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Reconciling Software Product Lines (SPL) and Service Oriented Architecture (SOA) allows modeling and implementing systems that systematically adapt their behavior in respond to surrounding context changes. Both approaches are complementary with regard to the variability and the dynamicity properties. Architecture Description Language (ADL), on the other hand, is recognized as an important element in the description and analysis of software properties. Different ADLs have been proposed in SOA or in SPL domains. Nevertheless, none of these ADLs allows describing variability and dynamicity features together in the context of service-oriented dynamic product lines. In this sense, our work attempts to describe the changing architecture of Dynamic Service-Oriented Product Lines (DSOPL). We propose an ADL that allows describing three types of information: architecture's structural elements, variability elements and system's configuration. Furthermore, we introduce context elements on which service reconfiguration is based.

INTRODUCTION

Software Product Lines (SPL) and Service Oriented Architecture (SOA) have a common goal from a software development point of view; increase the reusability of existing assets rather than rebuilding new systems from scratch. SPL, on the one hand, allows the development of a family of products that share some common set of core assets [START_REF] Clements | Documenting software architectures: views and beyond, 2nd edition[END_REF], [START_REF] Mohabbati | Software Product Line Engineering to Develop Variant-Rich Web Services[END_REF], [START_REF] Clements | Software product lines: Practices and Patterns[END_REF]. Variability has always been a first concern in SPL studies [START_REF] Nakagawa | Reference architectures and variability: current status and future perspectives[END_REF]. According to [START_REF] Galster | Variability in software architecture: current practice and challenges[END_REF], variability is the ability of a software artifact to quickly change and adapt for a specific context in a preplanned manner. SOA, on the other hand, is a special kind of software architecture, where the main architectural elements are coarse grained and loosely coupled services that are dynamically composable and inter-operable [START_REF] Papazoglou | Service oriented architectures: approaches, technologies and research issues[END_REF]. Being able to modify the architecture of a running system at such a high level of abstraction renders the system highly extensible, customizable and powerful [START_REF] Medvidovic | ADLs and dynamic architecture changes[END_REF].

Variability and dynamicity are core properties to develop complex adaptable software systems such as telecommunication, pervasive, crisis management, surveillance and security systems. In such systems, due to environment changes, a dynamic re-configuration should be carried out without having to re-deploy the whole system.

Combining SOA and SPL constitutes the answer to this need [START_REF] Lee | Engineering Service-Based Dynamic Software Product Lines[END_REF]. SOA offers, through its encapsulation property and its explicit interfaces, a solution for achieving dynamic product lines. SPL offers, via variability modeling, analysis and design of changing points in service-oriented architectures.

Architecture Description Language (ADL) is a formalism that allows the specification of system's conceptual architecture [START_REF] Medvidovic | A classification and comparison framework for software architecture description languages[END_REF]. It enables architects to describe and validate systems against stakeholders' requirements from one side, and ease the development and implementation process of complex systems, from another side. It often has a graphical representation or plain text syntax. Conventional ADLs support only static architecture description [START_REF] Medvidovic | ADLs and dynamic architecture changes[END_REF]. Some ADLs provide special formalism for SOA to describe service dynamicity or for SPL to describe variability. Unfortunately no ADL supports the crosscutting SOA and SPL concepts.

To overcome this limitation, we propose an XML-based ADL that allows describing the architecture of a Dynamic Service-Oriented Product Line (DSOPL). It describes the four following elements: (i) the structural elements of a family of software products (i.e. services and connections), (ii) an architectural variability model (i.e. variability points and alternatives), (iii) context information, in addition to (iv) an architectural configuration model (i.e. reconfiguration rules based on context and variability). We choose to use XML as a description language to facilitate understandability and analysis of the described architecture. In addition, XML-based description facilitates tool-support design and interoperability.

The remainder of this paper is organized as follows: In section 2, we discuss related works regarding variability and dynamicity properties. In section 3, we characterize our proposed DSOPL-ADL's elements and demonstrate their utility through a running example. Finally, in section 4, we summarize our contribution and provide directions for future research.

II. RELATED WORK

A. ADLs specifying dynamic properties

A software architecture can be classified in terms of its capability of evolution into two categories: static or dynamic. A static architecture reflects the static structure of software and is completely specified at design time [START_REF] Medvidovic | ADLs and dynamic architecture changes[END_REF], whereas in dynamic architecture, system may evolve after its compilation [START_REF] Clements | Documenting software architectures: views and beyond, 2nd edition[END_REF]. In this type of architecture, in addition to specifying the system in terms of components, connectors and configurations, it should also specify how these components and connectors are evolution of architecture at runtime may happen under several forms architecture (modifying connection composing elements (substitution of composing elements). dynamic software architecture. literature, only few of them support dynamic reconfiguration such as ACME/Plastik de {condition} do {operations} different choices at runtime. component at runtime used components dynamic since third party services can be discovered and bound to service broker at B conventional SPL perspective by delaying the binding time of product's composing elements (i.e. features) to runtime. It produces autonomous and reconfigurable products that are able to reconfigure themselves to select a valid configuration during agreement of what aspects a dynamic SPL should exactly treat, most approaches agree that the main characteristic of any dynamic SPL framework is the runtime variability, which provides the following common ac managing the dynamic selection of variants, autonomous activation/ deactivation of composing elements, substitution of composing elements and dependency and constraint checking of changed elements representing an architecture that encompasses variability xADL architectural elements of software systems set of concepts in the form of three schemas: variants concepts within xADL; this approach suffers from limitation between elements of different variation points. defines component. any deployed configuration cannot be changed at runtim will require application recompilation, thus it is not suitable for dynamic architectures. lines architecture are not based on the ser A in terms of services whether in a dynamic or static ADL Nevertheless system in terms of components, connectors and configurations, it should also specify how these components and connectors are evolution of architecture at runtime may happen under several forms architecture (modifying connection composing elements (substitution of composing elements).

