R. Agrawal and R. Srikant, Fast algorithms for mining association rules in large databases, Proceedings of International Conference on Very Large Data Bases, pp.487-499, 1994.

R. Anand, Mining of massive datasets, 2012.

K. Berberich and S. Bedathur, Computing n-gram statistics in MapReduce, Proceedings of the 16th International Conference on Extending Database Technology, EDBT '13, pp.101-112, 2013.
DOI : 10.1145/2452376.2452389

C. Bizer, P. A. Boncz, M. L. Brodie, and O. Erling, The meaningful use of big data, ACM SIGMOD Record, vol.40, issue.4, pp.56-60, 2011.
DOI : 10.1145/2094114.2094129

S. Brin, R. Motwani, and C. Silverstein, Beyond market baskets: Generalizing association rules to correlations', SIGMOD Rec, pp.265-276, 1997.

G. Chandrashekar and F. Sahin, A survey on feature selection methods, Computers & Electrical Engineering, vol.40, issue.1, pp.16-28, 2014.
DOI : 10.1016/j.compeleceng.2013.11.024

T. M. Cover, Elements of information theory, 2006.

J. Dean and S. Ghemawat, MapReduce, Communications of the ACM, vol.51, issue.1, pp.107-113, 2008.
DOI : 10.1145/1327452.1327492

Z. Ghahramani, Unsupervised learning, in 'Advanced Lectures on Machine Learning, pp.72-112, 2004.

C. Giannella, J. Han, J. Pei, X. Yan, and P. S. Yu, Mining frequent patterns in data streams at multiple time granularities, 2002.

E. Greengrass, Information retrieval: A survey, 2000.

I. Guyon and A. Elisseeff, An introduction to variable and feature selection, J. Mach. Learn. Res, vol.3, pp.1157-1182, 2003.

J. Han, Data Mining, 2012.
DOI : 10.1007/978-1-4899-7993-3_104-2

P. Han and Y. , Mining frequent patterns without candidate generation, SIGMODREC: ACM SIG- MOD Record, vol.29, 2000.

H. Heikinheimo, E. Hinkkanen, H. Mannila, T. Mielikäinen, and J. K. Seppänen, Finding lowentropy sets and trees from binary data, Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.350-359, 2007.

F. Herrera, C. Carmona, P. González, and M. Del-jesus, An overview on subgroup discovery: foundations and applications, Knowledge and Information Systems, vol.77, issue.1, pp.495-525, 2011.
DOI : 10.1007/s10115-010-0356-2

A. J. Knobbe and E. K. Ho, Maximally informative k-itemsets and their efficient discovery, Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '06, pp.237-244, 2006.
DOI : 10.1145/1150402.1150431

S. B. Kotsiantis, Supervised machine learning: A review of classification techniques, Proceedings of International Conference on Emerging Artificial Intelligence Applications in Computer Engineering', pp.3-24, 2007.

H. Li, Y. Wang, D. Zhang, M. Zhang, and E. Y. Chang, Pfp, Proceedings of the 2008 ACM conference on Recommender systems, RecSys '08, pp.107-114, 2008.
DOI : 10.1145/1454008.1454027

I. Miliaraki, K. Berberich, R. Gemulla, and S. Zoupanos, Mind the gap, Proceedings of the 2013 international conference on Management of data, SIGMOD '13, pp.797-808, 2013.
DOI : 10.1145/2463676.2465285

S. Moens, E. Aksehirli, and B. Goethals, Frequent Itemset Mining for Big Data, 2013 IEEE International Conference on Big Data, pp.111-118, 2013.
DOI : 10.1109/BigData.2013.6691742

M. Riondato, J. A. Debrabant, R. Fonseca, and E. Upfal, PARMA, Proceedings of the 21st ACM international conference on Information and knowledge management, CIKM '12, pp.85-94, 2012.
DOI : 10.1145/2396761.2396776

A. Savasere, E. Omiecinski, and S. B. Navathe, An efficient algorithm for mining association rules in large databases, Proceedings of International Conference on Very Large Data Bases, pp.432-444, 1995.

S. Tanbeer, C. Ahmed, and B. Jeong, Parallel and Distributed Frequent Pattern Mining in Large Databases, 2009 11th IEEE International Conference on High Performance Computing and Communications, pp.407-414, 2009.
DOI : 10.1109/HPCC.2009.37

N. Tatti, Probably the best itemsets, Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD '10, pp.293-302, 2010.
DOI : 10.1145/1835804.1835843

W. Teng, M. Chen, and P. S. Yu, A Regression-Based Temporal Pattern Mining Scheme for Data Streams, Proceedings of International Conference on Very Large Data Bases, pp.93-104, 2003.
DOI : 10.1016/B978-012722442-8/50017-3

T. White, Hadoop : the definitive guide, 2012.

M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, Spark: Cluster computing with working sets, Proceedings of the 2Nd USENIX Conf. on Hot Topics in Cloud Computing, pp.10-10, 2010.

C. Zhang and F. Masseglia, Discovering highly informative feature sets from data streams, in 'Database and Expert Systems Applications, pp.91-104, 2010.