
HAL Id: lirmm-01297579
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01297579

Submitted on 4 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Software testing and software fault injection
Maha Kooli, Alberto Bosio, Pascal Benoit, Lionel Torres

To cite this version:
Maha Kooli, Alberto Bosio, Pascal Benoit, Lionel Torres. Software testing and software fault injection.
DTIS: Design and Technology of Integrated Systems in Nanoscale Era, Apr 2015, Naples, Italy. 10th
International Conference on Design

Technology of Integrated Systems in Nanoscale Era (DTIS), 2015, <10.1109/DTIS.2015.7127370>.
<lirmm-01297579>

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01297579
https://hal.archives-ouvertes.fr

Software Testing and Software Fault Injection
Maha Kooli, Alberto Bosio, Pascal Benoit, Lionel Torres

Laboratoire d’Informatique, de Robotique et de Microelectronique de Montpellier (LIRMM), France
<name.surname>@lirmm.fr

Abstract1—Reliability is one of the most important character-
istics of the system quality. It is defined as the probability of
failure-free operation of system for a specified period of time
in a specified environment. For micro-processor based systems,
reliability includes both software and hardware reliability. Many
methods and techniques have been proposed in the literature
so far to evaluate and test both software faults (e.g., Mutation
Testing, Control Flow Testing, Data Flow Testing) and hardware
faults (e.g. Fault Injection). In this paper, we present a survey
of proposed techniques and methods to evaluate software and
hardware reliability, and we study the possibility to explore them
to evaluate the role of the software stack to evaluate system
reliability face to hardware faults.

Index Terms—Dependability, Faults, Fault Tolerance, Fault
Injection, Software testing

I. INTRODUCTION

Reliability is one of the most important characteristics
of the system quality. It is defined as the probability of
failure free operation of system for a specified period of
time in a specified environment [1]. Reliability is of primary
importance in embedded systems and systems dedicated to
safety critical applications such as avionics, military, aerospace
and transportation. System reliability has become an important
design aspect for computer-based systems due to the large set
of different failure sources for the system components. Each
component composing the system is susceptible to specific
type of faults coming either from the inside or the outside
of the system. We differentiate two categories of faults, as
presented in figure 1: software faults, and hardware faults.

• Software faults [2] represent faults that the programmer
may introduce at the design level, i.e. at the specification,
which means that the product does not feet the customer
requirements, or in the implementation level, such as bugs
in the source code such as coding errors or bugs.

• Hardware faults represent physical faults that may occur
on the hardware subsystem, caused by effects such as
physical manufacturing defects, environmental perturba-
tions (e.g. radiations, electromagnetic interference), or
aging-related phenomena.

The hardware and software layers interact in such a way
that hardware faults may propagate through the different
system layers to the software layer, as presented in figure
1. The fault propagation may impact the correct software
execution of the application leading to software failure, e.g.,
data corruption, abnormal termination or application hang.

1This work has been supported by the joint FP7 Collaboration Project
CLERECO (Grant No. 611404).

Fig. 1: Software Validation.

Thus software failures are not only caused by software faults,
but they are also results of hardware faults [3]. Some reports
show that approximately 20% to 30% of total software failures
have as cause pure hardware faults [4] [5]. This is the example
of the Mars Polar Lander system failure [6], which was caused
by a software fault induced by a hardware fault. The lander
was not able to settle the legs into their deployed position,
which is a hardware fault, and it gave a wrong order to turn
off engines in the air of Mars, which is a software fault. The
system crashed and the entire mission failed.

Thus, as shown in figure 2, system reliability includes both
software and hardware reliability. To study the overall system
reliability, we have to evaluate the reliability of:

• The software components with respect to software faults
• The hardware components with respect to hardware

faults
• The software components with respect to hardware

faults

Fig. 2: System Reliability.