ADLs are used dynamic software architecture. literature, only few of them support dynamic reconfiguration such as ACME/Plastik describe a specific {condition} do {operations} different choices at runtime. component at runtime used components dynamic since third party services can be discovered and bound to service broker at

B. ADLs

Dynamic Software Product Line conventional SPL perspective by delaying the binding time of product's composing elements (i.e. features) to runtime. It produces autonomous and reconfigurable products that are able to reconfigure themselves to select a valid configuration during agreement of what aspects a dynamic SPL should exactly treat, most approaches agree that the main characteristic of any dynamic SPL framework is the runtime variability, which provides the following common ac managing the dynamic selection of variants, autonomous activation/ deactivation of composing elements, substitution of composing elements and dependency and constraint checking of changed elements F representing an architecture that encompasses variability xADL architectural elements of software systems set of concepts in the form of three schemas: variants concepts within xADL; this approach suffers from limitation between elements of different variation points. defines component. any deployed configuration cannot be changed at runtim will require application recompilation, thus it is not suitable for dynamic architectures.

Otherwise, approaches that describe variability in product lines architecture are not based on the ser Approaches in terms of services whether in a dynamic or static ADL Nevertheless system in terms of components, connectors and configurations, it should also specify how these components and connectors are evolution of architecture at runtime may happen under several forms: adding/ removing composing elements, reconfigur architecture (modifying connection composing elements (substitution of composing elements).

ADLs are used dynamic software architecture. literature, only few of them support dynamic reconfiguration such as ACME/Plastik scribe a specific {condition} do {operations} different choices at runtime. component at runtime used in components dynamic since third party services can be discovered and bound to service broker at ADLs Dynamic Software Product Line conventional SPL perspective by delaying the binding time of product's composing elements (i.e. features) to runtime. It produces autonomous and reconfigurable products that are able to reconfigure themselves to select a valid configuration during agreement of what aspects a dynamic SPL should exactly treat, most approaches agree that the main characteristic of any dynamic SPL framework is the runtime variability, which provides the following common ac managing the dynamic selection of variants, autonomous activation/ deactivation of composing elements, substitution of composing elements and dependency and constraint checking of changed elements Few existing approaches were co representing an architecture that encompasses variability xADL [ architectural elements of software systems set of concepts in the form of three schemas: variants concepts within xADL; this approach suffers from limitation between elements of different variation points. defines component. any deployed configuration cannot be changed at runtim will require application recompilation, thus it is not suitable for dynamic architectures.

Otherwise, approaches that describe variability in product lines architecture are not based on the ser pproaches in terms of services whether in a dynamic or static ADL Nevertheless system in terms of components, connectors and configurations, it should also specify how these components and connectors are evolution of architecture at runtime may happen under several : adding/ removing composing elements, reconfigur architecture (modifying connection composing elements (substitution of composing elements).

ADLs are used dynamic software architecture. literature, only few of them support dynamic reconfiguration such as C2 ACME/Plastik scribe a specific {condition} do {operations} different choices at runtime. component at runtime in operations components dynamic since third party services can be discovered and bound to service broker at ADLs spec Dynamic Software Product Line conventional SPL perspective by delaying the binding time of product's composing elements (i.e. features) to runtime. It produces autonomous and reconfigurable products that are able to reconfigure themselves to select a valid configuration runtime agreement of what aspects a dynamic SPL should exactly treat, most approaches agree that the main characteristic of any dynamic SPL framework is the runtime variability, which provides the following common ac managing the dynamic selection of variants, autonomous activation/ deactivation of composing elements, substitution of composing elements and dependency and constraint checking of changed elements ew existing approaches were co representing an architecture that encompasses variability [START_REF] Dashofy | An Infrastructure for the Rapid Development of XML-based Architecture Description Languages[END_REF] architectural elements of software systems XML schemas concepts in the form of three schemas: variants schemas. concepts within xADL; this approach suffers from limitation between elements of different variation points. defines "switches component. any deployed configuration cannot be changed at runtim will require application recompilation, thus it is not suitable for dynamic architectures.

Otherwise, approaches that describe variability in product lines architecture are not based on the ser pproaches in terms of services whether in a dynamic or static ADL Nevertheless system in terms of components, connectors and configurations, it should also specify how these components and connectors are evolution of architecture at runtime may happen under several : adding/ removing composing elements, reconfigur architecture (modifying connection composing elements (substitution of composing elements).

ADLs are used dynamic software architecture. literature, only few of them support dynamic reconfiguration C2 [ ACME/Plastik scribe a specific {condition} do {operations} different choices at runtime. component at runtime operations components. In dynamic since third party services can be discovered and bound to service broker at pec Dynamic Software Product Line conventional SPL perspective by delaying the binding time of product's composing elements (i.e. features) to runtime. It produces autonomous and reconfigurable products that are able to reconfigure themselves to select a valid configuration runtime agreement of what aspects a dynamic SPL should exactly treat, most approaches agree that the main characteristic of any dynamic SPL framework is the runtime variability, which provides the following common ac managing the dynamic selection of variants, autonomous activation/ deactivation of composing elements, substitution of composing elements and dependency and constraint checking of changed elements ew existing approaches were co representing an architecture that encompasses variability ] is an ADL for modeling runtime and design architectural elements of software systems XML schemas concepts in the form of three schemas: schemas. concepts within xADL; this approach suffers from of expressing between elements of different variation points. switches component. The main limitation in Koala is its static nature; any deployed configuration cannot be changed at runtim will require application recompilation, thus it is not suitable for dynamic architectures.

Otherwise, approaches that describe variability in product lines architecture are not based on the ser pproaches such in terms of services whether in a dynamic or static ADL Nevertheless, these ADLs system in terms of components, connectors and configurations, it should also specify how these components and connectors are evolution of architecture at runtime may happen under several : adding/ removing composing elements, reconfigur architecture (modifying connection composing elements (substitution of composing elements).

