
HAL Id: lirmm-01291161
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01291161

Submitted on 21 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Architecture Description Language for Dynamic
Service-Oriented Product Lines

Seza Adjoyan, Abdelhak-Djamel Seriai

To cite this version:
Seza Adjoyan, Abdelhak-Djamel Seriai. An Architecture Description Language for Dynamic Service-
Oriented Product Lines. SEKE: Software Engineering and Knowledge Engineering, KSI Research Inc.
and Knowledge Systems Institute Graduate School, Jul 2015, Pittsburgh, United States. pp.231-236,
�10.18293/SEKE2015-217�. �lirmm-01291161�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01291161
https://hal.archives-ouvertes.fr

DOI reference number: 10.18293/SEKE2015-217

An Architecture Description Language for Dynamic

Service-Oriented Product Lines

Seza Adjoyan

UMR CNRS 5506 / LIRMM

University of Montpellier

Montpellier, FRANCE

adjoyan@lirmm.fr

Abdelhak Seriai

UMR CNRS 5506 / LIRMM

University of Montpellier

Montpellier, FRANCE

seriai@lirmm.fr

Abstract- Reconciling Software Product Lines (SPL) and

Service Oriented Architecture (SOA) allows modeling and

implementing systems that systematically adapt their behavior in

respond to surrounding context changes. Both approaches are

complementary with regard to the variability and the dynamicity

properties. Architecture Description Language (ADL), on the

other hand, is recognized as an important element in the

description and analysis of software properties. Different ADLs

have been proposed in SOA or in SPL domains. Nevertheless,

none of these ADLs allows describing variability and dynamicity

features together in the context of service-oriented dynamic

product lines. In this sense, our work attempts to describe the

changing architecture of Dynamic Service-Oriented Product

Lines (DSOPL). We propose an ADL that allows describing three

types of information: architecture's structural elements,

variability elements and system’s configuration. Furthermore, we

introduce context elements on which service reconfiguration is

based.

Keywords—Architecture Description Language (ADL); Service-

Oriented Architecture (SOA); Software Product Lines (SPL);

dynamicity; variability; software architecture; Dynamic Service-

Oriented Product Lines (DSOPL)

I. INTRODUCTION

Software Product Lines (SPL) and Service Oriented
Architecture (SOA) have a common goal from a software
development point of view; increase the reusability of existing
assets rather than rebuilding new systems from scratch. SPL,
on the one hand, allows the development of a family of
products that share some common set of core assets [1], [2],
[3]. Variability has always been a first concern in SPL studies
[16]. According to [4], variability is the ability of a software
artifact to quickly change and adapt for a specific context in a
preplanned manner. SOA, on the other hand, is a special kind
of software architecture, where the main architectural
elements are coarse grained and loosely coupled services that
are dynamically composable and inter-operable [5]. Being
able to modify the architecture of a running system at such a
high level of abstraction renders the system highly extensible,
customizable and powerful [6].

Variability and dynamicity are core properties to develop
complex adaptable software systems such as
telecommunication, pervasive, crisis management,
surveillance and security systems. In such systems, due to
environment changes, a dynamic re-configuration should be
carried out without having to re-deploy the whole system.

Combining SOA and SPL constitutes the answer to this need
[7]. SOA offers, through its encapsulation property and its
explicit interfaces, a solution for achieving dynamic product
lines. SPL offers, via variability modeling, analysis and design
of changing points in service-oriented architectures.

Architecture Description Language (ADL) is a formalism
that allows the specification of system’s conceptual
architecture [8]. It enables architects to describe and validate
systems against stakeholders’ requirements from one side, and
ease the development and implementation process of complex
systems, from another side. It often has a graphical
representation or plain text syntax. Conventional ADLs
support only static architecture description [6]. Some ADLs
provide special formalism for SOA to describe service
dynamicity or for SPL to describe variability. Unfortunately
no ADL supports the crosscutting SOA and SPL concepts.

To overcome this limitation, we propose an XML-based
ADL that allows describing the architecture of a Dynamic
Service-Oriented Product Line (DSOPL). It describes the four
following elements: (i) the structural elements of a family of
software products (i.e. services and connections), (ii) an
architectural variability model (i.e. variability points and
alternatives), (iii) context information, in addition to (iv) an
architectural configuration model (i.e. reconfiguration rules
based on context and variability). We choose to use XML as a
description language to facilitate understandability and
analysis of the described architecture. In addition, XML-based
description facilitates tool-support design and interoperability.

The remainder of this paper is organized as follows: In
section 2, we discuss related works regarding variability and
dynamicity properties. In section 3, we characterize our
proposed DSOPL-ADL’s elements and demonstrate their
utility through a running example. Finally, in section 4, we
summarize our contribution and provide directions for future
research.

II. RELATED WORK

A. ADLs specifying dynamic properties

A software architecture can be classified in terms of its
capability of evolution into two categories: static or dynamic.
A static architecture reflects the static structure of software
and is completely specified at design time [6], whereas in
dynamic architecture, system may evolve after its compilation
[1]. In this type of architecture, in addition to specifying the

system in terms of components, connectors and
configurations, it should also specify how these components
and connectors are
evolution of architecture at runtime may happen under several
forms
architecture (modifying connection
composing elements (substitution of composing elements).

dynamic software architecture.
literature, only few of them support dynamic reconfiguration
such as
ACME/Plastik
de
{condition} do {operations}
different choices at runtime.
component at runtime
used
components
dynamic since third party services can be discovered and
bound to service broker at

B

conventional SPL perspective by delaying the binding time of
product’s composing elements (i.e. features) to runtime. It
produces autonomous and reconfigurable products that are
able to reconfigure themselves to select a valid configuration
during
agreement of what aspects a dynamic SPL should exactly
treat, most approaches agree that the main characteristic of
any dynamic SPL framework is the runtime variability, which
provides the following common ac
managing the dynamic selection of variants, autonomous
activation/ deactivation of composing elements, substitution of
composing elements and dependency and constraint checking
of changed elements

representing an architecture that encompasses variability
xADL
architectural elements of software systems
set of
concepts in the form of three schemas:
variants
concepts within xADL; this approach suffers from
limitation
between elements of different variation points.
defines
component.
any deployed configuration cannot be changed at runtim
will require application recompilation, thus it is not suitable
for dynamic architectures.

lines architecture are not based on the ser
A
in terms of services whether in a dynamic or static ADL
Nevertheless

system in terms of components, connectors and
configurations, it should also specify how these components
and connectors are
evolution of architecture at runtime may happen under several
forms
architecture (modifying connection
composing elements (substitution of composing elements).

ADLs are used
dynamic software architecture.
literature, only few of them support dynamic reconfiguration
such as
ACME/Plastik
describe a specific
{condition} do {operations}
different choices at runtime.
component at runtime
used
components
dynamic since third party services can be discovered and
bound to service broker at

B. ADLs

Dynamic Software Product Line
conventional SPL perspective by delaying the binding time of
product’s composing elements (i.e. features) to runtime. It
produces autonomous and reconfigurable products that are
able to reconfigure themselves to select a valid configuration
during
agreement of what aspects a dynamic SPL should exactly
treat, most approaches agree that the main characteristic of
any dynamic SPL framework is the runtime variability, which
provides the following common ac
managing the dynamic selection of variants, autonomous
activation/ deactivation of composing elements, substitution of
composing elements and dependency and constraint checking
of changed elements

F
representing an architecture that encompasses variability
xADL
architectural elements of software systems
set of
concepts in the form of three schemas:
variants
concepts within xADL; this approach suffers from
limitation
between elements of different variation points.
defines
component.
any deployed configuration cannot be changed at runtim
will require application recompilation, thus it is not suitable
for dynamic architectures.

Otherwise, approaches that describe variability in product
lines architecture are not based on the ser
Approaches
in terms of services whether in a dynamic or static ADL
Nevertheless

system in terms of components, connectors and
configurations, it should also specify how these components
and connectors are
evolution of architecture at runtime may happen under several
forms: adding/ removing composing elements, reconfigur
architecture (modifying connection
composing elements (substitution of composing elements).

ADLs are used
dynamic software architecture.
literature, only few of them support dynamic reconfiguration
such as
ACME/Plastik

scribe a specific
{condition} do {operations}
different choices at runtime.
component at runtime
used in
components
dynamic since third party services can be discovered and
bound to service broker at

ADLs

Dynamic Software Product Line
conventional SPL perspective by delaying the binding time of
product’s composing elements (i.e. features) to runtime. It
produces autonomous and reconfigurable products that are
able to reconfigure themselves to select a valid configuration
during
agreement of what aspects a dynamic SPL should exactly
treat, most approaches agree that the main characteristic of
any dynamic SPL framework is the runtime variability, which
provides the following common ac
managing the dynamic selection of variants, autonomous
activation/ deactivation of composing elements, substitution of
composing elements and dependency and constraint checking
of changed elements

Few existing approaches were co
representing an architecture that encompasses variability
xADL [
architectural elements of software systems
set of
concepts in the form of three schemas:
variants
concepts within xADL; this approach suffers from
limitation
between elements of different variation points.
defines
component.
any deployed configuration cannot be changed at runtim
will require application recompilation, thus it is not suitable
for dynamic architectures.

Otherwise, approaches that describe variability in product
lines architecture are not based on the ser

pproaches
in terms of services whether in a dynamic or static ADL
Nevertheless

system in terms of components, connectors and
configurations, it should also specify how these components
and connectors are
evolution of architecture at runtime may happen under several

: adding/ removing composing elements, reconfigur
architecture (modifying connection
composing elements (substitution of composing elements).

ADLs are used
dynamic software architecture.
literature, only few of them support dynamic reconfiguration
such as C2
ACME/Plastik

scribe a specific
{condition} do {operations}
different choices at runtime.
component at runtime

in operations
components
dynamic since third party services can be discovered and
bound to service broker at

ADLs spec

Dynamic Software Product Line
conventional SPL perspective by delaying the binding time of
product’s composing elements (i.e. features) to runtime. It
produces autonomous and reconfigurable products that are
able to reconfigure themselves to select a valid configuration

 runtime
agreement of what aspects a dynamic SPL should exactly
treat, most approaches agree that the main characteristic of
any dynamic SPL framework is the runtime variability, which
provides the following common ac
managing the dynamic selection of variants, autonomous
activation/ deactivation of composing elements, substitution of
composing elements and dependency and constraint checking
of changed elements

ew existing approaches were co
representing an architecture that encompasses variability

[17]
architectural elements of software systems

 XML schemas
concepts in the form of three schemas:
variants schemas.
concepts within xADL; this approach suffers from
limitation
between elements of different variation points.
defines “switches
component.
any deployed configuration cannot be changed at runtim
will require application recompilation, thus it is not suitable
for dynamic architectures.

Otherwise, approaches that describe variability in product
lines architecture are not based on the ser

pproaches
in terms of services whether in a dynamic or static ADL
Nevertheless

system in terms of components, connectors and
configurations, it should also specify how these components
and connectors are
evolution of architecture at runtime may happen under several

: adding/ removing composing elements, reconfigur
architecture (modifying connection
composing elements (substitution of composing elements).

ADLs are used
dynamic software architecture.
literature, only few of them support dynamic reconfiguration

C2 [
ACME/Plastik

scribe a specific
{condition} do {operations}
different choices at runtime.
component at runtime

operations
components. In
dynamic since third party services can be discovered and
bound to service broker at

pec

Dynamic Software Product Line
conventional SPL perspective by delaying the binding time of
product’s composing elements (i.e. features) to runtime. It
produces autonomous and reconfigurable products that are
able to reconfigure themselves to select a valid configuration

runtime
agreement of what aspects a dynamic SPL should exactly
treat, most approaches agree that the main characteristic of
any dynamic SPL framework is the runtime variability, which
provides the following common ac
managing the dynamic selection of variants, autonomous
activation/ deactivation of composing elements, substitution of
composing elements and dependency and constraint checking
of changed elements

ew existing approaches were co
representing an architecture that encompasses variability

] is an ADL for modeling runtime and design
architectural elements of software systems

XML schemas
concepts in the form of three schemas:

schemas.
concepts within xADL; this approach suffers from

of expressing
between elements of different variation points.

switches
component. The main limitation in Koala is its static nature;
any deployed configuration cannot be changed at runtim
will require application recompilation, thus it is not suitable
for dynamic architectures.

Otherwise, approaches that describe variability in product
lines architecture are not based on the ser

pproaches such
in terms of services whether in a dynamic or static ADL
Nevertheless, these ADLs

system in terms of components, connectors and
configurations, it should also specify how these components
and connectors are
evolution of architecture at runtime may happen under several

: adding/ removing composing elements, reconfigur
architecture (modifying connection
composing elements (substitution of composing elements).

ADLs are used
dynamic software architecture.
literature, only few of them support dynamic reconfiguration

[9], Darwin
ACME/Plastik [13

scribe a specific
{condition} do {operations}
different choices at runtime.
component at runtime

operations
In π

dynamic since third party services can be discovered and
bound to service broker at

pecifying

Dynamic Software Product Line
conventional SPL perspective by delaying the binding time of
product’s composing elements (i.e. features) to runtime. It
produces autonomous and reconfigurable products that are
able to reconfigure themselves to select a valid configuration

runtime
agreement of what aspects a dynamic SPL should exactly
treat, most approaches agree that the main characteristic of
any dynamic SPL framework is the runtime variability, which
provides the following common ac
managing the dynamic selection of variants, autonomous
activation/ deactivation of composing elements, substitution of
composing elements and dependency and constraint checking
of changed elements

ew existing approaches were co
representing an architecture that encompasses variability

is an ADL for modeling runtime and design
architectural elements of software systems

XML schemas
concepts in the form of three schemas:

schemas.
concepts within xADL; this approach suffers from

of expressing
between elements of different variation points.

switches
The main limitation in Koala is its static nature;

any deployed configuration cannot be changed at runtim
will require application recompilation, thus it is not suitable
for dynamic architectures.

Otherwise, approaches that describe variability in product
lines architecture are not based on the ser

such
in terms of services whether in a dynamic or static ADL

these ADLs

system in terms of components, connectors and
configurations, it should also specify how these components
and connectors are evolv
evolution of architecture at runtime may happen under several

: adding/ removing composing elements, reconfigur
architecture (modifying connection
composing elements (substitution of composing elements).

ADLs are used
dynamic software architecture.
literature, only few of them support dynamic reconfiguration

, Darwin
13]

scribe a specific configuration
{condition} do {operations}
different choices at runtime.
component at runtime

operations
π-ADL

dynamic since third party services can be discovered and
bound to service broker at

fying variability

Dynamic Software Product Line
conventional SPL perspective by delaying the binding time of
product’s composing elements (i.e. features) to runtime. It
produces autonomous and reconfigurable products that are
able to reconfigure themselves to select a valid configuration

runtime [15
agreement of what aspects a dynamic SPL should exactly
treat, most approaches agree that the main characteristic of
any dynamic SPL framework is the runtime variability, which
provides the following common ac
managing the dynamic selection of variants, autonomous
activation/ deactivation of composing elements, substitution of
composing elements and dependency and constraint checking
of changed elements

ew existing approaches were co
representing an architecture that encompasses variability

is an ADL for modeling runtime and design
architectural elements of software systems

XML schemas
concepts in the form of three schemas:

schemas. Concerning the integration of product lines
concepts within xADL; this approach suffers from

of expressing
between elements of different variation points.

switches” in order to dynamically bind the selected
The main limitation in Koala is its static nature;

any deployed configuration cannot be changed at runtim
will require application recompilation, thus it is not suitable
for dynamic architectures.

Otherwise, approaches that describe variability in product
lines architecture are not based on the ser

such as
in terms of services whether in a dynamic or static ADL

these ADLs

system in terms of components, connectors and
configurations, it should also specify how these components

evolv
evolution of architecture at runtime may happen under several

: adding/ removing composing elements, reconfigur
architecture (modifying connection
composing elements (substitution of composing elements).