Many methods and techniques have been proposed in the
literature targeting software faults (Software testing e.g., Mu-
tation Testing [7], Control Flow Testing [8], Data Flow Testing
[9]) and the hardware faults (e.g., Fault Injection [10]). How-
ever, few techniques propose an evaluation of hardware faults

2015 10th International Conference on Design & Technology of Integrated Systems in Nanoscale Era
(DTIS)

 978-1-4799-1999-4/15/$31.00 ©2015 IEEE

!

by analyzing the overall system from a high level perspective.
This evaluation is extremely important because it enables to
be independent from the target hardware architecture and it
could be applied to any type of hardware system. In addition, it
would permit to evaluate the reliability in an early design stage
of the system, i.e., when the information about the hardware
architecture is not fully specified.

In this paper, we present a survey on the proposed tech-
niques and methods for software and hardware reliability
evaluation, and we study the possibility to explore them to
evaluate the role of the software stack to evaluate system
reliability with hardware faults.

The remainder of the paper is organized as follows. Section
II presents three famous techniques to evaluate the software
reliability: mutation testing, control flow testing, and data
flow testing. Section III gives an overview of techniques
for hardware reliability evaluation: fault injection. Section IV
compares the previous presented techniques and introduces
some possible solution to evaluate the system reliability in
an early design stage.

II. SOFTWARE RELIABILITY

Software reliability is the probability of the software failure-
free for a specific period in a specified environment [11]. The
software failure are due to incorrect logic, incorrect statements,
incorrect input data, or misinterpretation of the specification
that the software is supposed to satisfy in the design. Software
reliability is the field of software development that is related to
testing and modeling the software ability to function correctly.
Software testing [8] is one of the most important part of
the software development life cycle and software reliability
evaluation. It represents the process of program verification
with the aim of detecting and correcting errors (i.e., bugs). It
is used in every stage of the development cycle, and comprises
more than 50% of the time required for software development.
The goals of software testing are the verification whether the
software is faithful w.r.t. the specification requirements, the
improving the software quality, and the reliability evaluation.

In this section we present mutation testing, control flow
testing and data flow testing, as famous techniques for software
testing.

A. Mutation Testing

Mutation testing [7] is a fault-based software testing tech-
nique used to assess the adequacy of a test set in terms of its
ability to detect software faults (i.e., to perform a software
faults grading). The main idea underlying its principle is a
slightly modification of the original program in order to obtain
a faulty program behavior. Faults used by mutation testing
represent mistakes that programmers can make during the
implementation or the specification of the program.

In this section, we present the process of mutation testing,
its application, and the limits of the technique.

1) Generic Process of Mutation Analysis: The process of
mutation analysis is represented in figure 3. Starting from a
program P, it generates a set of faulty programs P’ called

mutants, which are created by applying a set of mutation
operators to the original source program at a specific location.
Researchers exploited different mutation operators for different
types of programming languages. For example, in case of
imperative languages, we cite statement deletion; statement
duplication or insertion; replacement of expressions, arithmetic
operations, boolean relations of variables.

After building the mutant set, test sets T are supplied to
the program. In particular, each test set is first used with the
original program P to generate the golden results. Each mutant
P’ is run with the test set T. If the produced result of running
P’ is different from the one of P for any test case in T, then
the mutant P’ is said to be ‘killed’, otherwise it is said to have
‘survived’. In order to improve the test set T, additional tests
may be provided to kill the surviving mutants. Mutants that
can never been killed, are called Equivalent Mutants. They
are syntactically different but functionally equivalent to the
original program. To concludes on the quality of the input test
set, the mutation score is calculated as the ratio of the number
of killed mutants over the total number of non-equivalent
mutants. In order to have a test set that is sufficient to detect all
the faults denoted by the mutants, the mutation score should
raise to 1.

Fig. 3: Process of Mutation Analysis.

2) The Application of Mutation Testing:
• Software Testing
Mutation testing is used for the black box testing and the

white box testing.
The black box testing is mainly a validation technique for

the design level to test how much the program responds to
customer requirements, when the source code may be unavail-
able during testing. At the software design level, specification
mutations are generated to target faults that the programmer
may make in the program specifications or models.