ADLs are used dynamic software architecture. literature, only few of them support dynamic reconfiguration [START_REF] Medvidovic | Using objectoriented typing to support architectural design in the C2 style[END_REF], Darwin ACME/Plastik [13 scribe a specific {condition} do {operations} different choices at runtime. component at runtime operations In π dynamic since third party services can be discovered and bound to service broker at pecifying Dynamic Software Product Line conventional SPL perspective by delaying the binding time of product's composing elements (i.e. features) to runtime. It produces autonomous and reconfigurable products that are able to reconfigure themselves to select a valid configuration runtime agreement of what aspects a dynamic SPL should exactly treat, most approaches agree that the main characteristic of any dynamic SPL framework is the runtime variability, which provides the following common ac managing the dynamic selection of variants, autonomous activation/ deactivation of composing elements, substitution of composing elements and dependency and constraint checking of changed elements ew existing approaches were co representing an architecture that encompasses variability is an ADL for modeling runtime and design architectural elements of software systems XML schemas concepts in the form of three schemas: schemas. concepts within xADL; this approach suffers from of expressing between elements of different variation points.

switches The main limitation in Koala is its static nature; any deployed configuration cannot be changed at runtim will require application recompilation, thus it is not suitable for dynamic architectures.

Otherwise, approaches that describe variability in product lines architecture are not based on the ser such in terms of services whether in a dynamic or static ADL these ADLs system in terms of components, connectors and configurations, it should also specify how these components and connectors are evolv evolution of architecture at runtime may happen under several : adding/ removing composing elements, reconfigur architecture (modifying connection composing elements (substitution of composing elements).

ADLs are used dynamic software architecture. literature, only few of them support dynamic reconfiguration , Darwin 13] scribe a specific configuration {condition} do {operations} different choices at runtime. component at runtime operations π-ADL dynamic since third party services can be discovered and bound to service broker at fying variability Dynamic Software Product Line conventional SPL perspective by delaying the binding time of product's composing elements (i.e. features) to runtime. It produces autonomous and reconfigurable products that are able to reconfigure themselves to select a valid configuration runtime [15 agreement of what aspects a dynamic SPL should exactly treat, most approaches agree that the main characteristic of any dynamic SPL framework is the runtime variability, which provides the following common ac managing the dynamic selection of variants, autonomous activation/ deactivation of composing elements, substitution of composing elements and dependency and constraint checking of changed elements ew existing approaches were co representing an architecture that encompasses variability is an ADL for modeling runtime and design architectural elements of software systems XML schemas concepts in the form of three schemas: schemas. Concerning the integration of product lines concepts within xADL; this approach suffers from of expressing between elements of different variation points.

switches" in order to dynamically bind the selected The main limitation in Koala is its static nature; any deployed configuration cannot be changed at runtim will require application recompilation, thus it is not suitable for dynamic architectures.

Otherwise, approaches that describe variability in product lines architecture are not based on the ser such as in terms of services whether in a dynamic or static ADL these ADLs system in terms of components, connectors and configurations, it should also specify how these components evolv evolution of architecture at runtime may happen under several : adding/ removing composing elements, reconfigur architecture (modifying connection composing elements (substitution of composing elements). . agreement of what aspects a dynamic SPL should exactly treat, most approaches agree that the main characteristic of any dynamic SPL framework is the runtime variability, which provides the following common ac managing the dynamic selection of variants, autonomous activation/ deactivation of composing elements, substitution of composing elements and dependency and constraint checking [START_REF] Capilla | An overview of Dynamic Software Product Line architectures and techniques: Observations from research and industry[END_REF] ew existing approaches were co representing an architecture that encompasses variability is an ADL for modeling runtime and design architectural elements of software systems XML schemas. xADL 2.0 integrates product lines concepts in the form of three schemas:

Concerning the integration of product lines concepts within xADL; this approach suffers from of expressing between elements of different variation points.

in order to dynamically bind the selected The main limitation in Koala is its static nature; any deployed configuration cannot be changed at runtim will require application recompilation, thus it is not suitable for dynamic architectures.

Otherwise, approaches that describe variability in product lines architecture are not based on the ser as [19 in terms of services whether in a dynamic or static ADL these ADLs system in terms of components, connectors and configurations, it should also specify how these components evolved or reconfigured at runtime. evolution of architecture at runtime may happen under several : adding/ removing composing elements, reconfigur architecture (modifying connection composing elements (substitution of composing elements). Even though there is no concrete agreement of what aspects a dynamic SPL should exactly treat, most approaches agree that the main characteristic of any dynamic SPL framework is the runtime variability, which provides the following common ac managing the dynamic selection of variants, autonomous activation/ deactivation of composing elements, substitution of composing elements and dependency and constraint checking [START_REF] Capilla | An overview of Dynamic Software Product Line architectures and techniques: Observations from research and industry[END_REF].

ew existing approaches were co representing an architecture that encompasses variability is an ADL for modeling runtime and design architectural elements of software systems . xADL 2.0 integrates product lines concepts in the form of three schemas:

Concerning the integration of product lines concepts within xADL; this approach suffers from of expressing constraints (i.e. between elements of different variation points.

in order to dynamically bind the selected The main limitation in Koala is its static nature; any deployed configuration cannot be changed at runtim will require application recompilation, thus it is not suitable for dynamic architectures.

