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Abstract- Reconciling Software Product Lines (SPL) and 

Service Oriented Architecture (SOA) allows modeling and 

implementing systems that systematically adapt their behavior in 

respond to surrounding context changes. Both approaches are 

complementary with regard to the variability and the dynamicity 

properties. Architecture Description Language (ADL), on the 

other hand, is recognized as an important element in the 

description and analysis of software properties. Different ADLs 

have been proposed in SOA or in SPL domains. Nevertheless, 

none of these ADLs allows describing variability and dynamicity 

features together in the context of service-oriented dynamic 

product lines. In this sense, our work attempts to describe the 

changing architecture of Dynamic Service-Oriented Product 

Lines (DSOPL). We propose an ADL that allows describing three 

types of information: architecture's structural elements, 

variability elements and system’s configuration. Furthermore, we 

introduce context elements on which service reconfiguration is 

based. 

Keywords—Architecture Description Language (ADL); Service-

Oriented Architecture (SOA); Software Product Lines (SPL); 

dynamicity; variability; software architecture; Dynamic Service-

Oriented Product Lines (DSOPL) 

I.  INTRODUCTION 

Software Product Lines (SPL) and Service Oriented 
Architecture (SOA) have a common goal from a software 
development point of view; increase the reusability of existing 
assets rather than rebuilding new systems from scratch. SPL, 
on the one hand, allows the development of a family of 
products that share some common set of core assets [1], [2], 
[3]. Variability has always been a first concern in SPL studies 
[16]. According to [4], variability is the ability of a software 
artifact to quickly change and adapt for a specific context in a 
preplanned manner. SOA, on the other hand, is a special kind 
of software architecture, where the main architectural 
elements are coarse grained and loosely coupled services that 
are dynamically composable and inter-operable [5]. Being 
able to modify the architecture of a running system at such a 
high level of abstraction renders the system highly extensible, 
customizable and powerful [6]. 

Variability and dynamicity are core properties to develop 
complex adaptable software systems such as 
telecommunication, pervasive, crisis management, 
surveillance and security systems. In such systems, due to 
environment changes, a dynamic re-configuration should be 
carried out without having to re-deploy the whole system. 

Combining SOA and SPL constitutes the answer to this need 
[7]. SOA offers, through its encapsulation property and its 
explicit interfaces, a solution for achieving dynamic product 
lines. SPL offers, via variability modeling, analysis and design 
of changing points in service-oriented architectures. 

Architecture Description Language (ADL) is a formalism 
that allows the specification of system’s conceptual 
architecture [8]. It enables architects to describe and validate 
systems against stakeholders’ requirements from one side, and 
ease the development and implementation process of complex 
systems, from another side. It often has a graphical 
representation or plain text syntax. Conventional ADLs 
support only static architecture description [6]. Some ADLs 
provide special formalism for SOA to describe service 
dynamicity or for SPL to describe variability. Unfortunately 
no ADL supports the crosscutting SOA and SPL concepts. 

To overcome this limitation, we propose an XML-based 
ADL that allows describing the architecture of a Dynamic 
Service-Oriented Product Line (DSOPL). It describes the four 
following elements: (i) the structural elements of a family of 
software products (i.e. services and connections), (ii) an 
architectural variability model (i.e. variability points and 
alternatives), (iii) context information, in addition to (iv) an 
architectural configuration model (i.e. reconfiguration rules 
based on context and variability). We choose to use XML as a 
description language to facilitate understandability and 
analysis of the described architecture. In addition, XML-based 
description facilitates tool-support design and interoperability.   

The remainder of this paper is organized as follows: In 
section 2, we discuss related works regarding variability and 
dynamicity properties. In section 3, we characterize our 
proposed DSOPL-ADL’s elements and demonstrate their 
utility through a running example. Finally, in section 4, we 
summarize our contribution and provide directions for future 
research. 

II. RELATED WORK 

A. ADLs specifying dynamic properties  

A software architecture can be classified in terms of its 
capability of evolution into two categories: static or dynamic. 
A static architecture reflects the static structure of software 
and is completely specified at design time [6], whereas in 
dynamic architecture, system may evolve after its compilation 
[1]. In this type of architecture, in addition to specifying the 
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E. Context description 

 Architecture reconfiguration is based on context changes.  
The context consists of any element that influences the 
behavior and/or the structure of the architecture. It can be 
related either to system’s environment (e.g. escalator state in 
the case of crisis management software), evaluated quality of 
service (e.g. time to response to a query), hardware 
architecture changes (e.g. server failure), etc. Thus, context 
element needs to be described in a dynamic ADL. We include 
these context elements as part of the architecture description to 
allow context-aware configurations (i.e. autonomous run-time 
adaptation according to context changes). A context element 
could capture raw data from a single information source such 
as a GPS locator that locates customer’s current location to 
search for a nearby relay point for the shipping service in our 
sales example. In this case, context element is considered as a 
primitive_context. In some other cases, a single information 
source could not be sufficient to take decisions; in that case, 
different atomic information sources’ values are collected, 
combined and analyzed in order to give sufficient and more 
accurate information about the context value. We call this 
context as composite_context. We can consider the weather 
forecast example, where the weather is considered hot when 
both temperature and humidity sensors exceed a certain 
threshold.  