The white box testing is a validation technique for the soft-
ware implementation level to test the program source code. It
targets the faults that the programmer may make in the source
code such as coding errors or bugs [7]. Program mutation is
applied to imperative programming languages, such as C and
Fortran, object-oriented programming languages, such as Java,

!

!

C++ and C#, and aspect-oriented programming languages.
At the software implementation level, program mutation is
applied to both unit level and integration level of testing. Unit
testing is a software testing method where individual units of
source code are tested to determine whether they are correct
for use. Integration testing is the phase in software testing
where individual software modules are combined and tested
as a group. This step occurs after the unit testing and before
the validation testing.

• Hardware Testing
Mutation testing has been successfully used in software testing
for the design debug. It has also been proposed as a testing
technique for hardware systems described in HDL [12] [13].
It is used for hardware design validation.

3) Cost Reduction Techniques: Although the efficiency of
mutation testing to assess the quality of a test set, its main
disadvantage is the high computational cost for executing a big
number of faulty programs. For mutation testing, many cost
reduction techniques have been proposed. They are divided
into three types: ’do fewer’, ’do faster’, and ’do smarter’ [14].
The first solution consists on reducing the number of gener-
ated mutants without a significant loss of test effectiveness.
Some example techniques [7] are mutant sampling, mutant
clustering, selective mutation, and higher order mutation. The
second solution consists on avoiding interpretive execution of
the same program. Some example techniques [14] are mutant
schema generation, and separate compilation approach. The
third solution consists on optimizing the mutant execution
process by executing only the mutated portion of the program
not the whole mutant program such as mutation technique
[14].

B. Control and Data Flow Testing

Control and data flow testing [8] [15] are software testing
techniques, which are typically very effective in validating
design, decision, assumptions, and finding programming and
implementation errors in the software. They are white box
testing techniques, since they exploit the analysis of the source
code. They aim at checking the internal logic and structure of
the program to guide the selection of test data. In control and
data flow testing, the internal perspective of the system and
the programming skills are investigated to design test cases
for the target program.

The process of generating these test cases in control and
data flow testing is represented in figure 4. Starting from the
program source code P, it generates the control or the data
flow graph. Then it selects paths to satisfy a selected criteria,
as it will be explained in the next subsections. If the selected
path is not feasible by the test case, the path conditions have
to be solved in order to produce test input for each path.

1) Control Flow Testing: Control flow testing [8] [15] is
a structural testing strategy that exploits the program control
structure to develop the test cases for the target program. The
test cases are developed to sufficiently cover the whole control
structure of the program, which is represented by the control
flow graph of the program.

Fig. 4: Process of Generating Test Cases for Control and Data
Flow Testing.

In control flow testing, the control flow graph is constructed
as follows: the node corresponds to a code segment, i.e. a
set of program statements, the edge from one node to the
other corresponds to flow of control between code segments,
and a unique entry node and exit node. The control flow
testing criteria include statement coverage, predicate coverage,
statement coverage. Statement coverage means executing in-
dividual program statements and observing the output. 100%
statement coverage means that all the statements have been
executed at least once. Predicate coverage is achieved when
all possible combinations of truth values of the conditions
affecting a path have been explored under some tests. Branch
coverage means executing a path that contains the branch. A
branch is an outgoing edge from a node in a control flow
graph. 100% branch coverage means selecting a set of paths
so that each branch is included on some path.

Control flow analysis can be performed at different levels
including unit testing, integration testing and system testing.
In the literature is shown that this technique is able to catch
about 50% of all bugs during unit testing [15]. In addition,
it is more effective for non-structured code (code constituted
of a sequence of ordered commands or statements), which
introduces basic control flow concepts such as branches and
jumps, rather than structured code (code that extensively uses
subroutines, block structures and loops), because most bugs
can result in control flow errors that could be caught by control
flow testing.