Otherwise, approaches that describe variability in product lines architecture are not based on the ser 19], [ in terms of services whether in a dynamic or static ADL these ADLs are not able to describe variants.

system in terms of components, connectors and configurations, it should also specify how these components ed or reconfigured at runtime. evolution of architecture at runtime may happen under several : adding/ removing composing elements, reconfigur architecture (modifying connection composing elements (substitution of composing elements). Even though there is no concrete agreement of what aspects a dynamic SPL should exactly treat, most approaches agree that the main characteristic of any dynamic SPL framework is the runtime variability, which provides the following common ac managing the dynamic selection of variants, autonomous activation/ deactivation of composing elements, substitution of composing elements and dependency and constraint checking ew existing approaches were co representing an architecture that encompasses variability is an ADL for modeling runtime and design architectural elements of software systems . xADL 2.0 integrates product lines concepts in the form of three schemas:

Concerning the integration of product lines concepts within xADL; this approach suffers from constraints (i.e. between elements of different variation points.

in order to dynamically bind the selected The main limitation in Koala is its static nature; any deployed configuration cannot be changed at runtim will require application recompilation, thus it is not suitable Otherwise, approaches that describe variability in product lines architecture are not based on the ser ], [START_REF] Jia | A New Architecture Description Language for Service-Oriented Architecture[END_REF] in terms of services whether in a dynamic or static ADL are not able to describe variants.

system in terms of components, connectors and configurations, it should also specify how these components ed or reconfigured at runtime. evolution of architecture at runtime may happen under several : adding/ removing composing elements, reconfigur architecture (modifying connection composing elements (substitution of composing elements).

to describe the prope dynamic software architecture. Among literature, only few of them support dynamic reconfiguration 10], π and Dynamic Wright configuration " is used different choices at runtime. To replace and to respectively unlink and lin the architecture dynamic since third party services can be discovered and runtime properties Dynamic Software Product Line conventional SPL perspective by delaying the binding time of product's composing elements (i.e. features) to runtime. It produces autonomous and reconfigurable products that are able to reconfigure themselves to select a valid configuration Even though there is no concrete agreement of what aspects a dynamic SPL should exactly treat, most approaches agree that the main characteristic of any dynamic SPL framework is the runtime variability, which provides the following common ac managing the dynamic selection of variants, autonomous activation/ deactivation of composing elements, substitution of composing elements and dependency and constraint checking ew existing approaches were co representing an architecture that encompasses variability is an ADL for modeling runtime and design architectural elements of software systems . xADL 2.0 integrates product lines concepts in the form of three schemas:

Concerning the integration of product lines concepts within xADL; this approach suffers from constraints (i.e. between elements of different variation points.

in order to dynamically bind the selected The main limitation in Koala is its static nature; any deployed configuration cannot be changed at runtim will require application recompilation, thus it is not suitable Otherwise, approaches that describe variability in product lines architecture are not based on the ser ] describe system's architecture in terms of services whether in a dynamic or static ADL are not able to describe variants.

system in terms of components, connectors and configurations, it should also specify how these components ed or reconfigured at runtime. evolution of architecture at runtime may happen under several : adding/ removing composing elements, reconfigur architecture (modifying connections), composing elements (substitution of composing elements).

to describe the prope Among literature, only few of them support dynamic reconfiguration , π-ADL and Dynamic Wright in [ is used To replace and attachments to respectively unlink and lin the architecture dynamic since third party services can be discovered and .

properties Dynamic Software Product Line conventional SPL perspective by delaying the binding time of product's composing elements (i.e. features) to runtime. It produces autonomous and reconfigurable products that are able to reconfigure themselves to select a valid configuration Even though there is no concrete agreement of what aspects a dynamic SPL should exactly treat, most approaches agree that the main characteristic of any dynamic SPL framework is the runtime variability, which provides the following common ac managing the dynamic selection of variants, autonomous activation/ deactivation of composing elements, substitution of composing elements and dependency and constraint checking ew existing approaches were co representing an architecture that encompasses variability is an ADL for modeling runtime and design architectural elements of software systems . xADL 2.0 integrates product lines concepts in the form of three schemas:

Concerning the integration of product lines concepts within xADL; this approach suffers from constraints (i.e. between elements of different variation points.

in order to dynamically bind the selected The main limitation in Koala is its static nature; any deployed configuration cannot be changed at runtim will require application recompilation, thus it is not suitable Otherwise, approaches that describe variability in product lines architecture are not based on the ser describe system's architecture in terms of services whether in a dynamic or static ADL are not able to describe variants.

system in terms of components, connectors and configurations, it should also specify how these components ed or reconfigured at runtime. evolution of architecture at runtime may happen under several : adding/ removing composing elements, reconfigur ), or composing elements (substitution of composing elements).

to describe the prope Among existing ADLs in the literature, only few of them support dynamic reconfiguration ADL and Dynamic Wright [START_REF] Joolia | Mapping ADL Specifications to an Efficient and Reconfigurable Runtime Component Platform[END_REF] is used To replace attachments to respectively unlink and lin the architecture dynamic since third party services can be discovered and properties Dynamic Software Product Line conventional SPL perspective by delaying the binding time of product's composing elements (i.e. features) to runtime. It produces autonomous and reconfigurable products that are able to reconfigure themselves to select a valid configuration Even though there is no concrete agreement of what aspects a dynamic SPL should exactly treat, most approaches agree that the main characteristic of any dynamic SPL framework is the runtime variability, which provides the following common ac managing the dynamic selection of variants, autonomous activation/ deactivation of composing elements, substitution of composing elements and dependency and constraint checking ew existing approaches were co representing an architecture that encompasses variability is an ADL for modeling runtime and design architectural elements of software systems . xADL 2.0 integrates product lines concepts in the form of three schemas: versions Concerning the integration of product lines concepts within xADL; this approach suffers from constraints (i.e. between elements of different variation points.

in order to dynamically bind the selected The main limitation in Koala is its static nature; any deployed configuration cannot be changed at runtim will require application recompilation, thus it is not suitable Otherwise, approaches that describe variability in product lines architecture are not based on the ser describe system's architecture in terms of services whether in a dynamic or static ADL are not able to describe variants.

system in terms of components, connectors and configurations, it should also specify how these components ed or reconfigured at runtime. evolution of architecture at runtime may happen under several : adding/ removing composing elements, reconfigur or upgrading existing composing elements (substitution of composing elements).

to describe the prope existing ADLs in the literature, only few of them support dynamic reconfiguration ADL [11 and Dynamic Wright ], the expression " is used to toggle between To replace attachments to respectively unlink and lin the architecture dynamic since third party services can be discovered and properties Dynamic Software Product Line conventional SPL perspective by delaying the binding time of product's composing elements (i.e. features) to runtime. It produces autonomous and reconfigurable products that are able to reconfigure themselves to select a valid configuration Even though there is no concrete agreement of what aspects a dynamic SPL should exactly treat, most approaches agree that the main characteristic of any dynamic SPL framework is the runtime variability, which provides the following common activities at runtime: managing the dynamic selection of variants, autonomous activation/ deactivation of composing elements, substitution of composing elements and dependency and constraint checking ew existing approaches were co representing an architecture that encompasses variability is an ADL for modeling runtime and design architectural elements of software systems.

