper bound for the entropy of X by
estimating its missing frequencies. This is done in two steps. Firstly, finding the biggest
subset of X , say Y , for which all frequencies are available and secondly, distributing
the frequencies of Y among the projections of X in such a way that the entropy of X
be the maximum.

5.3.1. Step 1

The idea behind the first step is that the frequencies of the projections of an item-
set X can be derived from the projections of its subsets. For example, suppose two
itemsets X = {A, B, C, D} and Y = {A, B}, then the frequency of the projection
p = (1, 1) of Y is equal to the sum of the following projections in X: p1 = (1, 1, 0, 0),
p2 = (1, 1, 0, 1), p3 = (1, 1, 1, 0) and p4 = (1, 1, 1, 1). The reason is that in all these
four projections, the features A and B exist, thus the number of times that p occurs in
the database is equal to the total number of times that the four projections p1 to p4 occur.
This is stated by the following lemma.

Lemma 5.1. Let the itemset Y be a subset of the itemset X , i.e., Y ⊆ X . Then, the fre-
quency of any projection p of Y is equal to the sum of the frequencies of all projections
of X which involve p.

Proof. The proof can be easily done as in the above discussion.

In Step 1, among the available subsets of itemset X , i.e., those for which we have
all projection frequencies, we choose the one that has the highest size. The reason is that
its intersection with X is the highest, thus our estimated upper bound about the entropy
of X will be closer to the real one.

5.3.2. Step 2

let Y be the biggest available subset of X in reducer R. After choosing Y , we distribute
the frequency of each projection p of Y among the projections of X that are derived
from p. There may be many ways to distribute the frequencies. For instance, in the
example of Step 1, if the frequency of p is 6, then the number of combinations for
distributing 6 among the four projections p1 to p4 is equal to the solutions which can
be found for the following equation: x1 + x2 + x3 + x4 = 6 when xi ≥ 0. In general,
the number of ways for distributing a frequency f among n projections is equal to the



12 S. Salah et al

number of solutions for the following equation:

x1 + x2 + ... + xn = f for xi ≥ 0

Obviously, when f is higher than n, there is a lot of solutions for this equation.
Among all these solutions, we choose a solution that maximizes the entropy of X . The
following lemma shows how to choose such a solution.

Lemma 5.2. Let D be a database, and X be an itemset. Then, the entropy of X over D
is the maximum if the possible projections of X over D have the same frequency.

Proof. The proof is done by implying the fact that in the entropy definition (see Def-
inition 2), the maximum entropy is for the case where all possible combinations have
the same probability. Since, the probability is proportional to the frequency, then the
maximum entropy is obtained in the case where the frequencies are the same. �

The above lemma proposes that for finding an upper bound for the entropy of X (i.e.,
finding its maximal possible entropy), we should distribute equally (or almost equally)
the frequency of each projection in Y among the derived projections in X . Let f be
the frequency of a projection in Y and n be the number of its derived projections, if (f
modulo n) = 0 then we distribute equally the frequency, otherwise we first distribute the
quotient among the projections, and then the rest randomly.

After computing the upper bound for entropy of X , we compare it with the maxi-
mum entropy of the itemsets for which we have received all projections (so we know
their real entropy), and discard X if its upper bound is less than the maximum found
entropy until now.

5.4. Prefix/Suffix

When calculating the local miki on a mapper, at each step we consider a set of candi-
dates having size j that share a prefix of size j − 1. For instance, with the database of
Table 2 and the subset of split S1, the corresponding mapper will extract (A, B) as the
miki of size 2. Then, it will build 3 candidates: (A, B, C), (A, B, D) and (A, B, E). A
straightforward approach for calculating the joint entropy of these candidates would be
to calculate their projection counting by means of an exhaustive scan over the data of S1
(i.e., read the first transaction of S1, compare it to each candidate in order to find their
projections, and move to the next transaction). However, these candidates share a prefix
of size 2: (A, B). Therefore, we store the candidates in a structure that contains the pre-
fix itemset, of size j − 1, and the set of |F − j| suffix features. Then, for a transaction
T , we only need to i) calculate proj(p, T ) where p is the prefix and ii) for each suffix
feature f , find the projection of f on T , append proj(f, T ) to proj(p, T ) and emit the
result. Let us illustrate this principle with the example above (i.e., first transaction of S1
in Table 2). The structure is as follows: {prefix=(A, B):suffixes=C, D, E}. With this
structure, instead of comparing (A, B, C), (A, B, D) and (A, B, E) to the transaction
and find their respective projections, we calculate the projection of (A, B), their prefix,
i.e., (0, 0), and the projection of each suffix, i.e., (1), (0) and (0) for C, D, and E re-
spectively. Each suffix projection is then added to the prefix projection and emitted. In
our case, we build three projections: (0, 0, 1), (0, 0, 0) and (0, 0, 0), and the mapper will
emit ((A, B, C) : (0, 0, 1)), ((A, B, D) : (0, 0, 0)) and ((A, B, E) : (0, 0, 0)).