ADLs are used to describe the prope
dynamic software architecture.
literature, only few of them support dynamic reconfiguration

, Darwin
 and Dynamic Wright
configuration

{condition} do {operations}
different choices at runtime.
component at runtime, detach

 part
ADL

dynamic since third party services can be discovered and
bound to service broker at

variability

Dynamic Software Product Line
conventional SPL perspective by delaying the binding time of
product’s composing elements (i.e. features) to runtime. It
produces autonomous and reconfigurable products that are
able to reconfigure themselves to select a valid configuration

15].
agreement of what aspects a dynamic SPL should exactly
treat, most approaches agree that the main characteristic of
any dynamic SPL framework is the runtime variability, which
provides the following common ac
managing the dynamic selection of variants, autonomous
activation/ deactivation of composing elements, substitution of
composing elements and dependency and constraint checking

 [22]

ew existing approaches were co
representing an architecture that encompasses variability

is an ADL for modeling runtime and design
architectural elements of software systems

XML schemas. xADL 2.0 integrates product lines
concepts in the form of three schemas:

Concerning the integration of product lines
concepts within xADL; this approach suffers from

of expressing
between elements of different variation points.

in order to dynamically bind the selected
The main limitation in Koala is its static nature;

any deployed configuration cannot be changed at runtim
will require application recompilation, thus it is not suitable
for dynamic architectures.

Otherwise, approaches that describe variability in product
lines architecture are not based on the ser

as [19
in terms of services whether in a dynamic or static ADL

these ADLs

system in terms of components, connectors and
configurations, it should also specify how these components

evolved or reconfigured at runtime.
evolution of architecture at runtime may happen under several

: adding/ removing composing elements, reconfigur
architecture (modifying connection
composing elements (substitution of composing elements).

to describe the prope
dynamic software architecture.
literature, only few of them support dynamic reconfiguration

, Darwin
and Dynamic Wright

configuration
{condition} do {operations}
different choices at runtime.

detach
part

ADL [11
dynamic since third party services can be discovered and
bound to service broker at runtime

variability

Dynamic Software Product Line
conventional SPL perspective by delaying the binding time of
product’s composing elements (i.e. features) to runtime. It
produces autonomous and reconfigurable products that are
able to reconfigure themselves to select a valid configuration

Even though there is no concrete
agreement of what aspects a dynamic SPL should exactly
treat, most approaches agree that the main characteristic of
any dynamic SPL framework is the runtime variability, which
provides the following common ac
managing the dynamic selection of variants, autonomous
activation/ deactivation of composing elements, substitution of
composing elements and dependency and constraint checking

[22].

ew existing approaches were co
representing an architecture that encompasses variability

is an ADL for modeling runtime and design
architectural elements of software systems

. xADL 2.0 integrates product lines
concepts in the form of three schemas:

Concerning the integration of product lines
concepts within xADL; this approach suffers from

of expressing constraints (i.e.
between elements of different variation points.

in order to dynamically bind the selected
The main limitation in Koala is its static nature;

any deployed configuration cannot be changed at runtim
will require application recompilation, thus it is not suitable
for dynamic architectures.

Otherwise, approaches that describe variability in product
lines architecture are not based on the ser

19], [
in terms of services whether in a dynamic or static ADL

these ADLs are not able to describe variants.

system in terms of components, connectors and
configurations, it should also specify how these components

ed or reconfigured at runtime.
evolution of architecture at runtime may happen under several

: adding/ removing composing elements, reconfigur
architecture (modifying connection
composing elements (substitution of composing elements).

to describe the prope
dynamic software architecture.
literature, only few of them support dynamic reconfiguration

 [10
and Dynamic Wright

configuration
{condition} do {operations}”
different choices at runtime.

detach
part to respectively unlink and lin

11],
dynamic since third party services can be discovered and

runtime

variability

Dynamic Software Product Line
conventional SPL perspective by delaying the binding time of
product’s composing elements (i.e. features) to runtime. It
produces autonomous and reconfigurable products that are
able to reconfigure themselves to select a valid configuration

Even though there is no concrete
agreement of what aspects a dynamic SPL should exactly
treat, most approaches agree that the main characteristic of
any dynamic SPL framework is the runtime variability, which
provides the following common ac
managing the dynamic selection of variants, autonomous
activation/ deactivation of composing elements, substitution of
composing elements and dependency and constraint checking

ew existing approaches were co
representing an architecture that encompasses variability

is an ADL for modeling runtime and design
architectural elements of software systems

. xADL 2.0 integrates product lines
concepts in the form of three schemas:

Concerning the integration of product lines
concepts within xADL; this approach suffers from

constraints (i.e.
between elements of different variation points.

in order to dynamically bind the selected
The main limitation in Koala is its static nature;

any deployed configuration cannot be changed at runtim
will require application recompilation, thus it is not suitable

Otherwise, approaches that describe variability in product
lines architecture are not based on the ser

], [20]
in terms of services whether in a dynamic or static ADL

are not able to describe variants.

system in terms of components, connectors and
configurations, it should also specify how these components

ed or reconfigured at runtime.
evolution of architecture at runtime may happen under several

: adding/ removing composing elements, reconfigur
architecture (modifying connection
composing elements (substitution of composing elements).

to describe the prope
dynamic software architecture. Among
literature, only few of them support dynamic reconfiguration

10], π
and Dynamic Wright

configuration
” is used

different choices at runtime. To replace
 and

to respectively unlink and lin
 the architecture

dynamic since third party services can be discovered and
runtime

 properties

Dynamic Software Product Line
conventional SPL perspective by delaying the binding time of
product’s composing elements (i.e. features) to runtime. It
produces autonomous and reconfigurable products that are
able to reconfigure themselves to select a valid configuration

Even though there is no concrete
agreement of what aspects a dynamic SPL should exactly
treat, most approaches agree that the main characteristic of
any dynamic SPL framework is the runtime variability, which
provides the following common ac
managing the dynamic selection of variants, autonomous
activation/ deactivation of composing elements, substitution of
composing elements and dependency and constraint checking

ew existing approaches were co
representing an architecture that encompasses variability

is an ADL for modeling runtime and design
architectural elements of software systems

. xADL 2.0 integrates product lines
concepts in the form of three schemas:

Concerning the integration of product lines
concepts within xADL; this approach suffers from

constraints (i.e.
between elements of different variation points.

in order to dynamically bind the selected
The main limitation in Koala is its static nature;

any deployed configuration cannot be changed at runtim
will require application recompilation, thus it is not suitable

Otherwise, approaches that describe variability in product
lines architecture are not based on the ser

] describe system’s architecture
in terms of services whether in a dynamic or static ADL

are not able to describe variants.

system in terms of components, connectors and
configurations, it should also specify how these components

ed or reconfigured at runtime.
evolution of architecture at runtime may happen under several

: adding/ removing composing elements, reconfigur
architecture (modifying connections),
composing elements (substitution of composing elements).

to describe the prope
Among

literature, only few of them support dynamic reconfiguration
, π-ADL

and Dynamic Wright
 in [

is used
To replace

and attachments
to respectively unlink and lin

the architecture
dynamic since third party services can be discovered and

.

properties

Dynamic Software Product Line
conventional SPL perspective by delaying the binding time of
product’s composing elements (i.e. features) to runtime. It
produces autonomous and reconfigurable products that are
able to reconfigure themselves to select a valid configuration

Even though there is no concrete
agreement of what aspects a dynamic SPL should exactly
treat, most approaches agree that the main characteristic of
any dynamic SPL framework is the runtime variability, which
provides the following common ac
managing the dynamic selection of variants, autonomous
activation/ deactivation of composing elements, substitution of
composing elements and dependency and constraint checking

ew existing approaches were co
representing an architecture that encompasses variability

is an ADL for modeling runtime and design
architectural elements of software systems

. xADL 2.0 integrates product lines
concepts in the form of three schemas:

Concerning the integration of product lines
concepts within xADL; this approach suffers from

constraints (i.e.
between elements of different variation points.

in order to dynamically bind the selected
The main limitation in Koala is its static nature;

any deployed configuration cannot be changed at runtim
will require application recompilation, thus it is not suitable

Otherwise, approaches that describe variability in product
lines architecture are not based on the ser

describe system’s architecture
in terms of services whether in a dynamic or static ADL

are not able to describe variants.

system in terms of components, connectors and
configurations, it should also specify how these components

ed or reconfigured at runtime.
evolution of architecture at runtime may happen under several

: adding/ removing composing elements, reconfigur
), or

composing elements (substitution of composing elements).

to describe the prope
Among existing ADLs in the

literature, only few of them support dynamic reconfiguration
ADL

and Dynamic Wright
[13]

is used
To replace

attachments
to respectively unlink and lin

the architecture
dynamic since third party services can be discovered and

properties

Dynamic Software Product Line
conventional SPL perspective by delaying the binding time of
product’s composing elements (i.e. features) to runtime. It
produces autonomous and reconfigurable products that are
able to reconfigure themselves to select a valid configuration

Even though there is no concrete
agreement of what aspects a dynamic SPL should exactly
treat, most approaches agree that the main characteristic of
any dynamic SPL framework is the runtime variability, which
provides the following common ac
managing the dynamic selection of variants, autonomous
activation/ deactivation of composing elements, substitution of
composing elements and dependency and constraint checking

ew existing approaches were co
representing an architecture that encompasses variability

is an ADL for modeling runtime and design
architectural elements of software systems

. xADL 2.0 integrates product lines
concepts in the form of three schemas: versions

Concerning the integration of product lines
concepts within xADL; this approach suffers from

constraints (i.e.
between elements of different variation points.

in order to dynamically bind the selected
The main limitation in Koala is its static nature;

any deployed configuration cannot be changed at runtim
will require application recompilation, thus it is not suitable

Otherwise, approaches that describe variability in product
lines architecture are not based on the ser

describe system’s architecture
in terms of services whether in a dynamic or static ADL

are not able to describe variants.

system in terms of components, connectors and
configurations, it should also specify how these components

ed or reconfigured at runtime.
evolution of architecture at runtime may happen under several

: adding/ removing composing elements, reconfigur
or upgrading existing

composing elements (substitution of composing elements).

to describe the prope
existing ADLs in the

literature, only few of them support dynamic reconfiguration
ADL [11

and Dynamic Wright
], the expression “

is used to toggle between
To replace

attachments
to respectively unlink and lin

the architecture
dynamic since third party services can be discovered and

properties

Dynamic Software Product Line
conventional SPL perspective by delaying the binding time of
product’s composing elements (i.e. features) to runtime. It
produces autonomous and reconfigurable products that are
able to reconfigure themselves to select a valid configuration

Even though there is no concrete
agreement of what aspects a dynamic SPL should exactly
treat, most approaches agree that the main characteristic of
any dynamic SPL framework is the runtime variability, which
provides the following common activities at runtime:
managing the dynamic selection of variants, autonomous
activation/ deactivation of composing elements, substitution of
composing elements and dependency and constraint checking

ew existing approaches were co
representing an architecture that encompasses variability

is an ADL for modeling runtime and design
architectural elements of software systems.

. xADL 2.0 integrates product lines
versions

Concerning the integration of product lines
concepts within xADL; this approach suffers from

constraints (i.e. requires, excludes)
between elements of different variation points.

in order to dynamically bind the selected
The main limitation in Koala is its static nature;

any deployed configuration cannot be changed at runtim
will require application recompilation, thus it is not suitable

Otherwise, approaches that describe variability in product
lines architecture are not based on the service

describe system’s architecture
in terms of services whether in a dynamic or static ADL

are not able to describe variants.

system in terms of components, connectors and
configurations, it should also specify how these components

ed or reconfigured at runtime.
evolution of architecture at runtime may happen under several

: adding/ removing composing elements, reconfigur
upgrading existing

composing elements (substitution of composing elements).

to describe the properties of static or
existing ADLs in the

literature, only few of them support dynamic reconfiguration
11], Rapide
 [14

, the expression “
to toggle between

To replace an instance of
attachments

to respectively unlink and lin
the architecture

dynamic since third party services can be discovered and

Dynamic Software Product Line (DSPL
conventional SPL perspective by delaying the binding time of
product’s composing elements (i.e. features) to runtime. It
produces autonomous and reconfigurable products that are
able to reconfigure themselves to select a valid configuration

Even though there is no concrete
agreement of what aspects a dynamic SPL should exactly
treat, most approaches agree that the main characteristic of
any dynamic SPL framework is the runtime variability, which

tivities at runtime:
managing the dynamic selection of variants, autonomous
activation/ deactivation of composing elements, substitution of
composing elements and dependency and constraint checking

ew existing approaches were concerned about
representing an architecture that encompasses variability

is an ADL for modeling runtime and design
 It is defined as a

. xADL 2.0 integrates product lines
versions

Concerning the integration of product lines
concepts within xADL; this approach suffers from

requires, excludes)
between elements of different variation points.

in order to dynamically bind the selected
The main limitation in Koala is its static nature;

any deployed configuration cannot be changed at runtim
will require application recompilation, thus it is not suitable

Otherwise, approaches that describe variability in product
vice-

describe system’s architecture
in terms of services whether in a dynamic or static ADL

are not able to describe variants.

system in terms of components, connectors and
configurations, it should also specify how these components

ed or reconfigured at runtime.
evolution of architecture at runtime may happen under several

: adding/ removing composing elements, reconfigur
upgrading existing

composing elements (substitution of composing elements).

ties of static or
existing ADLs in the

literature, only few of them support dynamic reconfiguration
, Rapide

14]. I
, the expression “
to toggle between

an instance of
 statements are

to respectively unlink and lin
the architecture is considered

dynamic since third party services can be discovered and

DSPL
conventional SPL perspective by delaying the binding time of
product’s composing elements (i.e. features) to runtime. It
produces autonomous and reconfigurable products that are
able to reconfigure themselves to select a valid configuration

Even though there is no concrete
agreement of what aspects a dynamic SPL should exactly
treat, most approaches agree that the main characteristic of
any dynamic SPL framework is the runtime variability, which

tivities at runtime:
managing the dynamic selection of variants, autonomous
activation/ deactivation of composing elements, substitution of
composing elements and dependency and constraint checking

ncerned about
representing an architecture that encompasses variability

is an ADL for modeling runtime and design
is defined as a

. xADL 2.0 integrates product lines
versions, options

Concerning the integration of product lines
concepts within xADL; this approach suffers from

requires, excludes)
between elements of different variation points.

in order to dynamically bind the selected
The main limitation in Koala is its static nature;

any deployed configuration cannot be changed at runtim
will require application recompilation, thus it is not suitable

Otherwise, approaches that describe variability in product
-oriented style.

describe system’s architecture
in terms of services whether in a dynamic or static ADL

are not able to describe variants.

system in terms of components, connectors and
configurations, it should also specify how these components

ed or reconfigured at runtime.
evolution of architecture at runtime may happen under several

: adding/ removing composing elements, reconfigur
upgrading existing

composing elements (substitution of composing elements).

ties of static or
existing ADLs in the

literature, only few of them support dynamic reconfiguration
, Rapide

In order to
, the expression “
to toggle between

an instance of
statements are

to respectively unlink and lin
is considered

dynamic since third party services can be discovered and

DSPL)
conventional SPL perspective by delaying the binding time of
product’s composing elements (i.e. features) to runtime. It
produces autonomous and reconfigurable products that are
able to reconfigure themselves to select a valid configuration

Even though there is no concrete
agreement of what aspects a dynamic SPL should exactly
treat, most approaches agree that the main characteristic of
any dynamic SPL framework is the runtime variability, which

tivities at runtime:
managing the dynamic selection of variants, autonomous
activation/ deactivation of composing elements, substitution of
composing elements and dependency and constraint checking

ncerned about
representing an architecture that encompasses variability

is an ADL for modeling runtime and design
is defined as a

. xADL 2.0 integrates product lines
options

Concerning the integration of product lines
concepts within xADL; this approach suffers from

requires, excludes)
 Koala [

in order to dynamically bind the selected
The main limitation in Koala is its static nature;

any deployed configuration cannot be changed at runtim
will require application recompilation, thus it is not suitable

Otherwise, approaches that describe variability in product
oriented style.

describe system’s architecture
in terms of services whether in a dynamic or static ADL

are not able to describe variants.

system in terms of components, connectors and
configurations, it should also specify how these components

ed or reconfigured at runtime.
evolution of architecture at runtime may happen under several

: adding/ removing composing elements, reconfigur
upgrading existing

composing elements (substitution of composing elements).