. xADL 2.0 integrates product lines versions Concerning the integration of product lines concepts within xADL; this approach suffers from constraints (i.e. requires, excludes) between elements of different variation points.

in order to dynamically bind the selected The main limitation in Koala is its static nature; any deployed configuration cannot be changed at runtim will require application recompilation, thus it is not suitable Otherwise, approaches that describe variability in product lines architecture are not based on the service describe system's architecture in terms of services whether in a dynamic or static ADL are not able to describe variants.

system in terms of components, connectors and configurations, it should also specify how these components ed or reconfigured at runtime. evolution of architecture at runtime may happen under several : adding/ removing composing elements, reconfigur upgrading existing composing elements (substitution of composing elements).

to describe the properties of static or existing ADLs in the literature, only few of them support dynamic reconfiguration 11], Rapide [14 , the expression " to toggle between To replace an instance of attachments to respectively unlink and lin the architecture dynamic since third party services can be discovered and Dynamic Software Product Line (DSPL conventional SPL perspective by delaying the binding time of product's composing elements (i.e. features) to runtime. It produces autonomous and reconfigurable products that are able to reconfigure themselves to select a valid configuration Even though there is no concrete agreement of what aspects a dynamic SPL should exactly treat, most approaches agree that the main characteristic of any dynamic SPL framework is the runtime variability, which tivities at runtime: managing the dynamic selection of variants, autonomous activation/ deactivation of composing elements, substitution of composing elements and dependency and constraint checking ew existing approaches were concerned about representing an architecture that encompasses variability is an ADL for modeling runtime and design It is defined as a . xADL 2.0 integrates product lines versions Concerning the integration of product lines concepts within xADL; this approach suffers from requires, excludes) between elements of different variation points.

in order to dynamically bind the selected The main limitation in Koala is its static nature; any deployed configuration cannot be changed at runtim will require application recompilation, thus it is not suitable Otherwise, approaches that describe variability in product vicedescribe system's architecture in terms of services whether in a dynamic or static ADL are not able to describe variants.

system in terms of components, connectors and configurations, it should also specify how these components ed or reconfigured at runtime. evolution of architecture at runtime may happen under several : adding/ removing composing elements, reconfigur upgrading existing composing elements (substitution of composing elements). ties of static or existing ADLs in the literature, only few of them support dynamic reconfiguration , Rapide 14]. I , the expression " to toggle between an instance of statements are to respectively unlink and lin the architecture is considered dynamic since third party services can be discovered and DSPL conventional SPL perspective by delaying the binding time of product's composing elements (i.e. features) to runtime. It produces autonomous and reconfigurable products that are able to reconfigure themselves to select a valid configuration Even though there is no concrete agreement of what aspects a dynamic SPL should exactly treat, most approaches agree that the main characteristic of any dynamic SPL framework is the runtime variability, which tivities at runtime: managing the dynamic selection of variants, autonomous activation/ deactivation of composing elements, substitution of composing elements and dependency and constraint checking ncerned about representing an architecture that encompasses variability is an ADL for modeling runtime and design is defined as a . xADL 2.0 integrates product lines versions, options Concerning the integration of product lines concepts within xADL; this approach suffers from requires, excludes) between elements of different variation points.

in order to dynamically bind the selected The main limitation in Koala is its static nature; any deployed configuration cannot be changed at runtim will require application recompilation, thus it is not suitable Otherwise, approaches that describe variability in product -oriented style. describe system's architecture in terms of services whether in a dynamic or static ADL are not able to describe variants.

system in terms of components, connectors and configurations, it should also specify how these components ed or reconfigured at runtime. evolution of architecture at runtime may happen under several : adding/ removing composing elements, reconfigur upgrading existing composing elements (substitution of composing elements). ties of static or existing ADLs in the literature, only few of them support dynamic reconfiguration , Rapide In order to , the expression " to toggle between an instance of statements are to respectively unlink and lin is considered dynamic since third party services can be discovered and DSPL) conventional SPL perspective by delaying the binding time of product's composing elements (i.e. features) to runtime. It produces autonomous and reconfigurable products that are able to reconfigure themselves to select a valid configuration Even though there is no concrete agreement of what aspects a dynamic SPL should exactly treat, most approaches agree that the main characteristic of any dynamic SPL framework is the runtime variability, which tivities at runtime: managing the dynamic selection of variants, autonomous activation/ deactivation of composing elements, substitution of composing elements and dependency and constraint checking ncerned about representing an architecture that encompasses variability is an ADL for modeling runtime and design is defined as a . xADL 2.0 integrates product lines options Concerning the integration of product lines concepts within xADL; this approach suffers from requires, excludes) Koala [ in order to dynamically bind the selected The main limitation in Koala is its static nature; any deployed configuration cannot be changed at runtim will require application recompilation, thus it is not suitable Otherwise, approaches that describe variability in product oriented style. describe system's architecture in terms of services whether in a dynamic or static ADL are not able to describe variants.