A Highly Scalable Parallel Algorithm for Maximally Informative k-Itemset Mining 13

5.5. Incremental Entropy Computation in Mappers

In the basic version of our two rounds approach, each mapper performs many scans over
its split to compute the entropy of candidates and finally find the local miki. Given k as
the size of the requested itemset, in each step j of the k steps in the local miki algorithm,
the mapper uses the itemset of size j−1 discovered so far, and builds |F |− j candidate
itemsets before selecting the one having the highest entropy. For calculating each joint
entropy, a scan of the input split is needed in order to compute the frequency (and thus
the probability) of projections. Let |F | be the number of features in the database, then
the number of scans done by each mapper is O(k ∗ |F |). Although the input split is kept
in memory, this high number of scans over the split is responsible for the main part of
the time taken by the mappers.

In this Section, we propose an efficient approach to significantly reduce the number
of scans. Our approach that incrementally computes the joint entropies, needs to do
in each step just one scan of the input split. Thus, the number of scans done by this
approach is O(k).

To incrementally compute the entropy, our approach takes advantage of the follow-
ing lemma.

Lemma 5.3. Let X be an itemset, and suppose we make an itemset Y by adding a new
feature i to X , i.e., Y = X + {i}. Then, for each projection p in X two projections
p1 = p.0, and p2 = p.1 are generated in Y , and the sum of the frequency of p1 and p2
is equal to that of p, i.e., f(p) = f(p1) + f(p2).

proof. The projections of Y can be divided into two groups: 1) those that represent
transactions containing i; 2) those representing the transactions that do not involve i.
For each projection p1 in the first group, there is a projection p2 in the second group,
such that p1 and p2 differ only in one bit, i.e., the bit that represents the feature i. If we
remove this bit from p1 or p2, then we obtain a projection in X , say p, that represents
all transactions that are represented by p1 or p2. Thus, for each project p in X , there are
two projections p1 and p2 in Y generated from p by adding one additional bit, and the
frequency of p is equal to the sum of the frequencies of p1 and p2. �

Our incremental approach for miki computing proceeds as follows. Let X be the
miki in step j . Initially, we set X = {}, with a null projection whose frequency is equal
to n, i.e., the size of the database. Then, in each step j (1 ≤ j ≤ k), we do as follows. For
each remaining feature i ∈ F −X , we create a hash map hi,j containing all projections
of the itemset X + {i}, and we initiate the frequency of each projection to zero. Then,
we scan the set of transactions in the input split of the mapper. For each transaction t,
we obtain a set S that is the intersection of t and F −X , i.e., S = t∩ (F −X). For each
feature i ∈ S, we obtain the projection of t over X + {i}, say p2, and increment by one
the frequency of the projection p2 in the hash map hi,j . After scanning all transactions
of the split, we obtain the frequency of all projections ending with 1. For computing
the projections ending with 0, we use Lemma 5.3 as follows. Let p.0 be a projection
ending with 0, we find the projection p.1 (i.e., the projection that differs only in the last
bit), and set the frequency of p.0 equal to the frequency of p minus that of p.1, i.e.,
f(p.0) = f(p)− f(p.1). By this way, we compute the frequency of projections ending
with 0.

After computing the frequencies, we can compute the entropy of itemset X + {i},
for each feature i ∈ F −X . At the end of each step, we add to X the feature i whose
joint entropy with X is the highest. We keep the hash map of the selected itemset, and
remove all other hash maps including that of the previous step. Then, we go to the next
step until finishing step k. Notice that to obtain the frequency of p in step j, we use the



14 S. Salah et al

hash map of the previous step, i.e., Hi,j−1, this is why, at each step we keep the hash
map of the selected miki.

Let us now prove the correctness of our approach using the following Theorem.

Theorem 5.4. Given a database D, and a value k as the size of requested miki. Then,
our incremental approach computes correctly the entropy of the candidate itemsets in
all steps.

proof. To prove the correctness of our approach, it is sufficient to show that in each
step the projection frequencies of X + {i} are computed correctly. We show this by
induction on the number of steps, i.e., j for 1 ≤ j ≤ k.

Base. In the first step, the itemset X + {i} = {i} because initially X = {}. There
are two projections for {i} : p1 = (0) and p2 = (1). The frequency of p2 is equal to the
number of transactions containing i. Thus during the scan of the split, we correctly set
the frequency of p2. Since there is no other projection for i, the frequency of p1 is equal
to n−f(p2), where n is the size of the database. This frequency is found correctly by our
approach. Thus, for step j = 1 our approach finds correctly the projection frequencies
of X + {i}.

