\

Promels
Iago Bonnici, Abdelkader Gouaich

» To cite this version:

Tago Bonnici, Abdelkader Gouaich. Promels: formalize spontaneous emergence of arbitrary relations
among objects. [Research Report] LIRMM. 2016. lirmm-01294560

HAL Id: lirmm-01294560
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01294560
Submitted on 29 Mar 2016

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Copyright

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01294560
https://hal.archives-ouvertes.fr

January 22, 2016 LIRMM M. Tago BONNICI
Montpellier research report Dr. Abdelkader GOUAICH

In this research report, we are designing a mathematical object we call a matching key or
“shape”, which can basically do two things:

* A key can be matched against another key to produce a deterministic match value.

* A key can mutate into another close, random key.

Each vertex of a simple, complete, weighted graph will be associated with one of these. We

will then expect two things from the keys:

 Static: any graph (set of edges weights values) should be describable by the keys when

you match them together. That is, if you know the keys, you know the graph.

* Dynamic: when you successively mutate the keys, the resulting random graph process

will take all the possible graph configurations.

If we consider that the graph contains s € N vertices, we can easily write down the first
point’s challenge: being essentially able to describe @ edges’ weights with only s symbols.

Each key will thus have to contain much information.

This document first formalizes all the requirements we would like our keys objects to meet.
There are three things we need to design, our unknowns:

* What are the keys? Which kind of mathematical objects? (k € K)

* How do we match two keys together? Which operation is that? (x)

* How do we mutate one key into another? Which operation is that? (u € M, % (M))

The requirements will depend on what we call the weigth or descriptor of an edge. (d € D).

This descriptor d translates the affinity relation defined in M.

In the second part, we describe a candidate object for the case D = [—1, 1].

Contents

Scope Statement

1

Promels

4

Statics e e 4
1.1 Aim objects: edges weightsinagraph 4
1.2 Keysandmatch 5
1.3 Graphdescription L L 5
1.4 Richnessof thekeys 6
Dynamics e e 7
2.1 Mutating keys 7
2.2 Mutating states e e 7
23 Small mutations Lo 7
2.4 Connexity via mutations e 8
2.5 Random motion via mutations 8
Toconclude 9
Lostontheway:. e 9
4.1 Keydivergence 9
10

Defining K, thekey 10
Defining x, the match operation 11
6.1 Localmatch. 11
6.2 Score . ..o 13
6.3 Globalmatch 13
Defining M, the mutation operation 14
Defining % (M), the mutations distribution 15
Designing keys fora specificgraph 16

9.1
9.2
9.3
9.4
9.5

Slicingdownkeys 16
Joining keys together L 16
Scoring joined keys L oL 17
Findingnullkeys 17
Buildingtheset 18

Scope Statement

1 Statics

1.1 Aim objects: edges weights in a graph

The ultimate role of the keys is to describe relations between objects, which can be represented
as edges in a graph.

Let s € N be the number of vertices in this this graph.

Let D be the set of all possible descriptors for one edge in the graph.

A “graph” can be equally seen as a matrix containing each edge decriptor:
graph:g € G = #; (D) (1)

Note that for a simple graph, this matrix is symmetric and its diagonal elements need not be

defined:

Vgegq, Vie(l, s], g;undefined
/ (2)
Vizgjell,s], gij=2gji

Many other kinds of graphs will also be describable by those keys. For example, one could
relax the above hypotheses and consider a complete, bipartite graph (any non-squared .Z (7))
for which we would produce all edges’ descriptors by matching each key in the top compart-
ment to each key in the bottom one. Any complex network of relations can be viewed as a
bipartite graph [2], and bipartite graphs can also describe any hypergraph when interpreted as
Levi graphs [3]. In this document, for the sake of simplicity, we assume that we can only work
on complete, simple graphs without loss of generality.

The requirements listed hereafter will depend on the nature of D. We assume that D can

either be:
¢ a non-metric, discrete set
¢ a metric, discrete set
* a metric, continous set
* anon-metric, continous set (even though we haven’t investigated much this way)

(s and D are given as input data to the design problem.)