2) Data Flow Testing: While control flow testing is based
on the control structure of a program to develop the test
cases for the target program, data flow testing [9] is based
on the program data flow relations. It studies the flow of data
across the software application by monitoring the life cycle
of a piece of data and carrying out the correct definition and
usage of variables inside a program until their ultimate use
to produce output values. Data flow testing permits to identify
potential bugs and code anomalies which may lead to incorrect
execution of the code. It allows to detect more faults in a target
program comparing to control flow testing.

Data flow testing can be performed in static or dynamic way

!

!

[16]. Static data flow testing does not consider the program
execution, it only analyze the source code statically. However
dynamic data flow testing is performed by the results obtained
by analyzing the code execution.

In data flow testing, the data flow graph is constructed
as follows: The node corresponds to the definition and the
computation use (c-use) of a variable, the edge from one node
to the other corresponds to the predicate use (p-use) of a
variable, the entry node has a definition of each edge parameter
and each non local variable used in the program and the exit
node has a non definition of each local variable. The data
flow testing criteria include conditions on the definition, the
predicate and computation use of the variable, such as all-
definition, all-uses, all-p-uses, all-c-uses.

III. HARDWARE RELIABILITY

Hardware reliability is the probability of hardware failure
free for a specific period in a specific environment. The
hardware failures occur in the different system component
of the system (e.g., processor, memory, peripheral). They
are caused by material deterioration, random failures, design
errors, misuse or environmental effects. They can occur even
if the system is not under use. The hardware failures can lead
either to abnormal hardware or software behavior.

Many techniques and methods are proposed to improve the
hardware reliability by studying the hardware faults in a very
low level [17] and without considering the target software
components.

Fault injection [10] is a powerful and useful technique
to evaluate the reliability of the systems under faults. It is
based on the realization of controlled experiments in order to
evaluate the behavior of the systems in the presence of artificial
faults. Hardware fault injection injects physical faults (e.g.
bit flip fault, stuck at fault) in the real target system. It uses
external physical sources to introduce faults into the hardware
system. This technique permits to access some locations that
are not easy to access by other techniques [18]. However it is
very expensive in term of execution time and used hardware.
It may damage the system and it is difficult to control the
inject time and location.

IV. ANALYSIS OF HARDWARE FAULTS IN SOFTWARE
LEVEL

Hardware faults can be the cause of software failures [3].
Thus to evaluate the system reliability, the propagation of
hardware faults to the software components of the system
should be considered. Although several studies [3] have been
proposed in the literature to accomplish this feature, most of
them are hardware dependent and need detailed information
about the hardware architecture. The main goal of our work
is to evaluate system reliability in a very early design stage of
the system, i.e. when the hardware architecture is possibly not
yet defined. In this section we compare the previous presented
techniques and we explain how we can explore them to achieve
our goal.

A. Mutation Testing versus Fault Injection

In table I, we present a comparison between mutation testing
and hardware fault injection. The two techniques are based on
the fault simulation and they offer a good controllability of
the system behavior. However both of them do not respond
to our objective. In fact, we need to study the role of the
software stack to evaluate the system reliability face to the
hardware faults caused by effects such as physical manu-
facturing defects, environmental perturbations (e.g. radiations,
electromagnetic interference), and aging-related phenomena,
in a very early design phase of the system, i.e. when the
hardware architecture is possibly not yet defined.

TABLE I: Fault Injection versus Mutation Testing

Fault Injection Mutation Testing
Faults Physical Faults Software Faults

Fault Lo-
cation

Target hardware, i.e. Instruc-
tion Set Architecture (ISA)

Target source code

Cost Slow time execution and re-
quirement knowledge of the
target hardware architecture

High computational cost of
running all mutants against
a test set

Automation No human effort to analyze
output

Human effort involved to
check equivalent mutants
and the content of output

Results Good controllability of the
system

Good assessment of the
quality of the test set

Mutation testing could not be a suitable technique because
it evaluates the quality of a software tests in terms of its
ability to detect software faults. However our objective is to
evaluate the software behavior in terms of its ability to detect
hardware faults. Hardware fault injection technique deals with
hardware faults but the evaluation is done in a low level, which
requires to know the architecture of the target hardware, the
information that could not be available in the early design
stage.