Induction. we assume that our approach works correctly in step j−1, then we prove
that it will work correctly in step j. The proof can be done easily by using Lemma 5.3.
According this lemma, for each projection p in step j − 1 there are two projections
p1 = (p.0), and p2 = (p.1) in step j. The frequency of p2 is computed correctly during
the scan of the split. We assume that the frequency of p has been correctly computed
in step j − 1. Then, Lemma 5.3 implies that the frequency of p1 has been also well
computed since we have f(p) = f(p1) + f(p2). �

5.6. Complete Approach

Our approach depicts the core mining process of Parallel Highly Informative K-itemSet
Algorithm (PHIKS). The major steps of PHIKS algorithm for miki discovery are sum-
marized in Algorithms 1 and 2. Algorithm 1 depicts the mining process of the first
MapReduce job of PHIKS, while Algorithm 2 depicts the mining process of its second
MapReduce job.



A Highly Scalable Parallel Algorithm for Maximally Informative k-Itemset Mining 15

Algorithm 1: PHIKS: Job1
Input: n data splits S = {S1, S2, . . . , Sn} of a database D, K the size of miki
Output: A miki of Size K

//Mapper Class 1
map( key: Line Offset: K1, value = Whole Si: V1 )

- Fi ← the set of features in Si

- ∀f ∈ Fi compute H(f) on Si, using prefix/suffix
- n← 1 // current size of itemsets
- HInFS← max(H(f)),∀f ∈ Fi

// HInFS is the itemset of size n
// having the highest entropy
while i 6= k do

- n + +
- Cn ← BuildCandidates(HInFS, Fi\HInFS)
- ∀c ∈ Cp, H(ci)← ComputeJointEntropy(c, Si)
- HInFS← max(H(c)),∀c ∈ Cn

// Ck contains all the candidate itemsets of size k
// and ∀c ∈ Ck, the joint entropy of c is in H(ci)
for c ∈ Ck do

- Pc ← projections(c, Si)
for p ∈ Pc do

- emit(key = c : value = p)

//Reducer Class 1
reduce( key: itemset c,

list(values): projections(c) )
if c has been emitted by all the mappers then

// We have all the projections of c on D
// we store its entropy in a file "complete"
- H(c)← IncrJointEntropy(c,projections(c))
- emit(c,H(c)) in a file Complete

else
// Missing nformation. We have to estimate
// the upper bound of c’s joint entropy
// and store it in a file "Incomplete"
- Est← UpperBound(c,projections(c))
- emit(c, Est) in a file "Incomplete"

close( )
- Cmax ← CandidateWithMaxEntropy("Complete")
- emit(Cmax, H(Cmax))

in a file "CompleteMaxFromJob1"
for c ∈ "Incomplete" do

if Est(c) > H(Cmax) then
// c is potentially a miki, it has
// to be checked over D
- emit(c,Null) in a file "ToBeTested"



16 S. Salah et al

Algorithm 2: PHIKS: Job2
Input: Database D, K miki Size
Output: Tested miki of Size K

//Mapper Class 2
map( key: Line Offset: K1, value = Transaction: V1 )

- Read file ’ToBeTested’ from Job1 (once) in the mapper
- F ← set of itemsets in ’ToBeTested’
for f ∈ F do

- p← projections(f , V1)
emit (key: f , value: p)

//Reducer Class 2
reduce( key: itemset f ,

list(values): projections(f ) )
// we have all the projections of f on D that come
// from all mappers
// we compute its joint entropy and we write the result to a file
// "CompleteFromJob2"
- H(f)← IncrJointEntropy(f ,projections(f ))
- write(f , H(f)) to a file "CompleteFromJob2" in HDFS
// optional, we emit the result of use later, from the close() method
- emit (key: f , value: H(f))

close( )
// emit miki having highest joint entropy
- read file "CompleteMaxFromJob1"
- read file "CompleteFromJob2"
- Max← max("CompleteMaxFromJob1",

"CompleteFromJob2")
- emit(miki,Max)

6. Experiments

To evaluate the performance of PHIKS, we have carried out extensive experimental
tests. In Section 6.1, we depict our experimental setup and its main configurations. In
Section 6.2, we depict the different used data sets in our various experiments. Lastly, in
Section 6.3, we thoroughly analyze and investigate our different experimental results.