ties of static or
existing ADLs in the

literature, only few of them support dynamic reconfiguration
, Rapide

n order to
, the expression “
to toggle between

an instance of
statements are

to respectively unlink and lin
is considered

dynamic since third party services can be discovered and

 extends
conventional SPL perspective by delaying the binding time of
product’s composing elements (i.e. features) to runtime. It
produces autonomous and reconfigurable products that are
able to reconfigure themselves to select a valid configuration

Even though there is no concrete
agreement of what aspects a dynamic SPL should exactly
treat, most approaches agree that the main characteristic of
any dynamic SPL framework is the runtime variability, which

tivities at runtime:
managing the dynamic selection of variants, autonomous
activation/ deactivation of composing elements, substitution of
composing elements and dependency and constraint checking

ncerned about
representing an architecture that encompasses variability

is an ADL for modeling runtime and design-
is defined as a

. xADL 2.0 integrates product lines
options, and

Concerning the integration of product lines
concepts within xADL; this approach suffers from

requires, excludes)
Koala [

in order to dynamically bind the selected
The main limitation in Koala is its static nature;

any deployed configuration cannot be changed at runtime and
will require application recompilation, thus it is not suitable

Otherwise, approaches that describe variability in product
oriented style.

describe system’s architecture
in terms of services whether in a dynamic or static ADL

are not able to describe variants.

system in terms of components, connectors and
configurations, it should also specify how these components

 Thi
evolution of architecture at runtime may happen under several

: adding/ removing composing elements, reconfiguring
upgrading existing

composing elements (substitution of composing elements).

ties of static or
existing ADLs in the

literature, only few of them support dynamic reconfiguration
 [12

n order to
, the expression “on
to toggle between

an instance of
statements are

to respectively unlink and lin
is considered

dynamic since third party services can be discovered and

extends
conventional SPL perspective by delaying the binding time of
product’s composing elements (i.e. features) to runtime. It
produces autonomous and reconfigurable products that are
able to reconfigure themselves to select a valid configuration

Even though there is no concrete
agreement of what aspects a dynamic SPL should exactly
treat, most approaches agree that the main characteristic of
any dynamic SPL framework is the runtime variability, which

tivities at runtime:
managing the dynamic selection of variants, autonomous
activation/ deactivation of composing elements, substitution of
composing elements and dependency and constraint checking

ncerned about
representing an architecture that encompasses variability [16

-time
is defined as a

. xADL 2.0 integrates product lines
, and

Concerning the integration of product lines
concepts within xADL; this approach suffers from the

requires, excludes)
Koala [18

in order to dynamically bind the selected
The main limitation in Koala is its static nature;

e and
will require application recompilation, thus it is not suitable

Otherwise, approaches that describe variability in product
oriented style.

describe system’s architecture
in terms of services whether in a dynamic or static ADL

are not able to describe variants.

system in terms of components, connectors and
configurations, it should also specify how these components

This
evolution of architecture at runtime may happen under several

ing
upgrading existing

ties of static or
existing ADLs in the

literature, only few of them support dynamic reconfiguration
12],

n order to
on

to toggle between
an instance of

statements are
to respectively unlink and link

is considered
dynamic since third party services can be discovered and

extends
conventional SPL perspective by delaying the binding time of
product’s composing elements (i.e. features) to runtime. It
produces autonomous and reconfigurable products that are
able to reconfigure themselves to select a valid configuration

Even though there is no concrete
agreement of what aspects a dynamic SPL should exactly
treat, most approaches agree that the main characteristic of
any dynamic SPL framework is the runtime variability, which

tivities at runtime:
managing the dynamic selection of variants, autonomous
activation/ deactivation of composing elements, substitution of
composing elements and dependency and constraint checking

ncerned about
16].
time

is defined as a
. xADL 2.0 integrates product lines

, and
Concerning the integration of product lines

the
requires, excludes)

18]
in order to dynamically bind the selected

The main limitation in Koala is its static nature;
e and

will require application recompilation, thus it is not suitable

Otherwise, approaches that describe variability in product
oriented style.

describe system’s architecture
in terms of services whether in a dynamic or static ADL.

A

exemplify concepts related to our proposed approach
example is about
four actors
service
retailer’s website, browses the catalog, selects some items and
commands an order. The retailer fulfills customer’s order
request and inquires the warehouse to prepare all items of the
order. Once the order is prepar
the delivery of items to the customer.

B

S
architecture level
is structured
F

1

2

3

4

III

A. I

We will use throughout the paper an illustrative example to
exemplify concepts related to our proposed approach
example is about
four actors
service
retailer’s website, browses the catalog, selects some items and
commands an order. The retailer fulfills customer’s order
request and inquires the warehouse to prepare all items of the
order. Once the order is prepar
the delivery of items to the customer.

B. The DSOPL

In order to describe the runtime variability of a
Service
architecture level
is structured
Fig.

1. Structural
abstract structural entities
interfaces, operations)

2. Variability description: here, variation
and also all alternative services of each variation point
with the constraints related to each alternative

3. Context description: v
descriptions are based on information about context.
information
specific

4. Configuration
co
how to configure (generate)
on structural,

III.

Illustrative

We will use throughout the paper an illustrative example to
exemplify concepts related to our proposed approach
example is about
four actors
services
retailer’s website, browses the catalog, selects some items and
commands an order. The retailer fulfills customer’s order
request and inquires the warehouse to prepare all items of the
order. Once the order is prepar
the delivery of items to the customer.

The DSOPL

In order to describe the runtime variability of a
ervice

architecture level
is structured

 2:

Structural
abstract structural entities
interfaces, operations)

Variability description: here, variation
and also all alternative services of each variation point
with the constraints related to each alternative

Context description: v
descriptions are based on information about context.
information
specific

Configuration
concrete services
how to configure (generate)
on structural,

Figure

 D

llustrative

We will use throughout the paper an illustrative example to
exemplify concepts related to our proposed approach
example is about
four actors

s, as m
retailer’s website, browses the catalog, selects some items and
commands an order. The retailer fulfills customer’s order
request and inquires the warehouse to prepare all items of the
order. Once the order is prepar
the delivery of items to the customer.

The DSOPL

In order to describe the runtime variability of a
ervice-Oriented

architecture level
is structured

Structural
abstract structural entities
interfaces, operations)

Variability description: here, variation
and also all alternative services of each variation point
with the constraints related to each alternative

Context description: v
descriptions are based on information about context.
information
specific

Configuration
ncrete services

how to configure (generate)
on structural,

Figure

DYNAMIC

llustrative

We will use throughout the paper an illustrative example to
exemplify concepts related to our proposed approach
example is about
four actors;

, as m
retailer’s website, browses the catalog, selects some items and
commands an order. The retailer fulfills customer’s order
request and inquires the warehouse to prepare all items of the
order. Once the order is prepar
the delivery of items to the customer.

The DSOPL

In order to describe the runtime variability of a
riented

architecture level
is structured in

Structural
abstract structural entities
interfaces, operations)

Variability description: here, variation
and also all alternative services of each variation point
with the constraints related to each alternative

Context description: v
descriptions are based on information about context.
information
specific section

Configuration
ncrete services

how to configure (generate)
on structural,

Figure 1. Illustrative example:

YNAMIC

llustrative example

We will use throughout the paper an illustrative example to
exemplify concepts related to our proposed approach
example is about

 customer, retailer, warehouse and shipment
, as modeled in

retailer’s website, browses the catalog, selects some items and
commands an order. The retailer fulfills customer’s order
request and inquires the warehouse to prepare all items of the
order. Once the order is prepar
the delivery of items to the customer.

The DSOPL-ADL structure

In order to describe the runtime variability of a
riented

architecture level,
in four sections

Structural element description
abstract structural entities
interfaces, operations)

Variability description: here, variation
and also all alternative services of each variation point
with the constraints related to each alternative

Context description: v
descriptions are based on information about context.
information about

section

Configuration
ncrete services

how to configure (generate)
on structural, variability and context elements

Illustrative example:

YNAMIC S

xample

We will use throughout the paper an illustrative example to
exemplify concepts related to our proposed approach
example is about a simplified online sales scenario between

customer, retailer, warehouse and shipment
odeled in

retailer’s website, browses the catalog, selects some items and
commands an order. The retailer fulfills customer’s order
request and inquires the warehouse to prepare all items of the
order. Once the order is prepar
the delivery of items to the customer.

ADL structure

In order to describe the runtime variability of a
riented P

, we propose an
four sections

element description
abstract structural entities
interfaces, operations)

Variability description: here, variation
and also all alternative services of each variation point
with the constraints related to each alternative

Context description: v
descriptions are based on information about context.

about
section of

Configuration description
ncrete services

how to configure (generate)
variability and context elements

Illustrative example:

Figure

SERVICE

xample

We will use throughout the paper an illustrative example to
exemplify concepts related to our proposed approach

a simplified online sales scenario between
customer, retailer, warehouse and shipment

odeled in
retailer’s website, browses the catalog, selects some items and
commands an order. The retailer fulfills customer’s order
request and inquires the warehouse to prepare all items of the
order. Once the order is prepar
the delivery of items to the customer.

ADL structure

In order to describe the runtime variability of a
Product

we propose an
four sections

element description
abstract structural entities
interfaces, operations)

Variability description: here, variation
and also all alternative services of each variation point
with the constraints related to each alternative

Context description: v
descriptions are based on information about context.

about
of the ADL.

description
ncrete services and

how to configure (generate)
variability and context elements

Illustrative example:

Figure 2

ERVICE

We will use throughout the paper an illustrative example to
exemplify concepts related to our proposed approach

a simplified online sales scenario between
customer, retailer, warehouse and shipment

odeled in
retailer’s website, browses the catalog, selects some items and
commands an order. The retailer fulfills customer’s order
request and inquires the warehouse to prepare all items of the
order. Once the order is prepar
the delivery of items to the customer.

ADL structure

In order to describe the runtime variability of a
roduct

we propose an
four sections

element description
abstract structural entities
interfaces, operations).

Variability description: here, variation
and also all alternative services of each variation point
with the constraints related to each alternative

Context description: v
descriptions are based on information about context.

about context elements is
the ADL.

description
and connections are

how to configure (generate)
variability and context elements

Illustrative example:

2. Modular DSOPL

ERVICE O

We will use throughout the paper an illustrative example to
exemplify concepts related to our proposed approach

a simplified online sales scenario between
customer, retailer, warehouse and shipment

odeled in Fig
retailer’s website, browses the catalog, selects some items and
commands an order. The retailer fulfills customer’s order
request and inquires the warehouse to prepare all items of the
order. Once the order is prepar
the delivery of items to the customer.

ADL structure

In order to describe the runtime variability of a
roduct

we propose an
four sections, as

element description
abstract structural entities

Variability description: here, variation
and also all alternative services of each variation point
with the constraints related to each alternative

Context description: variability and configuration
descriptions are based on information about context.

context elements is
the ADL.

description: here,
connections are

how to configure (generate)
variability and context elements

Illustrative example:

Modular DSOPL

ORIENTED

We will use throughout the paper an illustrative example to
exemplify concepts related to our proposed approach

a simplified online sales scenario between
customer, retailer, warehouse and shipment

Fig.
retailer’s website, browses the catalog, selects some items and
commands an order. The retailer fulfills customer’s order
request and inquires the warehouse to prepare all items of the
order. Once the order is prepared, the shipping service handles
the delivery of items to the customer.

ADL structure

In order to describe the runtime variability of a
Line

we propose an XML
as summarized in the

element description
abstract structural entities

Variability description: here, variation
and also all alternative services of each variation point
with the constraints related to each alternative

ariability and configuration
descriptions are based on information about context.

context elements is
the ADL.

: here,
connections are

how to configure (generate) concrete architecture
variability and context elements

Illustrative example: online sales scenario architecture

Modular DSOPL

RIENTED

We will use throughout the paper an illustrative example to
exemplify concepts related to our proposed approach

a simplified online sales scenario between
customer, retailer, warehouse and shipment

. 1.
retailer’s website, browses the catalog, selects some items and
commands an order. The retailer fulfills customer’s order
request and inquires the warehouse to prepare all items of the

ed, the shipping service handles
the delivery of items to the customer.

In order to describe the runtime variability of a
ine
XML
summarized in the

element description: defines
 of the system

Variability description: here, variation
and also all alternative services of each variation point
with the constraints related to each alternative

ariability and configuration
descriptions are based on information about context.

context elements is

: here,
connections are

concrete architecture
variability and context elements

nline sales scenario architecture

Modular DSOPL

RIENTED P

We will use throughout the paper an illustrative example to
exemplify concepts related to our proposed approach

a simplified online sales scenario between
customer, retailer, warehouse and shipment

 The customer accesses
retailer’s website, browses the catalog, selects some items and
commands an order. The retailer fulfills customer’s order
request and inquires the warehouse to prepare all items of the

ed, the shipping service handles
the delivery of items to the customer.

In order to describe the runtime variability of a
 (D

XML-based
summarized in the

: defines
of the system

Variability description: here, variation
and also all alternative services of each variation point
with the constraints related to each alternative

ariability and configuration
descriptions are based on information about context.

context elements is

: here, the rules used to create
connections are

concrete architecture
variability and context elements

nline sales scenario architecture

Modular DSOPL-ADL

PRODUCT

We will use throughout the paper an illustrative example to
exemplify concepts related to our proposed approach

a simplified online sales scenario between
customer, retailer, warehouse and shipment

The customer accesses
retailer’s website, browses the catalog, selects some items and
commands an order. The retailer fulfills customer’s order
request and inquires the warehouse to prepare all items of the

ed, the shipping service handles

In order to describe the runtime variability of a
DSOPL
based

summarized in the

: defines
of the system

Variability description: here, variation points are defined
and also all alternative services of each variation point
with the constraints related to each alternative

ariability and configuration
descriptions are based on information about context.

context elements is

the rules used to create
connections are specified

concrete architecture
variability and context elements

nline sales scenario architecture

ADL

RODUCT

We will use throughout the paper an illustrative example to
exemplify concepts related to our proposed approach

a simplified online sales scenario between
customer, retailer, warehouse and shipment

The customer accesses
retailer’s website, browses the catalog, selects some items and
commands an order. The retailer fulfills customer’s order
request and inquires the warehouse to prepare all items of the

ed, the shipping service handles

In order to describe the runtime variability of a
SOPL)

based ADL.
summarized in the

: defines all types of
of the system

points are defined
and also all alternative services of each variation point
with the constraints related to each alternative

ariability and configuration
descriptions are based on information about context.

context elements is described

the rules used to create
specified

concrete architecture
variability and context elements

nline sales scenario architecture

RODUCT L

We will use throughout the paper an illustrative example to
exemplify concepts related to our proposed approach

a simplified online sales scenario between
customer, retailer, warehouse and shipment

The customer accesses
retailer’s website, browses the catalog, selects some items and
commands an order. The retailer fulfills customer’s order
request and inquires the warehouse to prepare all items of the

ed, the shipping service handles

In order to describe the runtime variability of a
)

ADL.
summarized in the

all types of
of the system

points are defined
and also all alternative services of each variation point
with the constraints related to each alternative.

ariability and configuration
descriptions are based on information about context.

described

the rules used to create
specified

concrete architecture
variability and context elements.

nline sales scenario architecture

LINE

We will use throughout the paper an illustrative example to
exemplify concepts related to our proposed approach

a simplified online sales scenario between
customer, retailer, warehouse and shipment

The customer accesses
retailer’s website, browses the catalog, selects some items and
commands an order. The retailer fulfills customer’s order
request and inquires the warehouse to prepare all items of the

ed, the shipping service handles

In order to describe the runtime variability of a Dynamic
system

ADL. This ADL
summarized in the schema

all types of
of the system (services,

points are defined
and also all alternative services of each variation point

ariability and configuration
descriptions are based on information about context.

described

the rules used to create
specified to

concrete architecture

nline sales scenario architecture

INE ADL

We will use throughout the paper an illustrative example to
exemplify concepts related to our proposed approach.

a simplified online sales scenario between
customer, retailer, warehouse and shipment

The customer accesses
retailer’s website, browses the catalog, selects some items and
commands an order. The retailer fulfills customer’s order
request and inquires the warehouse to prepare all items of the

ed, the shipping service handles

Dynamic
system

This ADL
schema

all types of
(services,

points are defined
and also all alternative services of each variation point

ariability and configuration
descriptions are based on information about context. Thus

described

the rules used to create
to describe

concrete architectures based

nline sales scenario architecture

ADL

We will use throughout the paper an illustrative example to
. This

a simplified online sales scenario between
customer, retailer, warehouse and shipment

The customer accesses
retailer’s website, browses the catalog, selects some items and
commands an order. The retailer fulfills customer’s order
request and inquires the warehouse to prepare all items of the

ed, the shipping service handles

Dynamic
system

This ADL
schema of

all types of the
(services,

points are defined
and also all alternative services of each variation point

ariability and configuration
Thus

described in

the rules used to create
describe

based

We will use throughout the paper an illustrative example to
This

a simplified online sales scenario between
customer, retailer, warehouse and shipment

The customer accesses
retailer’s website, browses the catalog, selects some items and
commands an order. The retailer fulfills customer’s order
request and inquires the warehouse to prepare all items of the

ed, the shipping service handles

Dynamic
at

This ADL
of

the
(services,

points are defined
and also all alternative services of each variation point

ariability and configuration
Thus,

n a

the rules used to create
describe

based

architectural concern
description of architecture in four sections, each of them
specifying one type of architectural description has
following advantages:

of the

by sepa

and

of information among several abstraction levels. For example,

the variability described in feature model at requirement level

is translated at architec

C

interacts
itself is a
into finer
services
considered
implement any functionality
to
described as sub

require a number of
collection of methods or operations
service
future exploiting systems, they should
defined int
operations.
or
interface that the service realizes, whereas
is an interface that the service needs in order to operate.
Services communicate to each other through provides/
consumes relationship via their provided/ required
An interface

meta
architectural
has a name specified by

Our approach
architectural concern
description of architecture in four sections, each of them
specifying one type of architectural description has
following advantages:

1)

of the

2)

by sepa

and configuration).