1.2 Keys and match

Keys (k € K) are objects meant to be matched together in pairs. There must be an operation
called match allowing two keys to match together, producing a result which will be interpreted

as an edge’s descriptor:

KxK—D
match : 3)

(kl, kz) — k1 *kz

1.3 Graph description

If we associate each vertex i € [1, s| with a key k; € K, we can get a result in G by matching
each of them with every other key. This transformation of one set of keys into one graph is
simply defined as:

E=K'—G

T:)
er—>g/Vi7£j€ [[1, S]], giyj:gjyi:e,-*ej:ki*kj

We call e € E a “set of keys” a “state of the system”. In a nutshell, a set of keys defines a
layout of relations between the objects.

Note that, since g is symmetric just like the relation between the objects, the match operation

is also symmetric and k; xk; = k;xk;.

Case with D metric

If D is metric and dist : D?* — R7 is the metric over D, then we can also define a metric over G
based on dist, let:

Dist: G — Rt (5)

be any metric over G based on dist.

We then define a metric over E using Dist:
V (e,e') € E?, Dist(e, ') = Dist(T (e), T(e')) (6)

In a nutshell, two states of the system are close together if they produce close graphs.

(Dist is then given as input data to the problem)

1.4 Richness of the keys

We need the keys to be able to accurately describe any layout of relations between the objects.

This requirement writes down differently depending on the nature of D:

Case with D discrete, metric or non-metric
T surjective (7)

(any graph can be obtained by matching a particular set of keys)

Case with D continuous and metric
VgeG,VecR™, JecE /Dist(T(e), g) < ¢ (8)

(any graph can be approached to an arbitrary precision by matching particular set of keys)

Case with D continuous and non-metric

To be filled if ever needed..

2 Dynamics

2.1 Mutating keys

We need K to exhibit a set of internal transformations called mutations u € M:

K—K
mutation : [l : 9
k— (k)

As a requirement, there should exist a null mutation:

JupeM /VkeK, uy(k) =k (10)

2.2 Mutating states

We can mutate one state of the system into another by simply mutating each key in the system.

This operation is defined with the same symbol u as:

E—E
U (11)
e—p(e) /Viel,s], (u(e):=ule)

2.3 Small mutations

This requirement only holds if D metric: there should exist small mutations.

Case with D continuous and metric

The mutation should potentially be arbitrarily small:
Vki, ko €K, YecR™, JueM/distlkyxky, ulki)xky) <& (12)

Case with D discrete and metric

Then there exists an atomic distance between two elements of D:

JaeRY /3(d, d)eD?/dist(d, d)=a .
& H(d, d')eD? /dist(d, d') < a

So we wish there exists an atomic mutation:

Vki,keK,u GM/diSt(kl*kz, ,Lt(kl)*kz) =a (14)

2.4 Connexity via mutations

Random graph processes are often expected to display some specific properties, at any time
(evolving under constraints) [4] or at infinity (converging to a specific form) [5]. In contrast, we
wish our random graph process resulting from successively mutating e € E to be able to reach
every possible state without particular constraint, so that mutations can take you anywhere.
Put it another way, we should be able to reach any layout of relations by successively mu-

tating the state of any system. This requirement writes as:

Case with D discrete, metric or non-metric

Y (g1, g2) € G2, (e1, e2) EE* | T(e1) = g1, T(e2) = g,

(15)
ElI/LEN, ,LLEM"/(unoun_lo---oul)(el)zez
Case with D continuous and metric
VY (g1, 82) € G%, (e1, e2) €E* | T(e1) = g1, T(e2) = g2, a6

VeceR™, 3neN, ueM" /Dist((tpoty—10---0op)(er), e2) <€

Case with D continuous and non-metric

To be filled if ever needed..

2.5 Random motion via mutations

There should exist a random distribution over M, % (M) such that those two, yet informal,

requirements are met:

* The probability of randomly getting a small mutation (see 2.3) can be arbitrarily higher

than the probability of getting a bigger mutation.

* The probability of never finding a path between two graphs (see 2.4) by successively

drawing a serie of mutations is zero.

3 To conclude

We need to design those four objects: (K, x, M, % (M)), so that all the above points gathered

as requirements are fulfilled.

4 Lost on the way:

4.1 Key divergence

This last requirement has to see with the biotic interpretation of D, and so it is difficult to place
it in the above. It involves a continuous, metric D = [—1, 1] exhibiting an internal order and a
particular value of d = 0 € D which is interpreted as a “null match” (no interaction): the closer
a match is from O, the “weaker” the match is.