6.1. Experimental Setup

We implemented PHIKS algorithm on top of Hadoop-MapReduce using Java program-
ming language version 1.7 and Hadoop (White, 2012) version 1.0.3. For comparison,
we implemented a parallel version of Forward Selection (Knobbe and Ho, 2006) algo-
rithm. To specify each presented algorithm, we adopt the notations as follow. We de-
note by ’PFWS’ a parallel implementation of Forward Selection algorithm, by ’Simple-
PHIKS’ an implementation of our basic two rounds algorithm without any optimiza-
tion, and by ’Prefix’ an extended version of Simple-PHIKS algorithm that uses the Pre-
fix/Suffix method for accelerating the computations of the projection values. We denote
by ’Upper-B’ a version of our algorithm that reduces the number of candidates by esti-



A Highly Scalable Parallel Algorithm for Maximally Informative k-Itemset Mining 17

Data Set # of Transactions # of Items Size

Amazon Reviews 34 millions 31721 34 Gigabyte
English Wikipedia 5 millions 23805 49 Gigabytes

ClueWeb 632 millions 141826 1 Terabyte

Table 3. Data Sets Description

mating the joint entropies of miki based on an upper bound joint entropy. We denote by
’Upper-B-Prefix’ an extended version of Upper-B algorithm that employs the technique
of prefix/suffix. Lastly, we denote by ’PHIKS’ an improved version of Upper-B-Prefix
algorithm that uses the method of incremental entropy for reducing the number of data
split scans at each mapper.

We carried out all our experiments on the Grid5000 (Grid5000, n.d.) platform,
which is a platform for large-scale data processing. In our experiments, we have used
clusters of 16 and 48 nodes respectively for Amazon Reviews, Wikipedia data sets and
ClueWeb data set. Each machine is equipped with Linux operating system, 64 Giga-
bytes of main memory, Intel Xeon X3440 4 core CPUs and 320 Gigabytes SATA hard
disk.

In our experiments, we measured three metrics: 1) the response time of the com-
pared algorithms, which is the time difference between the beginning and the end of
a maximally informative k-itemsets mining process; 2) the quantity of transferred data
(i.e., between the mappers and the reducers) of each maximally informative k-itemsets
mining process; 3) the energy consumption for each maximally informative k-itemsets
mining process. To this end, we used the metrology API and Ganglia infrastructure
of the Grid5000 platform that allow to measure the energy consumption of the nodes
during an experiment.

Basically, in our experiments, we consider the different performance measurements
when the size k of the itemset (miki to be discovered) is high.

6.2. Data Sets

To better evaluate the performance of PHIKS algorithm, we used three real-world data
sets as described in Table 3. The first one is the whole 2013 Amazon Reviews data set
(Amazon, n.d.), having a total size of 34 Gigabytes and composed of 35 million reviews.
The second data set is the 2014 English Wikipedia data set (English Wikipedia Articles,
2014), having a total size of 49 Gigabytes and composed of 5 million articles. The third
data set is a sample of ClueWeb English data set (The ClueWeb09 Dataset, 2009) with
size of around one Terabyte and having 632 million articles. For English Wikipedia
and ClueWeb data sets, we performed a data cleaning task; we removed all English stop
words from all articles, and obtained data sets where each article represents a transaction
(features, items, or attributes are the corresponding words in the article). Likewise, for
Amazon Reviews data set, we removed all English stop words from all reviews. Each
review represents a transaction in our experiments on Amazon Reviews data set.

6.3. Results

In this Section, we report the results of our experimental evaluation.



18 S. Salah et al

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

2 3 4 5 6 7 8

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Miki Size

PFWS
Simple-PHIKS
Prefix

Upper-B
Upper-B-Prefix
PHIKS

(a) All algorithms

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

8 9 10 11 12 13 14 15

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Miki Size

Upper-B-Prefix PHIKS

(b) Focus on scalable algorithms

Fig. 1. Runtime and scalability on Amazon Reviews Data Set

6.3.1. Runtime and Scalability

Figures 1, 2, and 3 show the results of our experiments on Amazon Reviews, English
Wikipedia and ClueWeb data sets. Figures 1(a) and 1(b) give an overview on our exper-
iments on the Amazon Reviews data set. Figure 1(a) illustrates the the performance of
different algorithms when varying the itemset sizes from 2 to 8. We see that the response
time of Forward Selection algorithm (PFWS) grows exponentially and gets quickly very
high compared to other algorithms. Above a size k = 6 of itemsets, PFWS cannot con-
tinue scaling. This is due to the multiple database scans that it performs to determine an



A Highly Scalable Parallel Algorithm for Maximally Informative k-Itemset Mining 19

 0

 500

 1000

 1500

 2000

 2500

 3000

2 3 4 5 6 7 8

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Miki Size

PFWS
Simple-PHIKS
Prefix

Upper-B
Upper-B-Prefix
PHIKS

(a) All algorithms

 0

 500

 1000

 1500

 2000

 2500

 3000

8 9 10 11 12 13 14 15

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Miki Size

Upper-B-Prefix PHIKS

(b) Focus on scalable algorithms

Fig. 2. Runtime and scalability on English Wikipedia Data Set

itemset of size k (i.e, PFWS needs to perform k MapReduce jobs). In the other hand,
the performance of Simple-PHIKS algorithm is better than PFWS; it continues scaling
with higher k values. This difference in the performance between the two algorithms
illustrates the significant impact of mining itemsets in the two rounds architecture.