3)

of information among several abstraction levels. For example,

the variability described in feature model at requirement level

is translated at architec

C. Structural

A
interacts
itself is a
into finer
services
considered
implement any functionality
to one of
described as sub

Each service
require a number of
collection of methods or operations
service
future exploiting systems, they should
defined int
operations.
or required interface
interface that the service realizes, whereas
is an interface that the service needs in order to operate.
Services communicate to each other through provides/
consumes relationship via their provided/ required
An interface

The structural description of a se
meta
architectural
has a name specified by

Our approach
architectural concern
description of architecture in four sections, each of them
specifying one type of architectural description has
following advantages:

) It facilitates the modification and re

of the four

) It allows the description and anal

by sepa

configuration).

) It allows controlling the traceability links of each type

of information among several abstraction levels. For example,

the variability described in feature model at requirement level

is translated at architec

Structural

A service
interacts
itself is a
into finer
services
considered
implement any functionality

one of
described as sub

Each service
require a number of
collection of methods or operations
service.
future exploiting systems, they should
defined int
operations.

required interface
interface that the service realizes, whereas
is an interface that the service needs in order to operate.
Services communicate to each other through provides/
consumes relationship via their provided/ required
An interface

The structural description of a se
meta-model.
architectural
has a name specified by

Figure

Our approach
architectural concern
description of architecture in four sections, each of them
specifying one type of architectural description has
following advantages:

t facilitates the modification and re

four

t allows the description and anal

by separating the four concerns (structure, variability, context

configuration).

t allows controlling the traceability links of each type

of information among several abstraction levels. For example,

the variability described in feature model at requirement level

is translated at architec

Structural

service
interacts with other services through
itself is a composite
into finer-grained
services. All other services in the hierarchical tree are
considered
implement any functionality

one of its composing services.
described as sub

Each service
require a number of
collection of methods or operations

. Since services
future exploiting systems, they should
defined int
operations.

required interface
interface that the service realizes, whereas
is an interface that the service needs in order to operate.
Services communicate to each other through provides/
consumes relationship via their provided/ required
An interface

The structural description of a se
model.

architectural
has a name specified by

Figure

Our approach
architectural concern
description of architecture in four sections, each of them
specifying one type of architectural description has
following advantages:

t facilitates the modification and re

 sections of ADL.

t allows the description and anal

rating the four concerns (structure, variability, context

configuration).

t allows controlling the traceability links of each type

of information among several abstraction levels. For example,

the variability described in feature model at requirement level

is translated at architec

Structural

service
with other services through
composite
grained

. All other services in the hierarchical tree are
considered composite
implement any functionality

its composing services.
described as sub

Each service
require a number of
collection of methods or operations

Since services
future exploiting systems, they should
defined interfaces that describe their
operations. Interfaces are two types, either

required interface
interface that the service realizes, whereas
is an interface that the service needs in order to operate.
Services communicate to each other through provides/
consumes relationship via their provided/ required
An interface has

The structural description of a se
model. A service

architectural attributes
has a name specified by

Figure 3. Structural description meta

Our approach
architectural concern
description of architecture in four sections, each of them
specifying one type of architectural description has
following advantages:

t facilitates the modification and re

sections of ADL.

t allows the description and anal

rating the four concerns (structure, variability, context

configuration).

t allows controlling the traceability links of each type

of information among several abstraction levels. For example,

the variability described in feature model at requirement level

is translated at architec

Structural elements

 is an encapsulated and self
with other services through
composite
grained

. All other services in the hierarchical tree are
composite

implement any functionality
its composing services.

described as sub-architecture.

Each service has
require a number of
collection of methods or operations

Since services
future exploiting systems, they should

erfaces that describe their
Interfaces are two types, either

required interface
interface that the service realizes, whereas
is an interface that the service needs in order to operate.
Services communicate to each other through provides/
consumes relationship via their provided/ required

has a

The structural description of a se
A service
attributes

has a name specified by

. Structural description meta

Our approach implicitly
architectural concern
description of architecture in four sections, each of them
specifying one type of architectural description has
following advantages:

t facilitates the modification and re

sections of ADL.

t allows the description and anal

rating the four concerns (structure, variability, context

configuration).

t allows controlling the traceability links of each type

of information among several abstraction levels. For example,

the variability described in feature model at requirement level

is translated at architec

elements

is an encapsulated and self
with other services through
composite
grained services

. All other services in the hierarchical tree are
composite

implement any functionality
its composing services.

architecture.

has
require a number of
collection of methods or operations

Since services
future exploiting systems, they should

erfaces that describe their
Interfaces are two types, either

required interface
interface that the service realizes, whereas
is an interface that the service needs in order to operate.
Services communicate to each other through provides/
consumes relationship via their provided/ required

a set of

The structural description of a se
A service
attributes

has a name specified by

. Structural description meta

implicitly
architectural concerns
description of architecture in four sections, each of them
specifying one type of architectural description has
following advantages:

t facilitates the modification and re

sections of ADL.

t allows the description and anal

rating the four concerns (structure, variability, context

t allows controlling the traceability links of each type

of information among several abstraction levels. For example,

the variability described in feature model at requirement level

is translated at architecture level through

elements description

is an encapsulated and self
with other services through
composite service

services
. All other services in the hierarchical tree are

composite. A
implement any functionality

its composing services.
architecture.

 a number of
require a number of required interfaces.
collection of methods or operations

Since services are developed independently from their
future exploiting systems, they should

erfaces that describe their
Interfaces are two types, either

required interface. Provided
interface that the service realizes, whereas
is an interface that the service needs in order to operate.
Services communicate to each other through provides/
consumes relationship via their provided/ required

set of

The structural description of a se
A service
attributes, as shown in Fig

has a name specified by

. Structural description meta

implicitly
 from each other

description of architecture in four sections, each of them
specifying one type of architectural description has

t facilitates the modification and re

sections of ADL.

t allows the description and anal

rating the four concerns (structure, variability, context

t allows controlling the traceability links of each type

of information among several abstraction levels. For example,

the variability described in feature model at requirement level

ure level through

description

is an encapsulated and self
with other services through

ervice
services.

. All other services in the hierarchical tree are
A composite service

implement any functionality
its composing services.

architecture.

a number of
required interfaces.

collection of methods or operations
are developed independently from their

future exploiting systems, they should
erfaces that describe their
Interfaces are two types, either

Provided
interface that the service realizes, whereas
is an interface that the service needs in order to operate.
Services communicate to each other through provides/
consumes relationship via their provided/ required

set of operations

The structural description of a se
 is described based on

, as shown in Fig
has a name specified by service_name

. Structural description meta

implicitly separate
from each other

description of architecture in four sections, each of them
specifying one type of architectural description has

t facilitates the modification and re

sections of ADL.

t allows the description and anal

rating the four concerns (structure, variability, context

t allows controlling the traceability links of each type

of information among several abstraction levels. For example,

the variability described in feature model at requirement level

ure level through

description

is an encapsulated and self
with other services through

ervice and
. Leaf services are called

. All other services in the hierarchical tree are
composite service

implement any functionality by
its composing services.

architecture.

a number of
required interfaces.

collection of methods or operations
are developed independently from their

future exploiting systems, they should
erfaces that describe their
Interfaces are two types, either

Provided
interface that the service realizes, whereas
is an interface that the service needs in order to operate.
Services communicate to each other through provides/
consumes relationship via their provided/ required

operations

The structural description of a se
is described based on

, as shown in Fig
service_name

. Structural description meta

separate
from each other

description of architecture in four sections, each of them
specifying one type of architectural description has

t facilitates the modification and re

t allows the description and anal

rating the four concerns (structure, variability, context

t allows controlling the traceability links of each type

of information among several abstraction levels. For example,

the variability described in feature model at requirement level

ure level through

description

is an encapsulated and self
with other services through

and is
Leaf services are called

. All other services in the hierarchical tree are
composite service

by itself
its composing services.

a number of provided interfaces and may
required interfaces.

collection of methods or operations
are developed independently from their

future exploiting systems, they should
erfaces that describe their
Interfaces are two types, either

Provided interface
interface that the service realizes, whereas
is an interface that the service needs in order to operate.
Services communicate to each other through provides/
consumes relationship via their provided/ required

operations

The structural description of a se
is described based on

, as shown in Fig
service_name

. Structural description meta

separates
from each other

description of architecture in four sections, each of them
specifying one type of architectural description has

t facilitates the modification and re

t allows the description and anal

rating the four concerns (structure, variability, context

t allows controlling the traceability links of each type

of information among several abstraction levels. For example,

the variability described in feature model at requirement level

ure level through

description

is an encapsulated and self
with other services through

is hierarchically
Leaf services are called

. All other services in the hierarchical tree are
composite service

itself,
its composing services. Each

provided interfaces and may
required interfaces.

collection of methods or operations that are
are developed independently from their

future exploiting systems, they should
erfaces that describe their
Interfaces are two types, either

interface
interface that the service realizes, whereas
is an interface that the service needs in order to operate.
Services communicate to each other through provides/
consumes relationship via their provided/ required

operations.

The structural description of a ser
is described based on

, as shown in Fig
service_name

. Structural description meta-model of DSOPL

 the
from each other

description of architecture in four sections, each of them
specifying one type of architectural description has

t facilitates the modification and re

t allows the description and analysis of the architecture

rating the four concerns (structure, variability, context

t allows controlling the traceability links of each type

of information among several abstraction levels. For example,

the variability described in feature model at requirement level

ure level through

is an encapsulated and self
with other services through interfaces

hierarchically
Leaf services are called

. All other services in the hierarchical tree are
composite service

, but it delegates this
Each

provided interfaces and may
required interfaces.

that are
are developed independently from their

future exploiting systems, they should
erfaces that describe their
Interfaces are two types, either

interface
interface that the service realizes, whereas
is an interface that the service needs in order to operate.
Services communicate to each other through provides/
consumes relationship via their provided/ required

rvice reflect
is described based on

, as shown in Fig.
service_name

model of DSOPL

the four
from each other

description of architecture in four sections, each of them
specifying one type of architectural description has

t facilitates the modification and re-utilization of each

ysis of the architecture

rating the four concerns (structure, variability, context

t allows controlling the traceability links of each type

of information among several abstraction levels. For example,

the variability described in feature model at requirement level

ure level through its variabi

is an encapsulated and self-
interfaces

hierarchically
Leaf services are called

. All other services in the hierarchical tree are
composite service doesn’

but it delegates this
Each composite service is

provided interfaces and may
required interfaces. Interfaces

that are
are developed independently from their

future exploiting systems, they should have
erfaces that describe their functionalities
Interfaces are two types, either provided interface

interface of a service is an
interface that the service realizes, whereas
is an interface that the service needs in order to operate.
Services communicate to each other through provides/
consumes relationship via their provided/ required

vice reflect
is described based on

. 3: (1) Every
 attribute. (

model of DSOPL

four aforementioned
from each other.

description of architecture in four sections, each of them
specifying one type of architectural description has

utilization of each

ysis of the architecture

rating the four concerns (structure, variability, context

t allows controlling the traceability links of each type

of information among several abstraction levels. For example,

the variability described in feature model at requirement level

variabi

-contained unit. It
interfaces

hierarchically
Leaf services are called

. All other services in the hierarchical tree are
doesn’

but it delegates this
composite service is

provided interfaces and may
Interfaces

that are supported by the
are developed independently from their

have solid and well
functionalities
provided interface
of a service is an

interface that the service realizes, whereas required interface
is an interface that the service needs in order to operate.
Services communicate to each other through provides/
consumes relationship via their provided/ required

vice reflect
is described based on

: (1) Every
attribute. (

model of DSOPL

aforementioned
. The modular

description of architecture in four sections, each of them
specifying one type of architectural description has

utilization of each

ysis of the architecture

rating the four concerns (structure, variability, context

t allows controlling the traceability links of each type

of information among several abstraction levels. For example,

the variability described in feature model at requirement level

variabi

contained unit. It
interfaces. The system

hierarchically de
Leaf services are called

. All other services in the hierarchical tree are
doesn’t execute

but it delegates this
composite service is

provided interfaces and may
Interfaces

supported by the
are developed independently from their

solid and well
functionalities
provided interface
of a service is an
required interface

is an interface that the service needs in order to operate.
Services communicate to each other through provides/
consumes relationship via their provided/ required

vice reflects
is described based on the following

: (1) Every
attribute. (

model of DSOPL

aforementioned
The modular

description of architecture in four sections, each of them
specifying one type of architectural description has

utilization of each

ysis of the architecture

rating the four concerns (structure, variability, context

t allows controlling the traceability links of each type

of information among several abstraction levels. For example,

the variability described in feature model at requirement level

lity section.

contained unit. It
The system
decomposed

Leaf services are called
. All other services in the hierarchical tree are

t execute
but it delegates this

composite service is

provided interfaces and may
Interfaces define

supported by the
are developed independently from their

solid and well
functionalities
provided interface
of a service is an
required interface

is an interface that the service needs in order to operate.
Services communicate to each other through provides/
consumes relationship via their provided/ required interfaces.

 this service
the following

: (1) Every
attribute. (2) It has a

-ADL

aforementioned
The modular

description of architecture in four sections, each of them
specifying one type of architectural description has

utilization of each

ysis of the architecture

rating the four concerns (structure, variability, context

t allows controlling the traceability links of each type

of information among several abstraction levels. For example,

the variability described in feature model at requirement level

lity section.

contained unit. It
The system

composed
Leaf services are called atomic

. All other services in the hierarchical tree are
t execute

but it delegates this
composite service is

provided interfaces and may
define

supported by the
are developed independently from their

solid and well
functionalities
provided interface
of a service is an
required interface

is an interface that the service needs in order to operate.
Services communicate to each other through provides/

interfaces.

this service
the following

: (1) Every service
) It has a

ADL

aforementioned
The modular

description of architecture in four sections, each of them
specifying one type of architectural description has the

utilization of each

ysis of the architecture

rating the four concerns (structure, variability, context

t allows controlling the traceability links of each type

of information among several abstraction levels. For example,

the variability described in feature model at requirement level

lity section.

contained unit. It
The system

composed
atomic

. All other services in the hierarchical tree are
t execute or

but it delegates this task
composite service is

provided interfaces and may
define

supported by the
are developed independently from their

solid and well
functionalities and
provided interface
of a service is an
required interface

is an interface that the service needs in order to operate.
Services communicate to each other through provides/

interfaces.

this service
the following

service
) It has a

aforementioned
The modular

description of architecture in four sections, each of them
the

utilization of each

ysis of the architecture

rating the four concerns (structure, variability, context

t allows controlling the traceability links of each type

of information among several abstraction levels. For example,

the variability described in feature model at requirement level

lity section.

contained unit. It
The system

composed
atomic

. All other services in the hierarchical tree are
or

task
composite service is

provided interfaces and may
 a

supported by the
are developed independently from their

solid and well-
and

provided interface
of a service is an
required interface

is an interface that the service needs in order to operate.
Services communicate to each other through provides/

interfaces.

this service
the following

service
) It has a

textual_description

functionalities of the service, its inputs and expected outputs.
(3)
service is atomic or composite.
section
example.