B. Virtual Instruction Set Fault Simulator

Based on these limitations, the idea is to keep (1) the high
level evaluation of the mutation testing technique and (2) the
considered faults of the hardware fault injection technique,
to build a new software fault injection environment. The
simulation environment injects models of hardware faults in a
high code level of the software independently from the target
hardware.

In order to model the software independently from the
target hardware, and to be able to simulate the software
models of hardware faults, the approach could be based on
a Virtual Instruction Set Architecture (VISA). The concept
of the software virtualization ensures the possibility to make
complex analysis of the software applications without previous
knowledge of the actual ISA [19].

The approach permits to inject a set of software fault models
into the VISA code level of the application, and to observe
the outcomes on the software layer. The considered software
fault models represent the effect of the real hardware fault

!

!

on the software application (e.g., an operand of the VISA
instruction changes its value, which is a result of a Single
Event Upset (SEU) in the data of the ISA or in the memory
sequent storing the data of the program, or an opcode in the
instruction of the VISA is misused, which is a result of a SEU
in the opcode of the ISA). This method permits to reduce
the cost of the hardware fault injection techniques in term
of the execution time and damaged material, as well as the
human effort involved in mutation analysis. It is based on the
creation of mutants, as for mutation testing, from the effect
of the hardware faults by seeding software changes into the
original program.

The proposed approach permits to evaluate system reliabil-
ity for computer-based systems, without requiring a predefined
hardware platform, and with a significant reduction in the
simulation time compared to standard simulation-based fault
injection techniques, while keeping efficient results in term of
reliability evaluation. Although the efficiency of this method,
its main disadvantage, which is also a problem for mutation
testing and fault injection, is the high computational cost for
executing a big number of faulty programs.

C. Possible Solutions

In this subsection, we propose some possible solutions that
could be handled as future work.

One idea is to combine the fault injection process with
the fault analysis to decrease the number of fault simulations
per experiment. This consists on systematically analyzing
the target application and carefully selecting a set of faulty
program to be simulated. The selection is based on a technique
named fault pruning [20]. First, all the possible faults that can
impact the application are enumerated. Then, by referring to a
fault-free execution trace, subsets of faulty programs are build.
Each one is constituted from the faults that are equivalent to
each other and the faults that propagate through similar code
sequences. These faults behave similarly in the program and
generate the same outcomes. Finally, only one faulty program
per a given subset is simulated. The outcome of the simulation
will be the same as all the faulty program in the same subset.
This method permits to reduce significantly the cost of the
big number of executed faulty programs while keeping a good
accuracy compared to a full fault injection simulation [20].

This technique could easily be applied on the proposed
Virtual Instruction Set Fault Simulator, depending on the fault
model:

• Misuse of an opcode in the instruction of the VISA
In the fault injection process of this fault model, we start from
statistics about how an opcode can be switched to another one.
The statistics provide the percentage that a given opcode is
transformed to an other one. Starting from this information, we
can apply the fault pruning technique. For example, assume
that the opcode ‘add’ switch to ‘store’ with x%, switch to
‘load’ with y%, and switch to ‘mul’ with z%. Thanks to only
one simulation of a faulty program, where we switch an ’add’
to ’store’, the outcome is a compilation error, i.e. a crash. Thus
we conclude that the fault switching an ‘add’ to ‘store’ results

to a crash outcome whatever its location in the program, so
there is no need to simulate all the faulty program where this
fault is injected. However when we simulate a faulty program,
where we switch an ‘add’ to a ‘mul’, the result depends on
its location in the program, so this fault do not propagate with
a similar manner in the program. In this case, all the faulty
program with the fault switching an ‘add’ to a ‘mul’ should
be simulated.