Moreover, by using further optimizing techniques, we clearly see the improvements
in the performance. In particular, with an itemset having size k = 8, we observe a good
performance behavior of Prefix comparing to Simple-PHIKS. This performance gain
in the runtime reflects the efficient usage of Prefix/Suffix technique for speeding up
miki parallel extraction. Interestingly, by estimating miki at the first MapReduce job, we



20 S. Salah et al

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

2 3 4 5 6 7 8

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Miki Size

PFWS
Simple-PHIKS
Prefix

Upper-B
Upper-B-Prefix
PHIKS

(a) All algorithms

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

8 9 10 11

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Miki Size

Upper-B-Prefix PHIKS

(b) Focus on scalable algorithms

Fig. 3. Runtime and scalability on ClueWeb Data Set

record a very good response time as shown by Upper-B algorithm. In particular, with
k = 8 we see that Upper-B algorithm roughly outperforms Simple-PHIKS by a factor
of 3. By coupling the Prefix/Suffix technique with Upper-B algorithm, we see very good
improvements in the response time, which is achieved by Upper-B-Prefix. Finally, by
taking advantage of our incremental entropy technique for reducing the number of data
split scans, we record an outstanding improvement in the response time, as shown by
PHIKS algorithm.

Figure 1(b) highlights the difference between the algorithms that scale in Figure
1(a). Although Upper-B-Prefix continues to scale with k = 8, it is outperformed by



A Highly Scalable Parallel Algorithm for Maximally Informative k-Itemset Mining 21

PHIKS algorithm. With itemsets of size k = 15, we clearly observe a big difference in
the response time between Upper-B-Prefix and PHIKS. The significant performance of
PHIKS algorithm illustrates its robust and efficient core mining process.

Figures 2(a) and 2(b) report our experiments on the English Wikipedia data set. Fig-
ure 2(a) gives a complete view on the the performance of different presented algorithms
when varying the itemset sizes from 2 to 8. Similarly as in Figure 1(a), in Figure 2(a) we
clearly see that the execution time of Forward Selection algorithm (PFWS) is very high
compared to other presented alternatives. When the itemsets size reach values greater
than k = 5, PFWS stops scaling. In the other side, we observe that Simple-PHIKS
algorithm continues scaling and gives better performance than PFWS.

Performing more optimization, we significantly speed up the miki extraction. Specif-
ically, with itemsets size k = 8, we see that the performance of Prefix is better than
Simple-PHIKS. This difference in the performance behavior between the two algo-
rithms explains the high impact of using Prefix/Suffix technique to speed up the whole
mining process of the parallel miki extraction. By going on for further optimization us-
ing our efficient heuristic technique for estimating miki at the first MapReduce job, we
get a significant improvement in the execution time as shown by Upper-B algorithm.
Particularly, with itemsets size k = 8 we clearly see that Upper-B algorithm perfor-
mance is better than Simple-PHIKS. By using Prefix/Suffix technique with Upper-B
algorithm, we record a significant improvement in the performance as shown by Upper-
B-Prefix. Eventually, based on our efficient technique of incremental entropy, we record
a very significant performance improvement as shown by PHIKS algorithm.

Figure 2(b) illustrates the difference between the algorithms that scale in Figure 2(a).
Despite the scalability recorded by Upper-B-Prefix when k = 8, Upper-B-Prefix gives
very less performance compared to PHIKS algorithm. In particular, with higher itemsets
size (e.g., k = 15), we record a large difference in the execution time between Upper-
B-Prefix and PHIKS algorithms. This difference in the performance between the two
algorithms reflects the efficient and robust core mining process of PHIKS algorithm.
In Figures 3(a) and 3(b), similar experiments have been conducted on the ClueWeb
data set. We observe that the same order between all algorithms is kept compared to
Figures 1(a), 1(b), 2(a) and 2(b). In particular, we see that PFWS algorithm suffers
from the same limitations as could be observed on the Amazon Reviews and Wikipedia
data sets in Figure 1(a) and Figure 2(a) . With an itemset size of k = 8, we clearly
observe a significant difference between PHIKS algorithm performance and all other
presented alternatives. This difference in the performance is better illustrated in Figure
3(b). By increasing the size k of miki from 8 to 11, we observe a very good performance
of PHIKS algorithm. Although, Upper-B-Prefix algorithm scales with k = 11, it is
outperformed by PHIKS.