The idea is that two keys heavily, independently mutated for a while by p < % (M) should

have a weak match in expectancy:

Let ko €K, ng, np €N, g — % M)", W, — % (M)",
ka:(ﬂanao'“oﬂal)(kO)a

kp = (Ubp, © -+~ 0 sy) (ko),

X :ka*kb,
(17)
Then, as n,,np, — oo,
EX)=0
P(X>0)=P(X<0),

Vi, xp €[0,1], x1>x=[|X]](x1) <[IX]](x2)

where [X] is the density function of the real, random variable X.

Promels

Let us describe here the candidate we’ve built for D = [—1, 1] which is metric, continuous, and
gifted with an internal order and a “null match” value O € D (see Scope Statement, section 4.1).
We trust it does fulfill all the above requirements even though we haven’t proved it yet.

Since a continuous, metric D contains enough information to describe any other discrete
set, we think it’ll be easy to use the same candidate for other types of edges descriptors just by
discretizing D. Put it another way, we think we can work with this particular D without loss of

generality.

The idea is to define the key as a continuous function in R, and the match operation as
an operation comparing the shapes of such functions together. This idea had already been
explored by Edelstein and Rosen in 1978, then modelling enzymes-substrate interaction and
their molecular forms [1]. The main difference with our candidate is that the duality enzyme-
substrate led them to consider two different types of functions, one of which defined the pattern
for reading the other one. Here we define a single object that can be matched against other
objects of the same type, and the reading pattern just emerges from the two objects shapes. The
common idea is to make use of the rich information contained in any real function. Here, it is

to deal with the problem of essentially representing @ edges with only s symbols.

S Defining K, the key

We state that this specific key is a €, periodic, angular function over R. Its period is

any T € R** and its results are interpreted as angles:

R~[0,T[—> R~ [0,27]
€ DODK>k: (18)
t— k(1)

10

2w

NE
T

[N

0

0 T

Figure 1: Flat projetion of a key (black) and its mutation kernel (green). The grey line is the
kernel zero. The grey area is a flattened torus

Since numbers are interpreted as angles, the neighbourhood of 0 is the the neighbourhood
of 2. We also state that the neighbourhood of 0 is the neighbourhood of T on the base axis.

The key can thus be seen as a continous curve on a torus (Figure 1).

6 Defining x, the match operation

6.1 Local match

For any ¢ € [0,T], ki1, k2 € K, we define the “local match” between k| and k; by:

[07 T[— [_17 1]
Im: (19)
t > Im(t) = cos (kz(t) K (t))

The local match will therefore be positive if the direction of the two keys are locally aligned,
negative if they locally point to opposite directions.

Note that k() — k;(¢) is meant to represent the shortest distance between the two angles,

taking into account the fact that O is neighbourg of 27z. In this way, we have 37” -2= %i but

L T = 2% To be neat: “b—a” =min(|b—al, |27 — (b —a)|) since a and b are read on the

[0,27] circle.

11

negatively matching
area

i

positively matching
area

—0.5F
-1.0
1 score 1 / 0.06
| ||]—0.83
_p-l p-! g
/ :
1 match |

shade function

Figure 2: Representation of the matching operation. The colored area above represents the local
match along two keys (blue as it approaches —1, red as it approaches 1). On the second plot,
one can read the same local match Im (light line), its derivative Im’ (green line) and the resulting
local score wg o lm’ (strong line) where the regions with different shapes have been o-filtered
out. The global score is the integral of this local score. The global match is the shadeq p of the
global score, here about 83% for P=6,0 ~5,a ~ 3.4.

6.2 Score

The idea, for the match operation not to be transitive, is that this local match will only be con-
sidered in regions where the keys have the same shape, even if they point to different directions
(see blue area figure 2). By introducing this notion of locality, we trust that we can make use of
all the information contained in the keys. For example, two keys that match well in a specific
region of [0, 7 [might have two different relations to another third key if those relations are de-
fined by another region of [0,7[. Regions of [0, 7| where the keys don’t share the same shape
are just made silent by the match operation.

To achieve this, we set up a weight filter w that will only select the regions where the keys
share the same shape, that is, where the derivative of Im (green line figure 2) is close to zero,

VoecR":

R — [0,1]

3o m)?