system in terms of components, connectors and configurations, it should also specify how these components ed or reconfigured at runtime. evolution of architecture at runtime may happen under several : adding/ removing composing elements, reconfigur upgrading existing composing elements (substitution of composing elements). ties of static or existing ADLs in the literature, only few of them support dynamic reconfiguration , Rapide n order to , the expression " to toggle between an instance of statements are to respectively unlink and lin is considered dynamic since third party services can be discovered and extends conventional SPL perspective by delaying the binding time of product's composing elements (i.e. features) to runtime. It produces autonomous and reconfigurable products that are able to reconfigure themselves to select a valid configuration Even though there is no concrete agreement of what aspects a dynamic SPL should exactly treat, most approaches agree that the main characteristic of any dynamic SPL framework is the runtime variability, which tivities at runtime: managing the dynamic selection of variants, autonomous activation/ deactivation of composing elements, substitution of composing elements and dependency and constraint checking ncerned about representing an architecture that encompasses variability is an ADL for modeling runtime and designis defined as a . xADL 2.0 integrates product lines options, and Concerning the integration of product lines concepts within xADL; this approach suffers from requires, excludes) Koala [ in order to dynamically bind the selected The main limitation in Koala is its static nature; any deployed configuration cannot be changed at runtime and will require application recompilation, thus it is not suitable Otherwise, approaches that describe variability in product oriented style. describe system's architecture in terms of services whether in a dynamic or static ADL are not able to describe variants.

system in terms of components, connectors and configurations, it should also specify how these components Thi evolution of architecture at runtime may happen under several : adding/ removing composing elements, reconfiguring upgrading existing composing elements (substitution of composing elements). ties of static or existing ADLs in the literature, only few of them support dynamic reconfiguration [12 n order to , the expression "on to toggle between an instance of statements are to respectively unlink and lin is considered dynamic since third party services can be discovered and extends conventional SPL perspective by delaying the binding time of product's composing elements (i.e. features) to runtime. It produces autonomous and reconfigurable products that are able to reconfigure themselves to select a valid configuration Even though there is no concrete agreement of what aspects a dynamic SPL should exactly treat, most approaches agree that the main characteristic of any dynamic SPL framework is the runtime variability, which tivities at runtime: managing the dynamic selection of variants, autonomous activation/ deactivation of composing elements, substitution of composing elements and dependency and constraint checking ncerned about representing an architecture that encompasses variability [START_REF] Nakagawa | Reference architectures and variability: current status and future perspectives[END_REF] -time is defined as a . xADL 2.0 integrates product lines , and Concerning the integration of product lines concepts within xADL; this approach suffers from the requires, excludes) Koala [18 in order to dynamically bind the selected The main limitation in Koala is its static nature; e and will require application recompilation, thus it is not suitable Otherwise, approaches that describe variability in product oriented style. describe system's architecture in terms of services whether in a dynamic or static ADL are not able to describe variants.

system in terms of components, connectors and configurations, it should also specify how these components This evolution of architecture at runtime may happen under several ing upgrading existing ties of static or existing ADLs in the literature, only few of them support dynamic reconfiguration 12], n order to on to toggle between an instance of statements are to respectively unlink and link is considered dynamic since third party services can be discovered and extends conventional SPL perspective by delaying the binding time of product's composing elements (i.e. features) to runtime. It produces autonomous and reconfigurable products that are able to reconfigure themselves to select a valid configuration Even though there is no concrete agreement of what aspects a dynamic SPL should exactly treat, most approaches agree that the main characteristic of any dynamic SPL framework is the runtime variability, which tivities at runtime: managing the dynamic selection of variants, autonomous activation/ deactivation of composing elements, substitution of composing elements and dependency and constraint checking ncerned about 16]. time is defined as a . xADL 2.0 integrates product lines , and Concerning the integration of product lines the requires, excludes) 18] in order to dynamically bind the selected The main limitation in Koala is its static nature; e and will require application recompilation, thus it is not suitable Otherwise, approaches that describe variability in product oriented style. describe system's architecture in terms of services whether in a dynamic or static ADL.
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1)
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It may exist several services. textual_description functionalities of the service, its inputs and expected outputs.

(3) is_at service is atomic or composite. section example. The selection of the appropriate connection is done 
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binding an alternative service that satisfies conditioned constraints on runtime example, there are two alternatives of shipment; either a relay point shipment or home delivery shipment The decision of which alternative to ch ntime depending on customer's selection in addition to other environmental conditions such as the existence of a relay point service in customer's city,
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The selection of the appropriate connection is done binding an alternative service that satisfies conditioned constraints on runtime example, there are two alternatives of shipment; either a relay point shipment or home delivery shipment The decision of which alternative to ch ntime depending on customer's selection in addition to other environmental conditions such as the existence of a relay point service in customer's city,
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This type of variability concerns replacing not only a service or a connection services by another set of interconnected services mposite architecture composition one in warehouse services, requested

The meta We specify exist in the system specifies the part of the architecture that can be variable.

variation variation variation_type

Possible values of connection whether this variation may occur at runtime approaches where variability is clearly and completely specified at design time important in SOA systems, where selection of an alternative during points c overhead of loading the entire configuration at ariation point has several elements has a unique name priority determine which architectural element is chosen in case there is more than one valid configuration at a given time. alternative with the highest Figure 6 Figure 7 automatically at runtime according to constraints For example, the customer retailer service and thus connections; either a connection for a regular customer or a connection for a VIP customer which normally has some extra privileges.
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This type of variability concerns replacing not only a service or a connection services by another set of interconnected services mposite architecture composition of Fig. 1. warehouse services, items he meta-model of variability e specify exist in the system specifies the part of the architecture that can be variable. point

_name variation_type e values of connection or whether this variation may occur at ) or at approaches where variability is clearly and completely specified at design time important in SOA systems, where selection of an alternative runtime ould be s overhead of loading the entire configuration at ariation point has several to fill the selected has a unique name This attribute helps the system automatically determine which architectural element is chosen in case there is more than one valid configuration at a given time. alternative with the highest automatically at runtime according to constraints For example, the customer retailer service and thus ns; either a connection for a regular customer or a connection for a VIP customer which normally has some extra The variation_point is an example of variability of connection.