6.3.2. miki Candidates Pruning

Figure 4 gives a complete overview on the total number of miki candidates being tested
at the second MapReduce job for both Simple-PHIKS and PHIKS algorithms. Figure
4(a) illustrates the number of miki candidates being validated at the first MapReduce
job on the Wikipedia data set. By varying the parameter size k of itemsets from 2 to 8,
we observe a significant difference in the number of miki candidates being sent by each
algorithm to its second MapReduce job. With k = 8, Simple-PHIKS algorithm sends to
its second job roughly 6 times more candidates than PHIKS. This important reduction
in the number of candidates to be tested in the second job is achieved due to our effi-
cient technique for estimating the joint entropies of miki with very low upper bounds.
Likewise, in Figure 4(b), we record a very good performance of PHIKS comparing to



22 S. Salah et al

 0

 5000

 10000

 15000

 20000

2 3 4 5 6 7 8

#
 o

f 
M

ik
i 
C

a
n

d
id

a
te

s
 f

o
r 

J
o

b
2

Miki Size

Simple-PHIKS
PHIKS

(a) Wikipedia data set

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

2 3 4 5 6 7 8

#
 o

f 
M

ik
i 
C

a
n

d
id

a
te

s
 f

o
r 

J
o

b
2

Miki Size

Simple-PHIKS
PHIKS

(b) ClueWeb data set

Fig. 4. Candidate Pruning

Simple-PHIKS. This outstanding performance of Simple-PHIKS algorithm reflects its
high capability and its effectiveness for a very fast and successful miki extraction.

6.3.3. Data Communication and Energy Consumption

Figure 5 gives an entire view of the quantity of transferred data (in megabyte) over the
network by each presented algorithm on the three data sets. Respectively Figures 5(a),
5(b) and 5(c) show the performance of each presented maximally informative k-itemsets
mining process on Amazon Reviews, English Wikipedia and ClueWeb data sets. In all



A Highly Scalable Parallel Algorithm for Maximally Informative k-Itemset Mining 23

 0

 1000

 2000

 3000

 4000

 5000

2 3 4 5 6 7 8

T
ra

n
s
fe

rr
e

d
 D

a
ta

 (
M

B
)

Miki Size

PFWS
Simple-PHIKS
Prefix
Upper-B
Upper-B-Prefix
PHIKS

(a) Amazon Reviews data set

 0

 1000

 2000

 3000

 4000

 5000

2 3 4 5 6 7 8

T
ra

n
s
fe

rr
e

d
 D

a
ta

 (
M

B
)

Miki Size

PFWS
Simple-PHIKS
Prefix
Upper-B
Upper-B-Prefix
PHIKS

(b) Wikipedia data set

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

2 3 4 5 6 7 8

T
ra

n
s
fe

rr
e

d
 D

a
ta

 (
M

B
)

Miki Size

PFWS
Simple-PHIKS
Prefix
Upper-B
Upper-B-Prefix
PHIKS

(c) ClueWeb data set

Fig. 5. Data Communication



24 S. Salah et al

 0

 5

 10

 15

 20

2 3 4 5 6 7 8

P
o

w
e

r 
C

o
n

s
u

m
p

ti
o

n
 (

W
)

Miki Size

PFWS
Simple-PHIKS
Prefix
Upper-B
Upper-B-Prefix
PHIKS

(a) Amazon Reviews data set

 0

 5

 10

 15

 20

2 3 4 5 6 7 8

P
o

w
e

r 
C

o
n

s
u

m
p

ti
o

n
 (

W
)

Miki Size

PFWS
Simple-PHIKS
Prefix
Upper-B
Upper-B-Prefix
PHIKS

(b) Wikipedia data set

 0

 10

 20

 30

 40

 50

2 3 4 5 6 7 8

P
o

w
e

r 
C

o
n

s
u

m
p

ti
o

n
 (

W
)

Miki Size

PFWS
Simple-PHIKS
Prefix
Upper-B
Upper-B-Prefix
PHIKS

(c) ClueWeb data set

Fig. 6. Energy Consumption



A Highly Scalable Parallel Algorithm for Maximally Informative k-Itemset Mining 25

figures, we observe that PFWS algorithm has the highest peak. This is due to its multiple
MapReduce jobs executions. In the other hand, we see that Simple-PHIKS and Prefix
algorithms have smaller peaks. This is because Simple-PHIKS and its optimized Prefix
version algorithm (for fast computation of the local entropies at the mappers) rely on two
MapReduce jobs whatever the miki size to be discovered. We see that Upper-B, Upper-
B-Prefix and PHIKS outperform all other presented algorithms in terms of transferred
data. This is due to the impact of estimating the joint entropies at their first MapReduce
job which reduces the number of miki candidates (i.e., data) being tested at their second
MapReduce job.