<

</interface>

</

D

making changes to system’s architecture.
types of

pre
example, there are two alternatives of shipment; either a relay
point shipment or home delivery shipment
The decision of which alternative to ch
automatically
addition to other environmental conditions such as the
existence of a relay point service in customer’s city,
depicted in

s

textual_description

functionalities of the service, its inputs and expected outputs.
(3)
service is atomic or composite.
section
example.

<DSOPL

 <structural_

 <service

</interface>

 </service>

 <service name="customer_service"

 </service>

 <service name="relay

 </service>

 <service name="home_delivery_shipping_service"

 </service>

 </structural_

 <variability_

 <context

 <configuration_description

</DSOPL

D. Variability

 Variability
making changes to system’s architecture.
types of

1)

It represents
pre-
example, there are two alternatives of shipment; either a relay
point shipment or home delivery shipment
The decision of which alternative to ch
automatically
addition to other environmental conditions such as the
existence of a relay point service in customer’s city,
depicted in

2)

It may exist several
services.

textual_description

functionalities of the service, its inputs and expected outputs.
(3) is_at
service is atomic or composite.
section
example.

SOPL-ADL>

<structural_

<service

<interfaces>

 ...

</interfaces>

<sub

 <service name="retailer_service"

 <interfaces>

</interface>

 </interfaces>

 </service>

 <service name="warehouse_service"

 <interfaces>

 </service>

</sub

</service>

<service name="customer_service"

...

</service>

<service name="relay

...

</service>

<service name="home_delivery_shipping_service"

...

</service>

</structural_

<variability_

<context

configuration_description

SOPL-ADL>

Variability

Variability
making changes to system’s architecture.
types of

) S

It represents
-conditioned constraints on runtime

example, there are two alternatives of shipment; either a relay
point shipment or home delivery shipment
The decision of which alternative to ch
automatically
addition to other environmental conditions such as the
existence of a relay point service in customer’s city,
depicted in

) Variability of connection

It may exist several
ervices.

textual_description

functionalities of the service, its inputs and expected outputs.
is_atomic

service is atomic or composite.
section description
example.

ADL>

<structural_

<service

<interfaces>

...

</interfaces>

<sub-architecture>

<service name="retailer_service"

<interfaces>

 <interface name="i_order" role="provides">

 <operation

 </operations>

 </interface>

 <interface

</interface>

</interfaces>

</service>

<service name="warehouse_service"

<interfaces>

</service>

</sub-architecture>

</service>

<service name="customer_service"

</service>

<service name="relay

</service>

<service name="home_delivery_shipping_service"

</service>

</structural_

<variability_

<context_description

configuration_description

ADL>

Variability

Variability
making changes to system’s architecture.
types of variability:

Service variability

It represents
conditioned constraints on runtime

example, there are two alternatives of shipment; either a relay
point shipment or home delivery shipment
The decision of which alternative to ch
automatically
addition to other environmental conditions such as the
existence of a relay point service in customer’s city,
depicted in

Variability of connection

It may exist several
ervices. The selection of the appropriate connection is done

Figure 5

textual_description

functionalities of the service, its inputs and expected outputs.
omic

service is atomic or composite.
description

<structural_description

<service name="

<interfaces>

</interfaces>

architecture>

<service name="retailer_service"

<interfaces>

<interface name="i_order" role="provides">

<operation

 <operation name="submit_order_request"

 <operation name="get_catalog"

</operations>

</interface>

<interface

</interface>

</interfaces>

</service>

<service name="warehouse_service"

<interfaces>

</service>

architecture>

</service>

<service name="customer_service"

</service>

<service name="relay

</service>

<service name="home_delivery_shipping_service"

</service>

</structural_description

<variability_description

description

configuration_description

ADL>

Figure 4. Structural

Variability

Variability
making changes to system’s architecture.

variability:

ervice variability

It represents
conditioned constraints on runtime

example, there are two alternatives of shipment; either a relay
point shipment or home delivery shipment
The decision of which alternative to ch
automatically
addition to other environmental conditions such as the
existence of a relay point service in customer’s city,
depicted in Fig

Variability of connection

It may exist several
The selection of the appropriate connection is done

Figure 5

textual_description

functionalities of the service, its inputs and expected outputs.
omic has a Boolean value to indicate whether the

service is atomic or composite.
description

description

name="supply_chain_management_service"

<interfaces>

</interfaces>

architecture>

<service name="retailer_service"

<interfaces>

<interface name="i_order" role="provides">

<operation

<operation name="submit_order_request"

<operation name="get_catalog"

</operations>

</interface>

<interface

</interfaces>

</service>

<service name="warehouse_service"

<interfaces>

</service>

architecture>

<service name="customer_service"

<service name="relay

<service name="home_delivery_shipping_service"

description

description

description

configuration_description

Figure 4. Structural

Variability description

Variability in
making changes to system’s architecture.

variability:

ervice variability

It represents
conditioned constraints on runtime

example, there are two alternatives of shipment; either a relay
point shipment or home delivery shipment
The decision of which alternative to ch
automatically at ru
addition to other environmental conditions such as the
existence of a relay point service in customer’s city,

Fig. 9

Variability of connection

It may exist several
The selection of the appropriate connection is done

Figure 5. Example of service variability in sales scenario

textual_description

functionalities of the service, its inputs and expected outputs.
has a Boolean value to indicate whether the

service is atomic or composite.
description of the architecture related to our illustrative

description

supply_chain_management_service"

architecture>

<service name="retailer_service"

<interfaces>

<interface name="i_order" role="provides">

<operations>

<operation name="submit_order_request"

<operation name="get_catalog"

</operations>

</interface>

<interface name="i_goods_request"

</interfaces>

<service name="warehouse_service"

<interfaces> ...

architecture>

<service name="customer_service"

<service name="relay

<service name="home_delivery_shipping_service"

description

description

description>

configuration_description

Figure 4. Structural

escription

in SPL
making changes to system’s architecture.

variability:

ervice variability

It represents binding an alternative service that satisfies
conditioned constraints on runtime

example, there are two alternatives of shipment; either a relay
point shipment or home delivery shipment
The decision of which alternative to ch

runtime depending on customer’s selection in
addition to other environmental conditions such as the
existence of a relay point service in customer’s city,

9.

Variability of connection

It may exist several
The selection of the appropriate connection is done

. Example of service variability in sales scenario

textual_description
functionalities of the service, its inputs and expected outputs.

has a Boolean value to indicate whether the
service is atomic or composite.

of the architecture related to our illustrative

description>

supply_chain_management_service"

<service name="retailer_service"

<interface name="i_order" role="provides">

<operation name="submit_order_request"

<operation name="get_catalog"

</operations>

name="i_goods_request"

<service name="warehouse_service"

... </interfaces>

architecture>

<service name="customer_service"

<service name="relay_point_shipping_service"

<service name="home_delivery_shipping_service"

description>

description>

> ... </

configuration_description

Figure 4. Structural

escription

SPL
making changes to system’s architecture.

ervice variability

binding an alternative service that satisfies
conditioned constraints on runtime

example, there are two alternatives of shipment; either a relay
point shipment or home delivery shipment
The decision of which alternative to ch

ntime depending on customer’s selection in
addition to other environmental conditions such as the
existence of a relay point service in customer’s city,

Variability of connection

It may exist several
The selection of the appropriate connection is done

. Example of service variability in sales scenario

 that explains in plain text the main
functionalities of the service, its inputs and expected outputs.

has a Boolean value to indicate whether the
service is atomic or composite.

of the architecture related to our illustrative

supply_chain_management_service"

<service name="retailer_service"

<interface name="i_order" role="provides">

<operation name="submit_order_request"

<operation name="get_catalog"

name="i_goods_request"

<service name="warehouse_service"

</interfaces>

<service name="customer_service"

_point_shipping_service"

<service name="home_delivery_shipping_service"

 ...

</context

configuration_description> ...

Figure 4. Structural

escription

SPL architecture
making changes to system’s architecture.

ervice variability

binding an alternative service that satisfies
conditioned constraints on runtime

example, there are two alternatives of shipment; either a relay
point shipment or home delivery shipment
The decision of which alternative to ch

ntime depending on customer’s selection in
addition to other environmental conditions such as the
existence of a relay point service in customer’s city,

Variability of connection

It may exist several
The selection of the appropriate connection is done

. Example of service variability in sales scenario

that explains in plain text the main
functionalities of the service, its inputs and expected outputs.

has a Boolean value to indicate whether the
service is atomic or composite.

of the architecture related to our illustrative

supply_chain_management_service"

<service name="retailer_service"

<interface name="i_order" role="provides">

<operation name="submit_order_request"

<operation name="get_catalog"

name="i_goods_request"

<service name="warehouse_service"

</interfaces>

<service name="customer_service"

_point_shipping_service"

<service name="home_delivery_shipping_service"

... </variability_

context

... </

Figure 4. Structural description

architecture
making changes to system’s architecture.

binding an alternative service that satisfies
conditioned constraints on runtime

example, there are two alternatives of shipment; either a relay
point shipment or home delivery shipment
The decision of which alternative to ch

ntime depending on customer’s selection in
addition to other environmental conditions such as the
existence of a relay point service in customer’s city,

Variability of connection

It may exist several alternative
The selection of the appropriate connection is done

. Example of service variability in sales scenario

that explains in plain text the main
functionalities of the service, its inputs and expected outputs.

has a Boolean value to indicate whether the
service is atomic or composite.

of the architecture related to our illustrative

supply_chain_management_service"

<service name="retailer_service"

<interface name="i_order" role="provides">

<operation name="submit_order_request"

<operation name="get_catalog"

name="i_goods_request"

<service name="warehouse_service"

</interfaces>

<service name="customer_service" ...

_point_shipping_service"

<service name="home_delivery_shipping_service"

</variability_

context_description

</configuration_description

description

architecture
making changes to system’s architecture.

binding an alternative service that satisfies
conditioned constraints on runtime

example, there are two alternatives of shipment; either a relay
point shipment or home delivery shipment
The decision of which alternative to ch

ntime depending on customer’s selection in
addition to other environmental conditions such as the
existence of a relay point service in customer’s city,

Variability of connection

alternative
The selection of the appropriate connection is done

. Example of service variability in sales scenario

that explains in plain text the main
functionalities of the service, its inputs and expected outputs.

has a Boolean value to indicate whether the
service is atomic or composite. Fig

of the architecture related to our illustrative

supply_chain_management_service"

<service name="retailer_service" ...

<interface name="i_order" role="provides">

<operation name="submit_order_request"

<operation name="get_catalog"

name="i_goods_request"

<service name="warehouse_service" ...

... is_atomic="Y">

_point_shipping_service"

<service name="home_delivery_shipping_service"

</variability_

description

configuration_description

description

architecture
making changes to system’s architecture.

binding an alternative service that satisfies
conditioned constraints on runtime

example, there are two alternatives of shipment; either a relay
point shipment or home delivery shipment
The decision of which alternative to ch

ntime depending on customer’s selection in
addition to other environmental conditions such as the
existence of a relay point service in customer’s city,

alternative
The selection of the appropriate connection is done

. Example of service variability in sales scenario

that explains in plain text the main
functionalities of the service, its inputs and expected outputs.

has a Boolean value to indicate whether the
ig. 4 shows the structural

of the architecture related to our illustrative

supply_chain_management_service"

... is_atomic="Y">

<interface name="i_order" role="provides">

<operation name="submit_order_request"

<operation name="get_catalog" ...

name="i_goods_request"

... is_atomic="Y">

is_atomic="Y">

_point_shipping_service"

<service name="home_delivery_shipping_service"

</variability_description

description

configuration_description

 of sales scenario

architecture refers to the ability of
making changes to system’s architecture.

binding an alternative service that satisfies
conditioned constraints on runtime

example, there are two alternatives of shipment; either a relay
point shipment or home delivery shipment
The decision of which alternative to ch

ntime depending on customer’s selection in
addition to other environmental conditions such as the
existence of a relay point service in customer’s city,

alternative connections between
The selection of the appropriate connection is done

. Example of service variability in sales scenario

that explains in plain text the main
functionalities of the service, its inputs and expected outputs.

has a Boolean value to indicate whether the
4 shows the structural

of the architecture related to our illustrative

supply_chain_management_service"

is_atomic="Y">

<interface name="i_order" role="provides">

<operation name="submit_order_request"

...> </operation>

 role="consumes">

is_atomic="Y">

is_atomic="Y">

_point_shipping_service" ...

<service name="home_delivery_shipping_service"

description

description>

configuration_description

of sales scenario

refers to the ability of
making changes to system’s architecture.

binding an alternative service that satisfies
conditioned constraints on runtime. Back to

example, there are two alternatives of shipment; either a relay
point shipment or home delivery shipment, as
The decision of which alternative to ch

ntime depending on customer’s selection in
addition to other environmental conditions such as the
existence of a relay point service in customer’s city,

connections between
The selection of the appropriate connection is done

. Example of service variability in sales scenario

that explains in plain text the main
functionalities of the service, its inputs and expected outputs.

has a Boolean value to indicate whether the
4 shows the structural

of the architecture related to our illustrative

supply_chain_management_service" ...

is_atomic="Y">

<interface name="i_order" role="provides">

<operation name="submit_order_request" ...

</operation>

role="consumes">

is_atomic="Y">

is_atomic="Y">

... is_atomic="Y">

<service name="home_delivery_shipping_service" ...

description

configuration_description

of sales scenario

refers to the ability of
making changes to system’s architecture. We

binding an alternative service that satisfies
. Back to

example, there are two alternatives of shipment; either a relay
, as shown

The decision of which alternative to cho
ntime depending on customer’s selection in

addition to other environmental conditions such as the
existence of a relay point service in customer’s city,

connections between
The selection of the appropriate connection is done

. Example of service variability in sales scenario

that explains in plain text the main
functionalities of the service, its inputs and expected outputs.

has a Boolean value to indicate whether the
4 shows the structural

of the architecture related to our illustrative

... is_atomic="N">

is_atomic="Y">

...> </operation>

</operation>

role="consumes">

is_atomic="Y">

is_atomic="Y">

is_atomic="Y">

... is_atomic="Y">

description>

configuration_description

of sales scenario

refers to the ability of
e distinct

binding an alternative service that satisfies
. Back to

example, there are two alternatives of shipment; either a relay
shown
oose is taken

ntime depending on customer’s selection in
addition to other environmental conditions such as the
existence of a relay point service in customer’s city,

connections between
The selection of the appropriate connection is done

. Example of service variability in sales scenario

that explains in plain text the main
functionalities of the service, its inputs and expected outputs.

has a Boolean value to indicate whether the
4 shows the structural

of the architecture related to our illustrative

is_atomic="N">

is_atomic="Y">

</operation>

</operation>

role="consumes">

is_atomic="Y">

is_atomic="Y">

is_atomic="Y">

>

configuration_description

refers to the ability of
distinct

binding an alternative service that satisfies
. Back to our sales

example, there are two alternatives of shipment; either a relay
shown in Fig

ose is taken
ntime depending on customer’s selection in

addition to other environmental conditions such as the
existence of a relay point service in customer’s city,

connections between
The selection of the appropriate connection is done

. Example of service variability in sales scenario

that explains in plain text the main
functionalities of the service, its inputs and expected outputs.

has a Boolean value to indicate whether the
4 shows the structural

of the architecture related to our illustrative

is_atomic="N">

</operation>

role="consumes">

is_atomic="Y">

is_atomic="Y">

configuration_description>

refers to the ability of
distinct

binding an alternative service that satisfies
our sales

example, there are two alternatives of shipment; either a relay
in Fig

ose is taken
ntime depending on customer’s selection in

addition to other environmental conditions such as the
existence of a relay point service in customer’s city,

connections between
The selection of the appropriate connection is done

that explains in plain text the main
functionalities of the service, its inputs and expected outputs.

has a Boolean value to indicate whether the
4 shows the structural

of the architecture related to our illustrative

is_atomic="N">

</operation>

 ...

is_atomic="Y">

is_atomic="Y">

refers to the ability of
distinct three

binding an alternative service that satisfies
our sales

example, there are two alternatives of shipment; either a relay
in Fig.

ose is taken
ntime depending on customer’s selection in

addition to other environmental conditions such as the
existence of a relay point service in customer’s city, as

connections between
The selection of the appropriate connection is done

that explains in plain text the main
functionalities of the service, its inputs and expected outputs.

has a Boolean value to indicate whether the
4 shows the structural

of the architecture related to our illustrative

is_atomic="N">

</operation>

...

is_atomic="Y">

refers to the ability of
three

binding an alternative service that satisfies
our sales

example, there are two alternatives of shipment; either a relay
 5.

ose is taken
ntime depending on customer’s selection in

addition to other environmental conditions such as the
as

connections between
The selection of the appropriate connection is done

automatically at runtime according to constraints
For example, the customer
retailer service and thus
connectio
connection for a VIP customer which normally has some extra
privileges.
Fig

service or a connection
services by another set of interconnected services
co
composition
one in
warehouse services,
requested

8
exist in the system
specifies the part of the architecture that can be variable.
variation
variation

variation_type

Possibl
connection

whether this variation may occur at
runtime
approaches where variability is clearly and completely
specified at design time
important in SOA systems, where selection of an alternative
during
points
overhead of loading the entire configuration at
v
elements
has a unique name
priority

determine which architectural element is chosen in case there
is more than one valid configuration at a given time.
alternative with the highest

automatically at runtime according to constraints
For example, the customer
retailer service and thus
connectio
connection for a VIP customer which normally has some extra
privileges.
Fig.