(20)

We
Im’' — e~

The parameter o represents the “severity” of the filter: the more high, the more regions with

weakly matching shapes will be filtered out.

Weighted local matches will be then summed to produce a total matching score € [—1,1]:

KxK—[-1,1]
score - 21
(k], kz) —> k] 'kz
1 T
bk = / w (I (1)) Im (1) dt 22)
0

6.3 Global match

Finally, the score will be interpreted as a match value by this shade function, V o € R,

p= 561,
[_17 1] — [_17 1]
shadeq p : sign(s) if |s| > 5 (23)
R
arctanh (a tanh(Ps))

13

kl *kz = shadeayp(kl -kz) (24)

Note that shadeq p * & shadeq p(0) = 0. Therefore the higher the score, the higher the
match, and a null score is equivalent to a null match.

% is the sufficient score to get a match value of 1 (complete match). % is the sufficient score
to get a match value of —1 (complete antimatch). The parameter o represents the importance
one gives to a certain score: the more high, the more a score close from zero will give a match

far from zero. This relation is linear for ¢ = 1.

7 Defining M, the mutation operation

We will mutate one key into another by adding a mutation kernel to the original key (see Fi-
gure 1). We choose as a kernel an element of K with interesting properties: a Gaussian function
“circularized” along [0, T'[in the following way:

Let N be the normal distribution function, parametrized by t and o

R — R"
Nuo: 1 L(apy? (25)
X — e 2\ o
ovV2rm

Here is how we define its “circularized” version C:

0,7 — R
Cu70' . oo (26)
t+— Y Nuyo(t+iT)

It turns out that C then writes using the third Jacobi theta function as, V¢ € [0,T'[:

2 15\2 _
Cuolt) = 20 - 1 (HZ ZCI’Zcos(zi“>> cq=e? N u=n R)
i=1

Then here is how we define our mutation kernel, which depends on three parameters

14

A €[0,1], 6 e R, 1 € R (see figure 1):

0, T[—R
K> ker;ug,l : Cra TS(I) (28)
t—1—=
Co,75(0)

A simply is the location of the mutation over the key (the kernel position)
0 tunes its delocation (the kernel width)

1 tunes its algebraic intensity (the kernel height)

In the end, the mutation operation can be defined as, V k € K:
(k) =k+ker 5, (29)

As the keys will be successively “bumped” by these mutation kernels, their shape will evolve

over time and so will their match against other keys (see figures 1 and 2).

8 Defining % (M), the mutations distribution

Randomly choosing a mutation is now just as easy as randomly choosing the kernel parameters
A, 0,1 from their respective domains.

However, the distributions from which they will be drawn will determine whether all the
above object requirements are met or not. If they are too restrictive, then the resulting random
graph process might not be able to reach every possible state, nor to get as close as an arbitrarily
small €, ect.

Nonetheless we trust that, given s € N (the number of vertices in the graph), and given one
targetted precision € € R™* over the resulting process, one will always be able to find a filter
severity 0 € R, a shade parameter @ € R™ and a distribution among A, 8,1 domains allowing

one to meet all the requirements specified in the first chapter.

15

9 Designing keys for a specific graph

Even if this is not a formal requirement for the object, we would also like being able to design a
set of keys e € E, such that a particular, arbitrary graph g € G results from it. In a nutshell, find

an e solution to 7' (e) = g. In the following, we describe how a particular solution can be found.

Note that, during the time we build this solution, the K C €™ hypothesis is relaxed. We will

come back to this at the end of the section.

9.1 Slicing down keys

Let K7 be the set of all keys with period T € R™. For any k € Ky, T} < T, we define the

following start - and end - operators by:

K= k‘ € Kr, (30)

[Ole[
[O,Tl[— R

K — € Kr, 31)
r — k(t+ T — Tl)

This easily leads to the following, intuitive properties, V171 + T+ 13 =T

FN+T, L _ FTy

Cae " (32)
(k4T2+T3)_{T3 — k4T3 (33)
(kFTl-i-Tz)#TZ _ (k4T2+T3)FT2 (34)

Keys can thus be sliced down in several subkeys.
9.2 Joining keys together
Here is the reverse operation, defined as, V71 + 1>, =T