We also measured the energy consumption (in Watt) of the compared algorithms
during their execution. We used the Grid5000 (Grid5000, n.d.) tools that measure the
power consumption of the nodes during a job execution. Figure 6 shows the total amount
of the power consumption of each presented maximally informative k-itemsets mining
process on Amazon Reviews, English Wikipedia and ClueWeb data sets. In Figures
6(a), 6(b) and 6(c) we observe that the energy consumption increases when increasing
the size k of the miki to be discovered for each algorithm. We see that PHIKS still
gives a lower consumption comparing to other presented algorithms. This is simply due
to the higher optimizations in its core mining process. Actuelly the smaller number of
candidates being tested during the second MapReduce job of PHIKS calls for a lower
number of I/O access when computing the entropies. All of these different factors make
PHIKS consumes less energy compared to other presented algorithms.

7. Conclusion

In this paper, we proposed a reliable and efficient MapReduce based parallel maximally
informative k-itemset algorithm namely PHIKS that has shown significant efficiency
in terms of runtime, communication cost and energy consumption. PHIKS elegantly
determines the miki in very large databases with at most two rounds. With PHIKS, we
propose a bunch of optimizing techniques that renders the miki mining process very fast.
These techniques concern the architecture at a global scale, but also the computation of
entropy on distributed nodes, at a local scale. The result is a fast and efficient discovery
of miki with high itemset size. Such ability to use high itemset size is mandatory when
dealing with Big Data and particularly one Terabyte like what we have done in our
experiments. Our results show that PHIKS algorithm outperforms other alternatives by
several orders of magnitude, and makes the difference between an inoperative and a
successful miki extraction.

As a future work, we plan to apply our technique of extracting miki to handle the
problem of text classification. By using our PHIKS approach, we strongly believe that
the extracted miki would highly discriminate the database, which is in turn would result
in high classification accuracy and fast learning process.

Acknowledgements. Experiments presented in this paper were carried out using the Grid’5000
experimental testbed, being developed under the INRIA ALADDIN development action with
support from CNRS, RENATER and several universities as well as other funding bodies (see
https://www.grid5000.fr).

References

Agrawal, R. and Srikant, R. (1994), Fast algorithms for mining association rules in large databases, in ‘Pro-
ceedings of International Conference on Very Large Data Bases (VLDB)’, pp. 487–499.



26 S. Salah et al

Amazon (n.d.), http://snap.stanford.edu/data/web-Amazon-links.html.
Anand, R. (2012), Mining of massive datasets, Cambridge University Press, New York, N.Y. Cambridge.
Berberich, K. and Bedathur, S. (2013), Computing n-gram statistics in mapreduce, in ‘Proceedings of the 16th

International Conference on Extending Database Technology (EDBT)’, pp. 101–112.
Berry, M. W. and Castellanos, M. (n.d.), Survey of Text Mining II: Clustering, Classification, and Retrieval, 1

edn.
Bizer, C., Boncz, P. A., Brodie, M. L. and Erling, O. (2011), ‘The meaningful use of big data: four perspectives

- four challenges’, SIGMOD Record 40(4), 56–60.
Brin, S., Motwani, R. and Silverstein, C. (1997), ‘Beyond market baskets: Generalizing association rules to

correlations’, SIGMOD Rec. 26(2), 265–276.
URL: http://doi.acm.org/10.1145/253262.253327

Chandrashekar, G. and Sahin, F. (2014), ‘A survey on feature selection methods’, Computers and Electrical
Engineering 40(1), 16 – 28.

Cover, T. M. (2006), Elements of information theory, Wiley-Interscience, Hoboken, N.J.
Dean, J. and Ghemawat, S. (2008), ‘Mapreduce: simplified data processing on large clusters’, Commun. ACM

51(1), 107–113.
English Wikipedia Articles (2014), http://dumps.wikimedia.org/enwiki/latest.
Ghahramani, Z. (2004), Unsupervised learning, in ‘Advanced Lectures on Machine Learning’, pp. 72–112.
Giannella, C., Han, J., Pei, J., Yan, X. and Yu, P. S. (2002), ‘Mining frequent patterns in data streams at

multiple time granularities’.
Gray, R. (2011), Entropy and information theory, Springer, New York.
Greengrass, E. (2000), ‘Information retrieval: A survey’.
Grid5000 (n.d.), https://www.grid5000.fr/mediawiki/index.php/Grid5000:Home.
Guyon, I. and Elisseeff, A. (2003), ‘An introduction to variable and feature selection’, J. Mach. Learn. Res.