3)

This type of variability concerns replacing not only a
service or a connection
services by another set of interconnected services
composite architecture
composition
one in
warehouse services,
requested

 T
8. W
exist in the system
specifies the part of the architecture that can be variable.
variation
variation

variation_type

Possibl
connection

whether this variation may occur at
runtime
approaches where variability is clearly and completely
specified at design time
important in SOA systems, where selection of an alternative
during
points
overhead of loading the entire configuration at
variation point has several
elements
has a unique name
priority

determine which architectural element is chosen in case there
is more than one valid configuration at a given time.
alternative with the highest

automatically at runtime according to constraints
For example, the customer
retailer service and thus
connectio
connection for a VIP customer which normally has some extra
privileges.

 9 is an example of variability of connection.

) Variability of composition

This type of variability concerns replacing not only a
service or a connection
services by another set of interconnected services

mposite architecture
composition
one in
warehouse services,
requested

The meta
We specify

exist in the system
specifies the part of the architecture that can be variable.
variation
variation

variation_type

Possible values of
connection

whether this variation may occur at
runtime
approaches where variability is clearly and completely
specified at design time
important in SOA systems, where selection of an alternative
during
points c
overhead of loading the entire configuration at

ariation point has several
elements
has a unique name
priority

determine which architectural element is chosen in case there
is more than one valid configuration at a given time.
alternative with the highest

Figure 6

Figure 7

automatically at runtime according to constraints
For example, the customer
retailer service and thus
connections; either a connection for a regular customer or a
connection for a VIP customer which normally has some extra
privileges.

is an example of variability of connection.

Variability of composition

This type of variability concerns replacing not only a
service or a connection
services by another set of interconnected services

mposite architecture
composition
one in Fig
warehouse services,
requested items

he meta
e specify

exist in the system
specifies the part of the architecture that can be variable.
variation
variation_name

variation_type

e values of
connection

whether this variation may occur at
runtime) or at
approaches where variability is clearly and completely
specified at design time
important in SOA systems, where selection of an alternative
during runtime

could be s
overhead of loading the entire configuration at

ariation point has several
elements to fill the selected
has a unique name
priority.
determine which architectural element is chosen in case there
is more than one valid configuration at a given time.
alternative with the highest

Figure 6

Figure 7

automatically at runtime according to constraints
For example, the customer
retailer service and thus

ns; either a connection for a regular customer or a
connection for a VIP customer which normally has some extra

 The
is an example of variability of connection.

Variability of composition

This type of variability concerns replacing not only a
service or a connection
services by another set of interconnected services

mposite architecture
composition of

Fig. 1.
warehouse services,

items

he meta-model of variability
e specify

exist in the system
specifies the part of the architecture that can be variable.

 point
_name

variation_type

e values of
connection or
whether this variation may occur at

) or at
approaches where variability is clearly and completely
specified at design time
important in SOA systems, where selection of an alternative

runtime
ould be s

overhead of loading the entire configuration at
ariation point has several

to fill the selected
has a unique name

 This attribute helps the system automatically
determine which architectural element is chosen in case there
is more than one valid configuration at a given time.
alternative with the highest

Figure 6. Example of connection variability in sales scenario

Figure 7. Example of composition variability in sales scenario

automatically at runtime according to constraints
For example, the customer
retailer service and thus

ns; either a connection for a regular customer or a
connection for a VIP customer which normally has some extra

The variation_point
is an example of variability of connection.

Variability of composition

This type of variability concerns replacing not only a
service or a connection
services by another set of interconnected services

mposite architecture
of supply_chain_management_service
. Here

warehouse services,
items and returns

model of variability
e specify in this section

exist in the system
specifies the part of the architecture that can be variable.

point
_name

variation_type
e values of

or composition
whether this variation may occur at

) or at
approaches where variability is clearly and completely
specified at design time
important in SOA systems, where selection of an alternative

runtime is totally poss
ould be s

overhead of loading the entire configuration at
ariation point has several

to fill the selected
has a unique name

This attribute helps the system automatically
determine which architectural element is chosen in case there
is more than one valid configuration at a given time.
alternative with the highest

. Example of connection variability in sales scenario

. Example of composition variability in sales scenario

automatically at runtime according to constraints
For example, the customer
retailer service and thus

ns; either a connection for a regular customer or a
connection for a VIP customer which normally has some extra

variation_point
is an example of variability of connection.

Variability of composition

This type of variability concerns replacing not only a
service or a connection
services by another set of interconnected services

mposite architecture
supply_chain_management_service

ere,
warehouse services,

and returns

model of variability
in this section

exist in the system
specifies the part of the architecture that can be variable.

 has
 indicating
 that specifies the type of this variation.

e values of
composition

whether this variation may occur at
) or at runtime

approaches where variability is clearly and completely
specified at design time
important in SOA systems, where selection of an alternative

is totally poss
ould be specifi

overhead of loading the entire configuration at
ariation point has several

to fill the selected
has a unique name

This attribute helps the system automatically
determine which architectural element is chosen in case there
is more than one valid configuration at a given time.
alternative with the highest

. Example of connection variability in sales scenario

. Example of composition variability in sales scenario

automatically at runtime according to constraints
For example, the customer
retailer service and thus

ns; either a connection for a regular customer or a
connection for a VIP customer which normally has some extra

variation_point
is an example of variability of connection.

Variability of composition

This type of variability concerns replacing not only a
service or a connection, but
services by another set of interconnected services

mposite architecture.
supply_chain_management_service

, in addition to the roles of retailer and
warehouse services, the manufacturer service

and returns

model of variability
in this section

 at architectural level
specifies the part of the architecture that can be variable.

has
indicating

that specifies the type of this variation.
e values of variation_type

composition

whether this variation may occur at
runtime

approaches where variability is clearly and completely
specified at design time
important in SOA systems, where selection of an alternative

is totally poss
pecified at compile

overhead of loading the entire configuration at
ariation point has several

to fill the selected
has a unique name alternative

This attribute helps the system automatically
determine which architectural element is chosen in case there
is more than one valid configuration at a given time.
alternative with the highest

. Example of connection variability in sales scenario

. Example of composition variability in sales scenario

automatically at runtime according to constraints
For example, the customer
retailer service and thus command

ns; either a connection for a regular customer or a
connection for a VIP customer which normally has some extra

variation_point
is an example of variability of connection.

Variability of composition

This type of variability concerns replacing not only a
, but

services by another set of interconnected services
 Fig

supply_chain_management_service

in addition to the roles of retailer and
the manufacturer service

and returns

model of variability
in this section

at architectural level
specifies the part of the architecture that can be variable.

has the following
indicating

that specifies the type of this variation.
variation_type

composition

whether this variation may occur at
runtime

approaches where variability is clearly and completely
specified at design time [
important in SOA systems, where selection of an alternative

is totally poss
ed at compile

overhead of loading the entire configuration at
ariation point has several

to fill the selected
alternative

This attribute helps the system automatically
determine which architectural element is chosen in case there
is more than one valid configuration at a given time.
alternative with the highest

. Example of connection variability in sales scenario

. Example of composition variability in sales scenario

automatically at runtime according to constraints
For example, the customer service

command
ns; either a connection for a regular customer or a

connection for a VIP customer which normally has some extra
variation_point

is an example of variability of connection.

Variability of composition

This type of variability concerns replacing not only a
, but replacing

services by another set of interconnected services
Fig. 7

supply_chain_management_service

in addition to the roles of retailer and
the manufacturer service

and returns them to

model of variability
in this section the different

at architectural level
specifies the part of the architecture that can be variable.

the following
indicating

that specifies the type of this variation.
variation_type

composition.
whether this variation may occur at

. Contrary to traditional SPL
approaches where variability is clearly and completely

[21],
important in SOA systems, where selection of an alternative

is totally poss
ed at compile

overhead of loading the entire configuration at
ariation point has several alternatives

to fill the selected variation poi
alternative

This attribute helps the system automatically
determine which architectural element is chosen in case there
is more than one valid configuration at a given time.
alternative with the highest

. Example of connection variability in sales scenario

. Example of composition variability in sales scenario

automatically at runtime according to constraints
service

command
ns; either a connection for a regular customer or a

connection for a VIP customer which normally has some extra
variation_point "customer_variation_point

is an example of variability of connection.

Variability of composition

This type of variability concerns replacing not only a
replacing

services by another set of interconnected services
7 illustrates another alternative

supply_chain_management_service

in addition to the roles of retailer and
the manufacturer service

them to

model of variability
the different

at architectural level
specifies the part of the architecture that can be variable.

the following
indicating its unique name

that specifies the type of this variation.
variation_type

. (3)
whether this variation may occur at

Contrary to traditional SPL
approaches where variability is clearly and completely

], variation_time
important in SOA systems, where selection of an alternative

is totally possible.
ed at compile

overhead of loading the entire configuration at
alternatives
variation poi

alternative

This attribute helps the system automatically
determine which architectural element is chosen in case there
is more than one valid configuration at a given time.

 priority

. Example of connection variability in sales scenario

. Example of composition variability in sales scenario

automatically at runtime according to constraints
service in Fig

command an order via
ns; either a connection for a regular customer or a

connection for a VIP customer which normally has some extra
customer_variation_point

is an example of variability of connection.

This type of variability concerns replacing not only a
replacing

services by another set of interconnected services
illustrates another alternative

supply_chain_management_service

in addition to the roles of retailer and
the manufacturer service

them to the warehouse service.

model of variability description
the different

at architectural level
specifies the part of the architecture that can be variable.

the following
its unique name

that specifies the type of this variation.
variation_type

) variation_time
whether this variation may occur at compile

Contrary to traditional SPL
approaches where variability is clearly and completely

variation_time

important in SOA systems, where selection of an alternative
ible. However,

ed at compile
overhead of loading the entire configuration at

alternatives
variation poi

alternative_name

This attribute helps the system automatically
determine which architectural element is chosen in case there
is more than one valid configuration at a given time.

priority

. Example of connection variability in sales scenario

. Example of composition variability in sales scenario

automatically at runtime according to constraints
in Fig

an order via
ns; either a connection for a regular customer or a

connection for a VIP customer which normally has some extra
customer_variation_point

is an example of variability of connection.

This type of variability concerns replacing not only a
replacing a set of interconnected

services by another set of interconnected services
illustrates another alternative

supply_chain_management_service

in addition to the roles of retailer and
the manufacturer service

the warehouse service.

description
the different

at architectural level
specifies the part of the architecture that can be variable.

the following
its unique name

that specifies the type of this variation.
variation_type

variation_time

compile

Contrary to traditional SPL
approaches where variability is clearly and completely

variation_time

important in SOA systems, where selection of an alternative
However,

ed at compile-time
overhead of loading the entire configuration at

alternatives
variation poi

_name

This attribute helps the system automatically
determine which architectural element is chosen in case there
is more than one valid configuration at a given time.

priority priority

. Example of connection variability in sales scenario

. Example of composition variability in sales scenario

automatically at runtime according to constraints
in Fig.

an order via
ns; either a connection for a regular customer or a

connection for a VIP customer which normally has some extra
customer_variation_point

is an example of variability of connection.

This type of variability concerns replacing not only a
a set of interconnected

services by another set of interconnected services
illustrates another alternative

supply_chain_management_service

in addition to the roles of retailer and
the manufacturer service

the warehouse service.

description
the different variation points

at architectural level. A
specifies the part of the architecture that can be variable.

the following
its unique name

that specifies the type of this variation.
 are either

variation_time

compile

Contrary to traditional SPL
approaches where variability is clearly and completely

variation_time

important in SOA systems, where selection of an alternative
However,

time. This reduces the
overhead of loading the entire configuration at

alternatives, which are
variation point. Each alternative

_name and
This attribute helps the system automatically

determine which architectural element is chosen in case there
is more than one valid configuration at a given time.

priority

. Example of connection variability in sales scenario

. Example of composition variability in sales scenario

automatically at runtime according to constraints
 6 can access the

an order via
ns; either a connection for a regular customer or a

connection for a VIP customer which normally has some extra
customer_variation_point

is an example of variability of connection.

This type of variability concerns replacing not only a
a set of interconnected

services by another set of interconnected services
illustrates another alternative

supply_chain_management_service

in addition to the roles of retailer and
the manufacturer service

the warehouse service.

description is
variation points

A variation point
specifies the part of the architecture that can be variable.

 attributes:
its unique name

that specifies the type of this variation.
are either

variation_time

compile-time

Contrary to traditional SPL
approaches where variability is clearly and completely

variation_time

important in SOA systems, where selection of an alternative
However, some

. This reduces the
overhead of loading the entire configuration at

which are
nt. Each alternative

and
This attribute helps the system automatically

determine which architectural element is chosen in case there
is more than one valid configuration at a given time.

priority

. Example of connection variability in sales scenario

. Example of composition variability in sales scenario

automatically at runtime according to constraints’ satisfaction.
can access the

an order via two
ns; either a connection for a regular customer or a

connection for a VIP customer which normally has some extra
customer_variation_point

is an example of variability of connection.

This type of variability concerns replacing not only a
a set of interconnected

services by another set of interconnected services
illustrates another alternative

supply_chain_management_service

in addition to the roles of retailer and
the manufacturer service

the warehouse service.

is given
variation points

variation point
specifies the part of the architecture that can be variable.

attributes:
its unique name

that specifies the type of this variation.
are either

variation_time

time
Contrary to traditional SPL

approaches where variability is clearly and completely
variation_time

important in SOA systems, where selection of an alternative
some

. This reduces the
overhead of loading the entire configuration at runtime

which are
nt. Each alternative

and an order of
This attribute helps the system automatically

determine which architectural element is chosen in case there
is more than one valid configuration at a given time.

priority=

. Example of connection variability in sales scenario

. Example of composition variability in sales scenario

satisfaction.
can access the

two different
ns; either a connection for a regular customer or a

connection for a VIP customer which normally has some extra
customer_variation_point

This type of variability concerns replacing not only a
a set of interconnected

services by another set of interconnected services within a
illustrates another alternative

supply_chain_management_service than the
in addition to the roles of retailer and

the manufacturer service
the warehouse service.

given
variation points

variation point
specifies the part of the architecture that can be variable.

attributes:
its unique name

that specifies the type of this variation.
are either service

variation_time specifies
 (i.e. before

Contrary to traditional SPL
approaches where variability is clearly and completely

 attribute is
important in SOA systems, where selection of an alternative

some variation
. This reduces the

runtime
which are
nt. Each alternative

an order of
This attribute helps the system automatically

determine which architectural element is chosen in case there
is more than one valid configuration at a given time.