Variability of composition

This type of variability concerns replacing not only a service or a connection services by another set of interconnected services mposite architecture of supply_chain_management_service . Here warehouse services, items and returns model of variability e specify in this section exist in the system specifies the part of the architecture that can be variable. point

_name variation_type e values of or composition whether this variation may occur at ) or at approaches where variability is clearly and completely specified at design time important SOA systems, where selection an alternative runtime is totally poss ould be s overhead of loading the entire configuration at ariation point has several to fill the selected has a unique name This attribute helps the system automatically determine which architectural element is chosen in case there is more than one valid configuration at a given time. alternative with the highest . Example of connection variability in sales scenario . Example of composition variability in sales scenario automatically at runtime according to constraints For example, the customer retailer service and thus ns; either a connection for a regular customer or a connection for a VIP customer which normally has some extra variation_point is an example of variability of connection.

Variability of composition

This type of variability concerns replacing not only a service or a connection services by another set of interconnected services mposite architecture supply_chain_management_service ere, warehouse services, and returns model of variability in this section exist in the system specifies the part of the architecture that can be variable. has indicating that specifies the type of this variation. e values of composition whether this variation may occur at ) or at runtime approaches where variability is clearly and completely specified at design time important in SOA systems, where selection of an alternative is totally poss ould be specifi overhead of loading the entire configuration at ariation point has several to fill the selected has a unique name This attribute helps the system automatically determine which architectural element is chosen in case there is more than one valid configuration at a given time. alternative with the highest . Example of connection variability in sales scenario . Example of composition variability in sales scenario automatically at runtime according to constraints For example, the customer retailer service and thus ns; either a connection for a regular customer or a connection for a VIP customer which normally has some extra variation_point is an example of variability of connection.

Variability of composition

This type of variability concerns replacing not only a service or a connection, but services by another set of interconnected services mposite architecture.

supply_chain_management_service , in addition to the roles of retailer and warehouse services, the manufacturer service and returns model of variability in this section at architectural level specifies the part of the architecture that can be variable. has indicating that specifies the type of this variation. e values of variation_type composition whether this variation may occur at runtime approaches where variability is clearly and completely specified at design time important in SOA systems, where selection of an alternative is totally poss pecified at compile overhead of loading the entire configuration at ariation point has several to fill the selected has a unique name alternative This attribute helps the system automatically determine which architectural element is chosen in case there is more than one valid configuration at a given time. alternative with the highest . Example of connection variability in sales scenario . Example of composition variability in sales scenario automatically at runtime according to constraints For example, the customer retailer service and thus command ns; either a connection for a regular customer or a connection for a VIP customer which normally has some extra variation_point is an example of variability of connection. This attribute helps the system automatically determine which architectural element is chosen in case there is more than one valid configuration at a given time. alternative with the highest . Example of connection variability in sales scenario . Example of composition variability in sales scenario automatically at runtime according to constraints For example, the customer service command ns; either a connection for a regular customer or a connection for a VIP customer which normally has some extra variation_point is an example of variability of connection.

Variability of composition

Variability of composition

This type of variability concerns replacing not only a , but replacing services by another set of interconnected services Fig. 7 supply_chain_management_service in addition to the roles of retailer and the manufacturer service and returns them to model of variability in this section the different at architectural level specifies the part of the architecture that can be variable.

the following indicating that specifies the type of this variation. whether this variation may occur at . Contrary to traditional SPL where variability is clearly and completely [START_REF] Galster | Describing variability in service-oriented software product lines[END_REF], important in SOA systems, where selection of an alternative is totally poss ed at compile overhead of loading the entire configuration at ariation point has several alternatives to fill the selected variation poi alternative This attribute helps the system automatically determine which architectural element is chosen in case there is more than one valid configuration at a given time. alternative with the highest . Example of connection variability in sales scenario . Example of composition variability in sales scenario automatically at runtime according to constraints service command ns; either a connection for a regular customer or a connection for a VIP customer which normally has some extra variation_point "customer_variation_point is an example of variability of connection.

Variability of composition

This type of variability concerns replacing not only a replacing services by another set of interconnected services 7 illustrates another alternative supply_chain_management_service in addition to the roles of retailer and the manufacturer service them to model of variability the different at architectural level specifies the part of the architecture that can be variable.

the following indicating its unique name that specifies the type of this variation. model of variability description the different at architectural level specifies the part of the architecture that can be variable.

the following its unique name that specifies the type of this variation.

variation_type

) variation_time whether this variation may occur at compile Contrary to traditional SPL approaches where variability is clearly and completely variation_time important in SOA systems, where selection of an alternative ible. However, ed at compile overhead of loading the entire configuration at alternatives variation poi alternative_name This attribute helps the system automatically determine which architectural element is chosen in case there is more than one valid configuration at a given time. description the different at architectural level specifies the part of the architecture that can be variable.

the following its unique name that specifies the type of this variation. the following its unique name that specifies the type of this variation.

are either variation_time compile

Contrary to traditional SPL approaches where variability is clearly and completely variation_time important in SOA systems, where selection of an alternative However, time. This reduces the overhead of loading the entire configuration at alternatives, which are variation point. Each alternative _name and This attribute helps the system automatically determine which architectural element is chosen in case there is more than one valid configuration at a given time. description is variation points A variation point specifies the part of the architecture that can be variable.

attributes: its unique name that specifies the type of this variation. are either variation_time compile-time Contrary to traditional SPL approaches where variability is clearly and completely variation_time important in SOA systems, where selection of an alternative However, some . This reduces the overhead of loading the entire configuration at which are nt. Each alternative and This attribute helps the system automatically determine which architectural element is chosen in case there is more than one valid configuration at a given time. is given variation points variation point specifies the part of the architecture that can be variable.

attributes: its unique name that specifies the type of this variation.

are either variation_time time

Contrary to traditional SPL approaches where variability is clearly and completely variation_time important in SOA systems, where selection of an alternative some . This reduces the overhead of loading the entire configuration at runtime which are nt. Each alternative and an order of This attribute helps the system automatically determine which architectural element is chosen in case there is more than one valid configuration at a given time. given variation points variation point specifies the part of the architecture that can be variable.