3, 1157–1182.
Hadoop (2014), http://hadoop.apache.org.
Han, J. (2012), Data mining : concepts and techniques, Elsevier/Morgan Kaufmann.
Han, Pei and Yin (2000), ‘Mining frequent patterns without candidate generation’, SIGMODREC: ACM SIG-

MOD Record 29.
Heikinheimo, H., Hinkkanen, E., Mannila, H., Mielikäinen, T. and Seppänen, J. K. (2007), Finding low-

entropy sets and trees from binary data, in ‘Proceedings of ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD)’, pp. 350–359.

Herrera, F., Carmona, C., González, P. and del Jesus, M. (2011), ‘An overview on subgroup discovery: foun-
dations and applications’, Knowledge and Information Systems 29(3), 495–525.
URL: http://dx.doi.org/10.1007/s10115-010-0356-2

Knobbe, A. J. and Ho, E. K. Y. (2006), Maximally informative k-itemsets and their efficient discovery, in
‘Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD)’, pp. 237–244.

Kotsiantis, S. B. (2007), Supervised machine learning: A review of classification techniques, in ‘Proceedings
of International Conference on Emerging Artificial Intelligence Applications in Computer Engineering’,
pp. 3–24.

Li, H., Wang, Y., Zhang, D., Zhang, M. and Chang, E. Y. (2008), Pfp: parallel fp-growth for query recom-
mendation, in ‘Proceedings of the ACM Conf. on Recommender Systems (RecSys)’, pp. 107–114.

Miliaraki, I., Berberich, K., Gemulla, R. and Zoupanos, S. (2013), Mind the gap: Large-scale frequent se-
quence mining, in ‘Proceedings of the 2013 ACM SIGMOD International Conference on Management of
Data (SIGMOD)’, pp. 797–808.

Moens, S., Aksehirli, E. and Goethals, B. (2013), Frequent itemset mining for big data, in ‘IEEE International
Conference on Big Data’, pp. 111–118.

Riondato, M., DeBrabant, J. A., Fonseca, R. and Upfal, E. (2012), Parma: a parallel randomized algorithm
for approximate association rules mining in mapreduce, in ‘21st ACM International Conference on Infor-
mation and Knowledge Management (CIKM)’, pp. 85–94.

Savasere, A., Omiecinski, E. and Navathe, S. B. (1995), An efficient algorithm for mining association rules
in large databases, in ‘Proceedings of International Conference on Very Large Data Bases (VLDB)’,
pp. 432–444.

Tanbeer, S., Ahmed, C. and Jeong, B.-S. (2009), Parallel and distributed frequent pattern mining in large
databases, in ‘11th IEEE International Conference on High Performance Computing and Communications
(HPCC)’, pp. 407–414.

Tatti, N. (2010), Probably the best itemsets, in ‘Proceedings of the 16th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, Washington, DC, USA, July 25-28, 2010’, pp. 293–302.
URL: http://doi.acm.org/10.1145/1835804.1835843

http://snap.stanford.edu/data/web-Amazon-links.html
http://dumps.wikimedia.org/enwiki/latest
https://www.grid5000.fr/mediawiki/index.php/Grid5000:Home


A Highly Scalable Parallel Algorithm for Maximally Informative k-Itemset Mining 27

Teng, W.-G., Chen, M.-S. and Yu, P. S. (2003), A regression-based temporal pattern mining scheme for data
streams, in ‘Proceedings of International Conference on Very Large Data Bases (VLDB)’, pp. 93–104.

The ClueWeb09 Dataset (2009), http://www.lemurproject.org/clueweb09.php/.
White, T. (2012), Hadoop : the definitive guide, O’Reilly.
Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S. and Stoica, I. (2010), Spark: Cluster computing with

working sets, in ‘Proceedings of the 2Nd USENIX Conf. on Hot Topics in Cloud Computing’, pp. 10–10.
Zhang, C. and Masseglia, F. (2010), Discovering highly informative feature sets from data streams, in

‘Database and Expert Systems Applications’, pp. 91–104.

http://www.lemurproject.org/clueweb09.php/

	Introduction
	Related Work
	Definitions
	Background
	Miki Discovery in a Centralized Environment
	MapReduce and Job Execution

	PHIKS Algorithm
	Distributed Projection Counting
	Discovering miki in Two Rounds
	Candidate Reduction Using Entropy Upper Bound
	Step 1
	Step 2

	Prefix/Suffix
	Incremental Entropy Computation in Mappers
	Complete Approach

	Experiments
	Experimental Setup
	Data Sets
	Results
	Runtime and Scalability
	miki Candidates Pruning
	Data Communication and Energy Consumption


	Conclusion
	References