• Value change of an operand in the instruction of the VISA
To apply the fault pruning technique to this fault model, we
can make use of the data dependency graph, as for data flow
graph (explained in section II). As a simple example, assume
we have the following instruction:

%A = add i32 %B, %C

The data dependency graph of this instruction is represented
in figure 5. Analyzing this graph, we see that the variable %A
is dependent from the variables %B and %C. Thus injecting
a fault (bitwise xor between the correct value and a randomly
selected bit) into the variable %B or %C leads to the same
outcome as injecting the same fault into the variable %A.
So there is no need to simulate the faulty program on the
variable %A. However, this theory depends on the dependency
relationship. For example if, instead of the addition, we have
a multiplication, and the value of the variable %C is 0, then
injecting a fault on %B will not be propagated to %A. It also
depends on the type of the variable (i.e. the injected fault). It
is valid when we have integer, floating point or vector, but it
is not all the time valid when we have a pointer.

Fig. 5: Data Dependency Graph for %A = add i32 %B, %C

To conclude, we can apply the fault pruning technique either
on the data or on the instructions, in order to decrease the
number of simulated faulty programs.

V. CONCLUSION

Reliability is a key decision for system design. System
reliability includes software reliability and hardware reliabil-
ity. In this paper we presented a survey on techniques and
methods used to evaluate the software reliability regarding
software faults such as coding errors or bugs, and the hardware
reliability regarding the hardware faults such as physical faults
on the target hardware.

One important step in the system reliability is to study the
propagation of the hardware faults to the software level in an
early design stage. In this paper, we compare the previous
presented methods, and based on them we propose some

!

!

possible solutions to evaluate the software reliability in an
early design phase.

REFERENCES

[1] IEEE Std. 1633-2008 IEEE Recommended Practice on Software Relia-
bility, pp. c1–72, June 2008.

[2] J. C. Munson, A. P. Nikora, and J. S. Sherif, “Software
faults: A quantifiable definition,” Adv. Eng. Softw., vol. 37,
no. 5, pp. 327–333, May 2006. [Online]. Available:
http://dx.doi.org/10.1016/j.advengsoft.2005.07.003

[3] J. Park, H.-J. Kim, J.-H. Shin, and J. Baik, “An embedded software
reliability model with consideration of hardware related software
failures,” in Proceedings of the 2012 IEEE Sixth International
Conference on Software Security and Reliability, ser. SERE ’12.
Washington, DC, USA: IEEE Computer Society, 2012, pp. 207–214.
[Online]. Available: http://dx.doi.org/10.1109/SERE.2012.10

[4] R. K. Iyer and P. Velardi, “Hardware-related software errors: Measure-
ment and analysis.” IEEE Trans. Software Eng., vol. 11, no. 2, pp. 223–
231, 1985.

[5] D. Tang and R. Iyer, “Analysis of the vax/vms error logs in multicom-
puter environments-a case study of software dependability,” in Software
Reliability Engineering, 1992. Proceedings., Third International Sympo-
sium on, 1992, pp. 216–226.

[6] M. Blackburn, R. Busser, A. Nauman, R. Knickerbocker, and
R. Kasuda, “Mars polar lander fault identification using model-
based testing,” in Proceedings of the 26th Annual NASA Goddard
Software Engineering Workshop, ser. SEW ’01. Washington, DC,
USA: IEEE Computer Society, 2001, pp. 128–. [Online]. Available:
http://dl.acm.org/citation.cfm?id=829503.830088

[7] Y. Jia and M. Harman, “An analysis and survey of the development of
mutation testing,” IEEE Trans. Softw. Eng., vol. 37, no. 5, pp. 649–678,
Sep. 2011. [Online]. Available: http://dx.doi.org/10.1109/TSE.2010.62

[8] S. A. Khan and A. Nadeem, “A tool for data flow testing using
evolutionary approaches (etodf),” in Emerging Technologies (ICET),
2013 IEEE 9th International Conference on, Dec 2013, pp. 1–6.