attributes: its unique name that specifies the type of this variation. are either service variation_time specifies (i.e. before Contrary to traditional SPL approaches where variability is clearly and completely attribute is important in SOA systems, where selection of an alternative some variation . This reduces the runtime which are nt. Each alternative an order of This attribute helps the system automatically determine which architectural element is chosen in case there is more than one valid configuration at a given time. given in Fig variation points variation point specifies the part of the architecture that can be variable. Each attributes: its unique name, (2) that specifies the type of this variation. service specifies (i.e. before Contrary to traditional SPL approaches where variability is clearly and completely attribute is important in SOA systems, where selection of an alternative variation . This reduces the runtime. Each which are possible nt. Each alternative an order of This attribute helps the system automatically determine which architectural element is chosen in case there is more than one valid configuration at a given time. an order of This attribute helps the system automatically determine which architectural element is chosen in case there
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</alternative>

E. Context description

Architecture reconfiguration is based on context changes. The context consists of any element that influences the behavior and/or the structure of the architecture. It can be related either to system's environment (e.g. escalator state in the case of crisis management software), evaluated quality of service (e.g. time to response to a query), hardware architecture changes (e.g. server failure), etc. Thus, context element needs to be described in a dynamic ADL. We include these context elements as part of the architecture description to allow context-aware configurations (i.e. autonomous run-time adaptation according to context changes). A context element could capture raw data from a single information source such as a GPS locator that locates customer's current location to search for a nearby relay point for the shipping service in our sales example. In this case, context element is considered as a primitive_context. In some other cases, a single information source could not be sufficient to take decisions; in that case, different atomic information sources' values are collected, combined and analyzed in order to give sufficient and more accurate information about the context value. We call this context as composite_context. We can consider the weather forecast example, where the weather is considered hot when both temperature and humidity sensors exceed a certain threshold.

A simplified meta-model of context is illustrated in Fig. 10. Any context element has a unique name and a context_type to indicate to which family of contexts it belongs (e.g. contexts related to environment, user preferences, etc.). Context element also has values_type that indicates the type of its values, either primitive types such as integer, double, etc. or user-defined types. In Fig. 11, we show two primitive context descriptions from our sales scenario. 

F. Configuration description

In traditional architectures, where environment is considered stable, services are selected and composed at design time. In contrast, in dynamic environment, parts of the software can be instantiated or evolved at runtime. Therefore, we need to maintain, in addition to structural information, architectural information of the running system. The configuration section of DSOPL-ADL allows describing all the configuration rules to generate valid architectures. A valid architecture is a concrete architecture whose services and connections comply with configuration rules.

The configuration description section of DSOPL-ADL has an initialization sub-section, where all static elements (services and connections) in addition to alternatives, whose variation_time="compile_time", are instantiated. The connection part has two references to two different service interfaces, the one that calls the information consumer_interface and the one that provides the information provider_interface.

The configuration description also has a dynamic_configuration sub-section where architectural configurations are triggered based on runtime context conditions. In other words, a concrete architecture is selected through two consecutive execution levels: (1) static bind where core services are selected and bound then (2) late-binding where remaining services and variation points are bound.

In initialization sub-section, we first bind static services to the configuration in addition to their connections. In dynamic_configuration sub-section, we integrate selected instances of services by observing context changes that are specified in the condition part of the configuration rule. Fig. 12 illustrates the architectural configuration meta-model. Any partial_configuration has a name and an attribute called priority of type integer, which determines which configuration to choose in case more than one partial_configuration satisfies current conditions. At that time, the one with the higher priority is privileged. Each partial_configuration is composed of two parts; condition part and dynamic_action part. In the condition part, we specify conditions that are driven by context elements. In the dynamic_action part, we specify all dynamic activities that will be realized. Every action concerns an architectural element which can either be a service or a connection. Action_type defines the type of change that will apply on the selected element. Its values are limited to bind, unbind, activate or deactivate concerned elements. In our illustrative example, customer and supply chain management services are instantiated at design time, as depicted in Fig. 13, whereas the relay point shipping service or home delivery shipping service are instantiated dynamically depending on environment's conditions. <configuration_description> <initialization> <services> <deployable_service_instance service_instance_name="customer_service_instance" ...> </deployable_service_instance> <deployable_service_instance service_instance_name="supply_chain_management_service_instance" ...> </deployable_service_instance> <!--when a composite service is connected, all its composing atomic services are consequently connected --> </services> <connections> <connection consumer_interface="i_goods_request" provider_interface="i_goods_response"> </connection> ... </connections> </initialization> <dynamic_configuration> ... <partial_configuration name="home_delivery_configuration" priority="2"> <condition> <context_element name="shipping"/> <expression operator="equals"> home </expression> </condition> <dynamic_actions> <architecture_element element_type="service" name="home_delivery_shipping_service_instance" action_type="bind"/> <architecture_element element_type="connection" consumer_interface="i_home_delivery" provider_interface="i_shipment_ready_delegation" action_type="activate"/> </dynamic_actions> </partial_configuration> ... </dynamic_configuration> </configuration_description> 

IV. CONCLUSION AND PERSPECTIVES

We have presented DSOPL-ADL, an architectural language that allows the runtime variability of a service based product lines system to be modeled. To manage the runtime variability of such service based systems at architectural level, we have proposed a modular language called DSOPL-ADL which is structured and composed of four sections; structural, variability, context and configuration. For each part, its metamodel was presented and discussed in detail through an illustrative example.

It is worth noting that we have perceived variability in this work from a spatial perspective and not temporal, that is why we have only considered describing variation points and alternatives and have intentionally eliminated versioning aspect. Another point is that during late binding, we do not use any real-time configuration verification mechanisms. However, we assume that pre-conditions and post-conditions assure a valid configuration.
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We are working on generating BPEL process from DSOPL architecture. As a future work; we intend to build a modeling tool for DSOPL-ADL and to conduct more experiments in order to completely evaluate our approach.