=“1”

. Example of connection variability in sales scenario

. Example of composition variability in sales scenario

satisfaction.
can access the

different
ns; either a connection for a regular customer or a

connection for a VIP customer which normally has some extra
customer_variation_point

This type of variability concerns replacing not only a
a set of interconnected

within a
illustrates another alternative

than the
in addition to the roles of retailer and

the manufacturer service realizes
the warehouse service.

given in Fig
variation points

variation point
specifies the part of the architecture that can be variable. Each

attributes:
its unique name, (2)

that specifies the type of this variation.
service

specifies
(i.e. before

Contrary to traditional SPL
approaches where variability is clearly and completely

attribute is
important in SOA systems, where selection of an alternative

variation
. This reduces the

runtime. Each
which are possible
nt. Each alternative

an order of
This attribute helps the system automatically

determine which architectural element is chosen in case there
is more than one valid configuration at a given time.

“1” is the

. Example of connection variability in sales scenario

. Example of composition variability in sales scenario

satisfaction.
can access the

different
ns; either a connection for a regular customer or a

connection for a VIP customer which normally has some extra
customer_variation_point" in

This type of variability concerns replacing not only a
a set of interconnected

within a
illustrates another alternative

than the
in addition to the roles of retailer and

realizes
the warehouse service.

in Fig
variation points that

variation point
Each

attributes: (1)
, (2)

that specifies the type of this variation.
service

specifies
(i.e. before

Contrary to traditional SPL
approaches where variability is clearly and completely

attribute is
important in SOA systems, where selection of an alternative

variation
. This reduces the

Each
possible

nt. Each alternative
an order of

This attribute helps the system automatically
determine which architectural element is chosen in case there

 The
is the

satisfaction.
can access the

different
ns; either a connection for a regular customer or a

connection for a VIP customer which normally has some extra
in

This type of variability concerns replacing not only a
a set of interconnected

within a
illustrates another alternative

than the
in addition to the roles of retailer and

realizes

in Fig.
that

variation point
Each

(1)
, (2)

that specifies the type of this variation.
service,
specifies

(i.e. before
Contrary to traditional SPL

approaches where variability is clearly and completely
attribute is

important in SOA systems, where selection of an alternative
variation

. This reduces the
Each

possible
nt. Each alternative

an order of
This attribute helps the system automatically

determine which architectural element is chosen in case there
The

is the

preferred one in a variation point.
constraints
operate properly.
conditions
selected alternative (i.e. alternative can be selected, only if all
constraints of pre
represents desirable outcomes when process is completed
successfully.
crosscutting “
F
condition that states that in order to choose the alternative
“
“
Fig. 9)
constraint
“
condition=

constraint in FM.

variation_type="service" variation_time="runtime">

reference_element="

reference_element="relay_point_shipping_service" priority="2">

element="relaying_point_service_in_city" condition="available"/>

calculculate_total_amount" condi

variation_type="connection" variation_time="runtime">

reference_element="i_customer_order" priority="1">

reference_element="i_VIP_customer_order" priority="2">

preferred one in a variation point.
constraints
operate properly.
conditions
selected alternative (i.e. alternative can be selected, only if all
constraints of pre
represents desirable outcomes when process is completed
successfully.
crosscutting “
Feature
condition that states that in order to choose the alternative
“relay_point_delivery_alternative
“relaying_point_service_in_city
Fig. 9)
constraint
“relaying_point_in_city
condition=

constraint in FM.

 <variability_

 <variation_point name="shipping_variation_point"

variation_type="service" variation_time="runtime">

reference_element="

reference_element="relay_point_shipping_service" priority="2">

element="relaying_point_service_in_city" condition="available"/>

calculculate_total_amount" condi

 </variation_point>

 <variation_point name="customer_variation_point"

variation_type="connection" variation_time="runtime">

reference_element="i_customer_order" priority="1">

reference_element="i_VIP_customer_order" priority="2">

 </alternative>

 </variation_point>

 </variability_

preferred one in a variation point.
constraints
operate properly.
conditions
selected alternative (i.e. alternative can be selected, only if all
constraints of pre
represents desirable outcomes when process is completed
successfully.
crosscutting “

eature
condition that states that in order to choose the alternative
relay_point_delivery_alternative

relaying_point_service_in_city

Fig. 9), this statement is equivalent
constraint
relaying_point_in_city

condition=

constraint in FM.

<variability_

<variation_point name="shipping_variation_point"

variation_type="service" variation_time="runtime">

<alternatives>

 <alternative name="home_delivery_alternative"

reference_element="

 <contraints>

 </alternative>

 <alternative name="relay_point_delivery_alternative"

reference_element="relay_point_shipping_service" priority="2">

 <contraints>

element="relaying_point_service_in_city" condition="available"/>

calculculate_total_amount" condi

 </contraints>

 </alternative>

</alternatives>

</variation_point>

<variation_point name="customer_variation_point"

variation_type="connection" variation_time="runtime">

<alternatives>

 <alternative name="regular_customer_alternative"

reference_element="i_customer_order" priority="1">

 <alternative name="VIP_customer_alternative"

reference_element="i_VIP_customer_order" priority="2">

</alternative>

</alternativ

</variation_point>

</variability_

preferred one in a variation point.
constraints
operate properly.
conditions
selected alternative (i.e. alternative can be selected, only if all
constraints of pre
represents desirable outcomes when process is completed
successfully.
crosscutting “

eature M
condition that states that in order to choose the alternative
relay_point_delivery_alternative

relaying_point_service_in_city

, this statement is equivalent
constraint
relaying_point_in_city

condition=

constraint in FM.

<variability_

<variation_point name="shipping_variation_point"

variation_type="service" variation_time="runtime">

<alternatives>

<alternative name="home_delivery_alternative"

reference_element="

<contraints>

</alternative>

<alternative name="relay_point_delivery_alternative"

reference_element="relay_point_shipping_service" priority="2">

<contraints>

 <pre

 <pre

element="relaying_point_service_in_city" condition="available"/>

 </pre

 <post

 <post

calculculate_total_amount" condi

 </post

</contraints>

</alternative>

</alternatives>

</variation_point>

<variation_point name="customer_variation_point"

variation_type="connection" variation_time="runtime">

<alternatives>

alternative name="regular_customer_alternative"

reference_element="i_customer_order" priority="1">

<alternative name="VIP_customer_alternative"

reference_element="i_VIP_customer_order" priority="2">

</alternative>

</alternativ

</variation_point>

</variability_

Figure 8

preferred one in a variation point.
constraints, in forms of
operate properly.
conditions that
selected alternative (i.e. alternative can be selected, only if all
constraints of pre
represents desirable outcomes when process is completed
successfully.
crosscutting “

Model
condition that states that in order to choose the alternative
relay_point_delivery_alternative

relaying_point_service_in_city

, this statement is equivalent
 from “

relaying_point_in_city

condition=”unavailable

constraint in FM.

<variability_description

<variation_point name="shipping_variation_point"

variation_type="service" variation_time="runtime">

<alternatives>

<alternative name="home_delivery_alternative"

reference_element="

<contraints>

</alternative>

<alternative name="relay_point_delivery_alternative"

reference_element="relay_point_shipping_service" priority="2">

<contraints>

<pre-condit

<pre-

element="relaying_point_service_in_city" condition="available"/>

</pre-conditions>

<post-condidtions>

<post

calculculate_total_amount" condi

</post-

</contraints>

</alternative>

</alternatives>

</variation_point>

<variation_point name="customer_variation_point"

variation_type="connection" variation_time="runtime">

<alternatives>

alternative name="regular_customer_alternative"

reference_element="i_customer_order" priority="1">

<alternative name="VIP_customer_alternative"

reference_element="i_VIP_customer_order" priority="2">

</alternative>

</alternativ

</variation_point>

</variability_description

Figure

Figure 8

preferred one in a variation point.
, in forms of

operate properly.
that

selected alternative (i.e. alternative can be selected, only if all
constraints of pre
represents desirable outcomes when process is completed

 Pre and P
crosscutting “requires

odel FM
condition that states that in order to choose the alternative
relay_point_delivery_alternative

relaying_point_service_in_city

, this statement is equivalent
from “

relaying_point_in_city

unavailable

constraint in FM.

description

<variation_point name="shipping_variation_point"

variation_type="service" variation_time="runtime">

<alternatives>

<alternative name="home_delivery_alternative"

reference_element="home_delivery_shipping_service" priority="1">

<contraints>

</alternative>

<alternative name="relay_point_delivery_alternative"

reference_element="relay_point_shipping_service" priority="2">

<contraints>

condit

-condition element_type="service"

element="relaying_point_service_in_city" condition="available"/>

conditions>

condidtions>

<post-condition element_type="method" element="re

calculculate_total_amount" condi

-condidtions>

</contraints>

</alternative>

</alternatives>

</variation_point>

<variation_point name="customer_variation_point"

variation_type="connection" variation_time="runtime">

<alternatives>

alternative name="regular_customer_alternative"

reference_element="i_customer_order" priority="1">

<alternative name="VIP_customer_alternative"

reference_element="i_VIP_customer_order" priority="2">

</alternatives>

</variation_point>

description

Figure

Figure 8. Variability description meta

preferred one in a variation point.
, in forms of

operate properly.
that should be satisfied before executi

selected alternative (i.e. alternative can be selected, only if all
constraints of pre-conditions are satisfied)
represents desirable outcomes when process is completed

Pre and P
requires

FM
condition that states that in order to choose the alternative
relay_point_delivery_alternative

relaying_point_service_in_city

, this statement is equivalent
from “

relaying_point_in_city

unavailable

description

<variation_point name="shipping_variation_point"

variation_type="service" variation_time="runtime">

<alternative name="home_delivery_alternative"

home_delivery_shipping_service" priority="1">

<contraints> ...

</alternative>

<alternative name="relay_point_delivery_alternative"

reference_element="relay_point_shipping_service" priority="2">

<contraints>

conditions>

condition element_type="service"

element="relaying_point_service_in_city" condition="available"/>

conditions>

condidtions>

condition element_type="method" element="re

calculculate_total_amount" condi

condidtions>

</contraints>

</alternative>

</alternatives>

</variation_point>

<variation_point name="customer_variation_point"

variation_type="connection" variation_time="runtime">

alternative name="regular_customer_alternative"

reference_element="i_customer_order" priority="1">

<alternative name="VIP_customer_alternative"

reference_element="i_VIP_customer_order" priority="2">

es>

</variation_point> ...

description

Figure 9. Variability description of sales scenario

Variability description meta

preferred one in a variation point.
, in forms of

 Pre
should be satisfied before executi

selected alternative (i.e. alternative can be selected, only if all
conditions are satisfied)

represents desirable outcomes when process is completed
Pre and P
requires”,

in SPL paradigm
condition that states that in order to choose the alternative
relay_point_delivery_alternative

relaying_point_service_in_city

, this statement is equivalent
from “relay_point

relaying_point_in_city

unavailable

description>

<variation_point name="shipping_variation_point"

variation_type="service" variation_time="runtime">

<alternative name="home_delivery_alternative"

home_delivery_shipping_service" priority="1">

... </contraints>

<alternative name="relay_point_delivery_alternative"

reference_element="relay_point_shipping_service" priority="2">

ions>

condition element_type="service"

element="relaying_point_service_in_city" condition="available"/>

conditions>

condidtions>

condition element_type="method" element="re

calculculate_total_amount" condi

condidtions>

<variation_point name="customer_variation_point"

variation_type="connection" variation_time="runtime">

alternative name="regular_customer_alternative"

reference_element="i_customer_order" priority="1">

<alternative name="VIP_customer_alternative"

reference_element="i_VIP_customer_order" priority="2">

...

description>

Variability description of sales scenario

Variability description meta

preferred one in a variation point.
, in forms of pre

Pre-conditions specify
should be satisfied before executi

selected alternative (i.e. alternative can be selected, only if all
conditions are satisfied)

represents desirable outcomes when process is completed
Pre and Post

, “excludes
in SPL paradigm

condition that states that in order to choose the alternative
relay_point_delivery_alternative

relaying_point_service_in_city

, this statement is equivalent
relay_point

relaying_point_in_city

unavailable”

<variation_point name="shipping_variation_point"

variation_type="service" variation_time="runtime">

<alternative name="home_delivery_alternative"

home_delivery_shipping_service" priority="1">

</contraints>

<alternative name="relay_point_delivery_alternative"

reference_element="relay_point_shipping_service" priority="2">

condition element_type="service"

element="relaying_point_service_in_city" condition="available"/>

condidtions>

condition element_type="method" element="re

calculculate_total_amount" condi

condidtions>

<variation_point name="customer_variation_point"

variation_type="connection" variation_time="runtime">

alternative name="regular_customer_alternative"

reference_element="i_customer_order" priority="1">

<alternative name="VIP_customer_alternative"

reference_element="i_VIP_customer_order" priority="2">

>

Variability description of sales scenario

Variability description meta

preferred one in a variation point.
pre-conditions

conditions specify
should be satisfied before executi

selected alternative (i.e. alternative can be selected, only if all
conditions are satisfied)

represents desirable outcomes when process is completed
ost-con

excludes
in SPL paradigm

condition that states that in order to choose the alternative
relay_point_delivery_alternative

relaying_point_service_in_city

, this statement is equivalent
relay_point

relaying_point_in_city”
” is equivalent

<variation_point name="shipping_variation_point"

variation_type="service" variation_time="runtime">

<alternative name="home_delivery_alternative"

home_delivery_shipping_service" priority="1">

</contraints>

<alternative name="relay_point_delivery_alternative"

reference_element="relay_point_shipping_service" priority="2">

condition element_type="service"

element="relaying_point_service_in_city" condition="available"/>

condition element_type="method" element="re

calculculate_total_amount" condition="execute"/>

<variation_point name="customer_variation_point"

variation_type="connection" variation_time="runtime">

alternative name="regular_customer_alternative"

reference_element="i_customer_order" priority="1">

<alternative name="VIP_customer_alternative"

reference_element="i_VIP_customer_order" priority="2">

Variability description of sales scenario

Variability description meta

preferred one in a variation point.
conditions

conditions specify
should be satisfied before executi

selected alternative (i.e. alternative can be selected, only if all
conditions are satisfied)

represents desirable outcomes when process is completed
conditions are the equivalent of

excludes
in SPL paradigm

condition that states that in order to choose the alternative
relay_point_delivery_alternative

relaying_point_service_in_city

, this statement is equivalent
relay_point

 feature.
is equivalent

<variation_point name="shipping_variation_point"

variation_type="service" variation_time="runtime">

<alternative name="home_delivery_alternative"

home_delivery_shipping_service" priority="1">

</contraints>

<alternative name="relay_point_delivery_alternative"

reference_element="relay_point_shipping_service" priority="2">

condition element_type="service"

element="relaying_point_service_in_city" condition="available"/>

condition element_type="method" element="re

tion="execute"/>

<variation_point name="customer_variation_point"

variation_type="connection" variation_time="runtime">

alternative name="regular_customer_alternative"

reference_element="i_customer_order" priority="1">

<alternative name="VIP_customer_alternative"

reference_element="i_VIP_customer_order" priority="2">

Variability description of sales scenario

Variability description meta

preferred one in a variation point. Each
conditions

conditions specify
should be satisfied before executi

selected alternative (i.e. alternative can be selected, only if all
conditions are satisfied)

represents desirable outcomes when process is completed
ditions are the equivalent of

excludes” and “
in SPL paradigm

condition that states that in order to choose the alternative
relay_point_delivery_alternative

relaying_point_service_in_city” should be available
, this statement is equivalent

relay_point_delivery

feature.
is equivalent

<variation_point name="shipping_variation_point"

variation_type="service" variation_time="runtime">

<alternative name="home_delivery_alternative"

home_delivery_shipping_service" priority="1">

<alternative name="relay_point_delivery_alternative"

reference_element="relay_point_shipping_service" priority="2">

condition element_type="service"

element="relaying_point_service_in_city" condition="available"/>

condition element_type="method" element="re

tion="execute"/>

<variation_point name="customer_variation_point"

variation_type="connection" variation_time="runtime">

alternative name="regular_customer_alternative"

reference_element="i_customer_order" priority="1">

<alternative name="VIP_customer_alternative"

reference_element="i_VIP_customer_order" priority="2">

Variability description of sales scenario

Variability description meta

Each alternative has a set of
conditions and

conditions specify
should be satisfied before executi

selected alternative (i.e. alternative can be selected, only if all
conditions are satisfied)

represents desirable outcomes when process is completed
ditions are the equivalent of

and “
in SPL paradigm. For example, the pre

condition that states that in order to choose the alternative
relay_point_delivery_alternative”, the service