A simplified meta-model of context is illustrated in Fig. 
10. Any context element has a unique name and a 
context_type to indicate to which family of contexts it 
belongs (e.g. contexts related to environment, user 
preferences, etc.). Context element also has values_type that 
indicates the type of its values, either primitive types such as 
integer, double, etc. or user-defined types. In Fig. 11, we show 
two primitive context descriptions from our sales scenario. 

 

  <context_description> 

  <context_type name="environment"> 

   <context is_aggregate="N"> 

    <name> location </name> 

    <values_type> double </values_type> 

   </context> 

   <context is_aggregate="N"> 

    <name> shipping </name> 

    <values_type> enumeration </values_type> 

    <permitted_values> 

     <possible_value> home </possible_value> 

     <possible_value> relay_point </possible_value> 

    </permitted_values> 

   </context> ... 

  </context_type> ... 

 </context_description> 

 

Figure 11. Some context descriptions from sales scenario 

F. Configuration description 

In traditional architectures, where environment is 
considered stable, services are selected and composed at 
design time. In contrast, in dynamic environment, parts of the 

software can be instantiated or evolved at runtime. Therefore, 
we need to maintain, in addition to structural information, 
architectural information of the running system. The 
configuration section of DSOPL-ADL allows describing all 
the configuration rules to generate valid architectures. A valid 
architecture is a concrete architecture whose services and 
connections comply with configuration rules. 

The configuration description section of DSOPL-ADL has 
an initialization sub-section, where all static elements 
(services and connections) in addition to alternatives, whose 
variation_time=”compile_time”, are instantiated. The 
connection part has two references to two different service 
interfaces, the one that calls the information 
consumer_interface and the one that provides the 
information provider_interface. The configuration 
description also has a dynamic_configuration sub-section 
where architectural configurations are triggered based on 
runtime context conditions. In other words, a concrete 
architecture is selected through two consecutive execution 
levels: (1) static bind where core services are selected and 
bound then (2) late-binding where remaining services and 
variation points are bound. 

In initialization sub-section, we first bind static services to 
the configuration in addition to their connections. In 
dynamic_configuration sub-section, we integrate selected 
instances of services by observing context changes that are 
specified in the condition part of the configuration rule. Fig. 
12 illustrates the architectural configuration meta-model. Any 
partial_configuration has a name and an attribute called 
priority of type integer, which determines which 
configuration to choose in case more than one 
partial_configuration satisfies current conditions. At that 
time, the one with the higher priority is privileged. Each 
partial_configuration is composed of two parts; condition 
part and dynamic_action part. In the condition part, we 
specify conditions that are driven by context elements. In the 
dynamic_action part, we specify all dynamic activities that 
will be realized. Every action concerns an architectural 
element which can either be a service or a connection. 
Action_type defines the type of change that will apply on the 
selected element. Its values are limited to bind, unbind, 
activate or deactivate concerned elements. Figure 10. Context description meta-model of DSOPL-ADL 

Figure 12. Configuration description meta-model of DSOPL-ADL 



 

In our illustrative example, customer and supply chain 
management services are instantiated at design time, as 
depicted in Fig. 13, whereas the relay point shipping service or 
home delivery shipping service are instantiated dynamically 
depending on environment’s conditions. 

<configuration_description> 

  <initialization> 

   <services> 

    <deployable_service_instance 

service_instance_name="customer_service_instance" ...> 

    </deployable_service_instance> 

    <deployable_service_instance 

service_instance_name="supply_chain_management_service_instance" ...> 

    </deployable_service_instance> <!-- when a composite service is 

connected, all its composing atomic services are consequently 

connected --> 

   </services> 

   <connections> 

    <connection consumer_interface="i_goods_request" 

provider_interface="i_goods_response"> 

     </connection> 

     ... 

     </connections> 

  </initialization> 

 

  <dynamic_configuration> 

   ... 

   <partial_configuration name="home_delivery_configuration" 

priority="2"> 

    <condition> 

     <context_element name="shipping"/> 

     <expression operator="equals"> home </expression> 

    </condition> 

    <dynamic_actions> 

     <architecture_element element_type="service" 

name="home_delivery_shipping_service_instance" action_type="bind"/> 

     <architecture_element element_type="connection" 

consumer_interface="i_home_delivery" 

provider_interface="i_shipment_ready_delegation" 

action_type="activate"/> 

    </dynamic_actions> 

   </partial_configuration> 

   ... 

  </dynamic_configuration> 

 </configuration_description> 

 

   Figure 13. Configuration description of sales scenario 

IV. CONCLUSION AND PERSPECTIVES 

We have presented DSOPL-ADL, an architectural 
language that allows the runtime variability of a service based 
product lines system to be modeled. To manage the runtime 
variability of such service based systems at architectural level, 
we have proposed a modular language called DSOPL-ADL 
which is structured and composed of four sections; structural, 
variability, context and configuration. For each part, its meta-
model was presented and discussed in detail through an 
illustrative example. 

It is worth noting that we have perceived variability in this 
work from a spatial perspective and not temporal, that is why 
we have only considered describing variation points and 
alternatives and have intentionally eliminated versioning 
aspect. Another point is that during late binding, we do not use 
any real-time configuration verification mechanisms. 
However, we assume that pre-conditions and post-conditions 
assure a valid configuration. 

We are working on generating BPEL process from DSOPL 
architecture. As a future work; we intend to build a modeling 
tool for DSOPL-ADL and to conduct more experiments in 
order to completely evaluate our approach. 
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