[9] J. Badlaney, R. Ghatol, and R. Jadhwani, “An introduction to data-flow
testing,” 2006.

[10] M. Kooli and G. D. Natale, “A survey on simulation-based fault injection
tools for complex systems,” in Proceedings of the 9th International
Conference on Design & Technology of Integrated Systems in Nanoscale
Era, DTIS 2014, Santorini, Greece, May 6-8, 2014, 2014, pp. 1–6.
[Online]. Available: http://dx.doi.org/10.1109/DTIS.2014.6850649

[11] W. D. van Driel, M. Schuld, R. Wijgers, and W. E. J. van Kooten,
“Software reliability and its interaction with hardware reliability,” in
Thermal, mechanical and multi-physics simulation and experiments in
microelectronics and microsystems (eurosime), 2014 15th international
conference on, 2014, pp. 1–8.

[12] Y. Serrestou, V. Beroulle, and C. Robach, “Functional verification of rtl
designs driven by mutation testing metrics,” in Digital System Design
Architectures, Methods and Tools, 2007. DSD 2007. 10th Euromicro
Conference on, 2007, pp. 222 – 227.

[13] G. A. Hayek and C. Robach, “From specification validation to hardware
testing: A unified method,” in Proceedings of the IEEE International
Test Conference on Test and Design Validity. Washington, DC, USA:
IEEE Computer Society, 1996, pp. 885–893. [Online]. Available:
http://dl.acm.org/citation.cfm?id=648018.744955

[14] A. J. Offutt and R. H. Untch, “Mutation testing for the new century,”
W. E. Wong, Ed. Norwell, MA, USA: Kluwer Academic Publishers,
2001, ch. Mutation 2000: Uniting the Orthogonal, pp. 34–44. [Online].
Available: http://dl.acm.org/citation.cfm?id=571305.571314

[15] M. E. Khan, “Different approaches to white box testing technique for
finding errors,” International Journal of Software Engineering and Its
Applications, vol. 5, no. 3, 2011.

[16] G. Denaro, M. PezzÃĺ, and M. Vivanti, “On the right objectives of
data flow testing,” in Proceedings of the 2014 IEEE International
Conference on Software Testing, Verification, and Validation, ser. ICST
’14. Washington, DC, USA: IEEE Computer Society, 2014, pp. 71–80.
[Online]. Available: http://dx.doi.org/10.1109/ICST.2014.18

[17] B. Huang, X. Li, M. Li, J. Bernstein, and C. Smidts, “Study of the impact
of hardware fault on software reliability,” in Proceedings of the 16th
IEEE International Symposium on Software Reliability Engineering, ser.
ISSRE ’05. Washington, DC, USA: IEEE Computer Society, 2005, pp.
63–72. [Online]. Available: http://dx.doi.org/10.1109/ISSRE.2005.39

[18] H. Ziade, R. Ayoubi, and R. Velazco, “A survey on fault injection
techniques,” vol. 1, no. 2, pp. 171–186, July 2004.

[19] M. Kooli, P. Benoit, G. D. Natale, L. Torres, and V. Sieh, “Fault injection
tools based on virtual machines,” in 9th International Symposium on
Reconfigurable and Communication-Centric Systems-on-Chip, ReCoSoC
2014, Montpellier, France, May 26-28, 2014, 2014, pp. 1–6. [Online].
Available: http://dx.doi.org/10.1109/ReCoSoC.2014.6861351

[20] S. K. S. Hari, S. V. Adve, H. Naeimi, and P. Ramachandran,
“Relyzer: Exploiting application-level fault equivalence to analyze
application resiliency to transient faults,” SIGPLAN Not.,
vol. 47, no. 4, pp. 123–134, Mar. 2012. [Online]. Available:
http://doi.acm.org/10.1145/2248487.2150990

!

!