I(T1 X I(T2 — KT
(ki, k2) = ki ko

16

[O,Tl —i—Tz[% R

ki ko = k() ift<T (36)
t—
kz(l‘ — Tl)
Of course, we have:
(ki k) ™" = ky (37)
(ki ko) =k (38)

9.3 Scoring joined keys

By linearity of the integration, we can assert that, V71 + 7, =T

V ki EKTI, ko GKTZ, k € Kr,
(39)

T T:
ki ko) k= 2k KT 4 2y kT
T T

(break down the global score between two keys into the sum of their subkeys global scores)

9.4 Finding null keys

We now focus on the set of all constant keys K7 C Kr. And search for a key that has a null
score with every key in K. In the following, we will make use of the abusive notation k(z) = k
when k € K.

Let v € K7. We define, for every i € N*:

0,7T[—+R
E vo if 7 (mod =) < 3 (40)
I—
Vo+ T

They have these interesting properties Vi € N*, k € K7:

V,“k:()
(41)
Vje [[1, i—l]], V,'-Vj:()

17

9.5 Building the set

Let g € G, we now have everything we need to build a set of keys e € E that will solve T'(e) = g.

The idea is to join P = @ elementary keys together to produce each of the k;, i € [1, s]
keys in e, and to make a heavy use of the null keys v to avoid conflicts between keys relations
to one another.

Each key k; in e is obtained by joining together P elementary keys from K r:
ViE[[l,S]], kiZkiIW...mkip 42)
Therefore, each relation g; ; in g is defined by this formula, derived from 39:

Vi je[l, s,

1 P
gi,j = shademp (F Zl kip -kjp>
p:

(43)

Let us choose any basal, elementary constant key 8 € Kr. In order to cancel the unwanted
P

terms in the sum (43), we suggest using the following design, here with § = 5:

kk = B - B - B - B o Vi oV VIV VoY
ky = x2 - vi = v - vi « B « B - B o V2 o W W
ks = Vi v X3 » V2 o Vo v X3 - Vo o Vo o~ B B v
ks = v~ vy o oXig o V3 o Vo X4 o V3o a3 o V3o B
ks = v3 V3 o V3 o ox;5 o V3 o V3o Xp5 0 V3o X35 0 X4s

With this design, and thanks to the null keys, only one term remains in the sum 43, which is

now:

1
gi,j = shadeq p <F B -x,-j)

1 (44)
= shadeq p <F cos(x;; — B))
All we have to do is to compute the remaining unknowns x;; € K I
x;j = B £ arccos (P shade&’lP (gi7j)> (45)

18

And the set e of all k; keys is such that T'(e) = g.
We noticed already that the keys built this way are not 4~ anymore. However, since they

are periodic, one can approximate them with arbitrary precision by 4> functions using Fourier

decomposition, and get a “true” e € E result such that Dist(T'(e), g) < €V € € RT*,

19

Bibliography

[1]

(2]

Leah Edelstein and R Rosen. “Enzyme-substrate recognition”. In: Journal of theoretical
biology 73.1 (1978), pp. 181-204.

Jean-Loup Guillaume and Matthieu Latapy. “Bipartite structure of all complex networks”.
In: Information processing letters 90.5 (2004), pp. 215-221.

Friedrich Wilhelm Levi. University of Calcutta, 1942.

Lionel Tabourier, Camille Roth, and Jean-Philippe Cointet. “Generating constrained ran-
dom graphs using multiple edge switches”. In: Journal of Experimental Algorithmics
(JEA) 16 (2011), pp. 1-7.

Monica Van Horn, Angela Richter, Dian Lopez, et al. “A random graph generator”. In:
36th Annual Midwest Instruction and Computing Symposium, Duluth, MN. 2003.

20

	Scope Statement
	Statics
	Aim objects: edges weights in a graph
	Keys and match
	Graph description
	Richness of the keys

	Dynamics
	Mutating keys
	Mutating states
	Small mutations
	Connexity via mutations
	Random motion via mutations

	To conclude
	Lost on the way:
	Key divergence

	Promels
	Defining K, the key
	Defining , the match operation
	Local match
	Score
	Global match

	Defining M, the mutation operation
	Defining U(M), the mutations distribution
	Designing keys for a specific graph
	Slicing down keys
	Joining keys together
	Scoring joined keys
	Finding null keys
	Building the set