” should be available
, this statement is equivalent in

_delivery

feature.
is equivalent

<variation_point name="shipping_variation_point"

variation_type="service" variation_time="runtime">

<alternative name="home_delivery_alternative"

home_delivery_shipping_service" priority="1">

<alternative name="relay_point_delivery_alternative"

reference_element="relay_point_shipping_service" priority="2">

condition element_type="service"

element="relaying_point_service_in_city" condition="available"/>

condition element_type="method" element="re

tion="execute"/>

<variation_point name="customer_variation_point"

variation_type="connection" variation_time="runtime">

alternative name="regular_customer_alternative"

reference_element="i_customer_order" priority="1">

<alternative name="VIP_customer_alternative"

reference_element="i_VIP_customer_order" priority="2">

Variability description of sales scenario

Variability description meta-model of DSOPL

alternative has a set of
and post

conditions specify
should be satisfied before executi

selected alternative (i.e. alternative can be selected, only if all
conditions are satisfied)

represents desirable outcomes when process is completed
ditions are the equivalent of

and “and
For example, the pre

condition that states that in order to choose the alternative
”, the service

” should be available
in FM

_delivery

 On the contrary,
is equivalent

<variation_point name="shipping_variation_point"

variation_type="service" variation_time="runtime">

<alternative name="home_delivery_alternative"

home_delivery_shipping_service" priority="1">

<alternative name="relay_point_delivery_alternative"

reference_element="relay_point_shipping_service" priority="2">

condition element_type="service"

element="relaying_point_service_in_city" condition="available"/>

condition element_type="method" element="re

tion="execute"/>

<variation_point name="customer_variation_point"

variation_type="connection" variation_time="runtime">

alternative name="regular_customer_alternative"

reference_element="i_customer_order" priority="1">

<alternative name="VIP_customer_alternative"

reference_element="i_VIP_customer_order" priority="2">

Variability description of sales scenario

model of DSOPL

alternative has a set of
post

conditions specify
should be satisfied before executi

selected alternative (i.e. alternative can be selected, only if all
conditions are satisfied). Post

represents desirable outcomes when process is completed
ditions are the equivalent of

and”
For example, the pre

condition that states that in order to choose the alternative
”, the service

” should be available
FM to a

_delivery”
On the contrary,

is equivalent to

<variation_point name="shipping_variation_point"

variation_type="service" variation_time="runtime">

<alternative name="home_delivery_alternative"

home_delivery_shipping_service" priority="1">

<alternative name="relay_point_delivery_alternative"

reference_element="relay_point_shipping_service" priority="2">

element="relaying_point_service_in_city" condition="available"/>

condition element_type="method" element="re

<variation_point name="customer_variation_point"

variation_type="connection" variation_time="runtime">

alternative name="regular_customer_alternative"

reference_element="i_customer_order" priority="1"> ...

<alternative name="VIP_customer_alternative"

reference_element="i_VIP_customer_order" priority="2">

Variability description of sales scenario

model of DSOPL

alternative has a set of
post-conditions

conditions specify a
should be satisfied before executi

selected alternative (i.e. alternative can be selected, only if all
. Post

represents desirable outcomes when process is completed
ditions are the equivalent of

” constraints in
For example, the pre

condition that states that in order to choose the alternative
”, the service

” should be available
to a
 feature

On the contrary,
to

home_delivery_shipping_service" priority="1">

<alternative name="relay_point_delivery_alternative"

reference_element="relay_point_shipping_service" priority="2">

element="relaying_point_service_in_city" condition="available"/>

condition element_type="method" element="re

variation_type="connection" variation_time="runtime">

alternative name="regular_customer_alternative"

... </alternative>

reference_element="i_VIP_customer_order" priority="2"> ...

Variability description of sales scenario

model of DSOPL

alternative has a set of
conditions
a group of

should be satisfied before executi
selected alternative (i.e. alternative can be selected, only if all

. Post-condition
represents desirable outcomes when process is completed

ditions are the equivalent of
constraints in

For example, the pre
condition that states that in order to choose the alternative

”, the service
” should be available

to a “requires
feature

On the contrary,
to “exclude

home_delivery_shipping_service" priority="1">

<alternative name="relay_point_delivery_alternative"

reference_element="relay_point_shipping_service" priority="2">

element="relaying_point_service_in_city" condition="available"/>

condition element_type="method" element="re-

</alternative>

...

Variability description of sales scenario

model of DSOPL-ADL

alternative has a set of
conditions

group of
should be satisfied before executing

selected alternative (i.e. alternative can be selected, only if all
condition

represents desirable outcomes when process is completed
ditions are the equivalent of

constraints in
For example, the pre

condition that states that in order to choose the alternative
”, the service

” should be available
requires

feature
On the contrary,

exclude

home_delivery_shipping_service" priority="1">

reference_element="relay_point_shipping_service" priority="2">

element="relaying_point_service_in_city" condition="available"/>

-

</alternative>

ADL

alternative has a set of
conditions, to

group of
ng the

selected alternative (i.e. alternative can be selected, only if all
condition

represents desirable outcomes when process is completed
ditions are the equivalent of

constraints in
For example, the pre

condition that states that in order to choose the alternative
”, the service

” should be available (see
requires

feature to
On the contrary,

excludes

</alternative>

ADL

alternative has a set of
to

group of
the

selected alternative (i.e. alternative can be selected, only if all
condition

represents desirable outcomes when process is completed
ditions are the equivalent of

constraints in
For example, the pre-

condition that states that in order to choose the alternative
”, the service

(see
requires”

to
On the contrary,

s”

</alternative>

E. Context description

 Architecture reconfiguration is based on context changes.
The context consists of any element that influences the
behavior and/or the structure of the architecture. It can be
related either to system’s environment (e.g. escalator state in
the case of crisis management software), evaluated quality of
service (e.g. time to response to a query), hardware
architecture changes (e.g. server failure), etc. Thus, context
element needs to be described in a dynamic ADL. We include
these context elements as part of the architecture description to
allow context-aware configurations (i.e. autonomous run-time
adaptation according to context changes). A context element
could capture raw data from a single information source such
as a GPS locator that locates customer’s current location to
search for a nearby relay point for the shipping service in our
sales example. In this case, context element is considered as a
primitive_context. In some other cases, a single information
source could not be sufficient to take decisions; in that case,
different atomic information sources’ values are collected,
combined and analyzed in order to give sufficient and more
accurate information about the context value. We call this
context as composite_context. We can consider the weather
forecast example, where the weather is considered hot when
both temperature and humidity sensors exceed a certain
threshold.

A simplified meta-model of context is illustrated in Fig.
10. Any context element has a unique name and a
context_type to indicate to which family of contexts it
belongs (e.g. contexts related to environment, user
preferences, etc.). Context element also has values_type that
indicates the type of its values, either primitive types such as
integer, double, etc. or user-defined types. In Fig. 11, we show
two primitive context descriptions from our sales scenario.

 <context_description>

 <context_type name="environment">

 <context is_aggregate="N">

 <name> location </name>

 <values_type> double </values_type>

 </context>

 <context is_aggregate="N">

 <name> shipping </name>

 <values_type> enumeration </values_type>

 <permitted_values>

 <possible_value> home </possible_value>

 <possible_value> relay_point </possible_value>

 </permitted_values>

 </context> ...

 </context_type> ...

 </context_description>

Figure 11. Some context descriptions from sales scenario

F. Configuration description

In traditional architectures, where environment is
considered stable, services are selected and composed at
design time. In contrast, in dynamic environment, parts of the

software can be instantiated or evolved at runtime. Therefore,
we need to maintain, in addition to structural information,
architectural information of the running system. The
configuration section of DSOPL-ADL allows describing all
the configuration rules to generate valid architectures. A valid
architecture is a concrete architecture whose services and
connections comply with configuration rules.

The configuration description section of DSOPL-ADL has
an initialization sub-section, where all static elements
(services and connections) in addition to alternatives, whose
variation_time=”compile_time”, are instantiated. The
connection part has two references to two different service
interfaces, the one that calls the information
consumer_interface and the one that provides the
information provider_interface. The configuration
description also has a dynamic_configuration sub-section
where architectural configurations are triggered based on
runtime context conditions. In other words, a concrete
architecture is selected through two consecutive execution
levels: (1) static bind where core services are selected and
bound then (2) late-binding where remaining services and
variation points are bound.

In initialization sub-section, we first bind static services to
the configuration in addition to their connections. In
dynamic_configuration sub-section, we integrate selected
instances of services by observing context changes that are
specified in the condition part of the configuration rule. Fig.
12 illustrates the architectural configuration meta-model. Any
partial_configuration has a name and an attribute called
priority of type integer, which determines which
configuration to choose in case more than one
partial_configuration satisfies current conditions. At that
time, the one with the higher priority is privileged. Each
partial_configuration is composed of two parts; condition
part and dynamic_action part. In the condition part, we
specify conditions that are driven by context elements. In the
dynamic_action part, we specify all dynamic activities that
will be realized. Every action concerns an architectural
element which can either be a service or a connection.
Action_type defines the type of change that will apply on the
selected element. Its values are limited to bind, unbind,
activate or deactivate concerned elements. Figure 10. Context description meta-model of DSOPL-ADL

Figure 12. Configuration description meta-model of DSOPL-ADL

In our illustrative example, customer and supply chain
management services are instantiated at design time, as
depicted in Fig. 13, whereas the relay point shipping service or
home delivery shipping service are instantiated dynamically
depending on environment’s conditions.

<configuration_description>

 <initialization>

 <services>

 <deployable_service_instance

service_instance_name="customer_service_instance" ...>

 </deployable_service_instance>

 <deployable_service_instance

service_instance_name="supply_chain_management_service_instance" ...>

 </deployable_service_instance> <!-- when a composite service is

connected, all its composing atomic services are consequently

connected -->

 </services>

 <connections>

 <connection consumer_interface="i_goods_request"

provider_interface="i_goods_response">

 </connection>

 ...

 </connections>

 </initialization>

 <dynamic_configuration>

 ...

 <partial_configuration name="home_delivery_configuration"

priority="2">

 <condition>

 <context_element name="shipping"/>

 <expression operator="equals"> home </expression>

 </condition>

 <dynamic_actions>

 <architecture_element element_type="service"

name="home_delivery_shipping_service_instance" action_type="bind"/>

 <architecture_element element_type="connection"

consumer_interface="i_home_delivery"

provider_interface="i_shipment_ready_delegation"

action_type="activate"/>

 </dynamic_actions>

 </partial_configuration>

 ...

 </dynamic_configuration>

 </configuration_description>

 Figure 13. Configuration description of sales scenario

IV. CONCLUSION AND PERSPECTIVES

We have presented DSOPL-ADL, an architectural
language that allows the runtime variability of a service based
product lines system to be modeled. To manage the runtime
variability of such service based systems at architectural level,
we have proposed a modular language called DSOPL-ADL
which is structured and composed of four sections; structural,
variability, context and configuration. For each part, its meta-
model was presented and discussed in detail through an
illustrative example.

It is worth noting that we have perceived variability in this
work from a spatial perspective and not temporal, that is why
we have only considered describing variation points and
alternatives and have intentionally eliminated versioning
aspect. Another point is that during late binding, we do not use
any real-time configuration verification mechanisms.
However, we assume that pre-conditions and post-conditions
assure a valid configuration.

We are working on generating BPEL process from DSOPL
architecture. As a future work; we intend to build a modeling
tool for DSOPL-ADL and to conduct more experiments in
order to completely evaluate our approach.

REFERENCES

[1] P. Clements, D. Garlan, F. Bachmann, J. Ivers, J. Stafford, L. Bass, P.

Merson. Documenting software architectures: views and beyond, 2nd

edition. Addison-Wesley Professional, 2010.

[2] B. Mohabbati, B. Asadi, D. Gašević, J. Lee. Software Product Line

Engineering to Develop Variant-Rich Web Services. In Web Services

Foundations, pp. 535-562. Springer New York, 2014.

[3] P. Clements, L. Northrop. Software product lines: Practices and Patterns.

Addison-Wesley, 2001.

[4] M. Galster, P. Avgeriou, D. Weyns, T. Männistö. Variability in software

architecture: current practice and challenges. SIGSOFT Softw. Eng.

Notes, vol. 36, no. 5, pp. 30-32, September 2011.

[5] M. P. Papazoglou, W.-J. Heuvel. Service oriented architectures:

approaches, technologies and research issues. The VLDB Journal, vol.

16, no. 3, pp. 389–415, 2007.

[6] N. Medvidovic. ADLs and dynamic architecture changes. In Joint

proceedings of ISAW-2 & Viewpoints '96 on SIGSOFT '96.

[7] J. Lee, G. Kotonya, D. Robinson. Engineering Service-Based Dynamic

Software Product Lines. Computer, vol.45, no.10, pp. 49-55, Oct, 2012.

[8] N. Medvidovic, R.N. Taylor. A classification and comparison

framework for software architecture description languages. IEEE

Transactions on Software Engineering, vol.26, no.1, pp.70-93, Jan 2000.

[9] N. Medvidovic, P. Oreizy, J. E. Robbins, R.N. Taylor. Using object-

oriented typing to support architectural design in the C2 style.

In Proceedings of SIGSOFT '96, pp. 24-32, 1996.

[10] J. Magee, N. Dulay, S. Eisenbach, J. Kramer. Specifying Distributed

Software Architectures. In Proceedings of the 5th European Software

Engineering Conference, pp. 137-153, 1995.

[11] F. Oquendo. π-ADL: An architecture description language based on the

higher-order typed π-calculus for specifying dynamic and mobile

software architectures. ACM SIGSOFT, pp. 1-14, 2004.

[12] D.C. Luckham, J.J. Kenney, L.M. Augustin, J. Vera, D. Bryan, W.

Mann. Specification and Analysis of System Architecture Using Rapide.

IEEE Trans. Software Eng., vol. 21, no. 4, pp. 336-355, Apr. 1995.

[13] A. Joolia, T. Batista, G. Coulson, A.T.A. Gomes. Mapping ADL

Specifications to an Efficient and Reconfigurable Runtime Component

Platform. WICSA’05, pp.131-140, 2005.

[14] R. Allen, R. Douence, D. Garlan. Specifying dynamism in software

architectures. In Proceedings of the Workshop on Foundations of

Component-Based Systems, Zurich, Switzerland, pp. 11–22. 1997.

[15] C. Cetina, P. Trinidad, V. Pelechano, A. Ruiz-Corts. An Architectural

Discussion on DSPL. 2nd International Workshop on Dynamic Software

Product Lines (DSPL08). Limerick, Ireland, 2008.

[16] E.Y. Nakagawa. Reference architectures and variability: current status

and future perspectives. In Proceedings of the WICSA/ECSA, 2012.

[17] E.M. Dashofy, A. van der Hoek, R.N. Taylor. An Infrastructure for the

Rapid Development of XML-based Architecture Description Languages.

In ICSE2002, Orlando, Florida, 2002.

[18] R. van Ommering, F. van der Linden, J. Kramer, J. Magee. The Koala

Component Model for Consumer Electronics Software. Computer 33, 3,

pp. 78-85, March 2000.

[19] F. Oquendo. π-ADL for WS-Composition: A Service-Oriented

Architecture Description Language for the Formal Development of

Dynamic Web Service Compositions. In: SBCARS, pp. 52–66, 2008.

[20] X. Jia, S. Ying, H. Cao, D. Xie. A New Architecture Description

Language for Service-Oriented Architecture. In Sixth International Conf.

on Grid and Cooperative Computing GCC, pp. 96-103, 2007.

[21] M. Galster. Describing variability in service-oriented software product

lines. In Proceedings of the ECSA’10, pp. 344–350, 2010.

[22] R. Capilla, et al. An overview of Dynamic Software Product Line

architectures and techniques: Observations from research and industry.

Journal of Systems and Software, vol. 91, pp. 3-23, May 2014.

