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Advanced computing systems realized in forthcoming technologies hold the promise of a significant
increase of computational capabilities. However, the same path that is leading technologies toward these
remarkable achievements is also making electronic devices increasingly unreliable. Developing new
methods to evaluate the reliability of these systems in an early design stage has the potential to save
costs, produce optimized designs and have a positive impact on the product time-to-market.

CLERECO European FP7 research project addresses early reliability evaluation with a cross-layer
approach across different computing disciplines, across computing system layers and across computing
market segments. The fundamental objective of the project is to investigate in depth a methodology to
assess system reliability early in the design cycle of the future systems of the emerging computing con-
tinuum. This paper presents a general overview of the CLERECO project focusing on the main tools and
models that are being developed that could be of interest for the research community and engineering
practice.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

Most things we rely on in our everyday life contain
electronic-based information and have enough computing power
to run embedded software applications, which connect to the
Internet and remote advanced computing services to get access
to virtually unlimited resources. This future computing continuum,
composed of a wide set of heterogeneous platforms, promises to be
a fertile environment to engineer advanced services with high
added value.

Radiation effects, wear-out, aging and variability throughout
the operational period of a system, extreme scaling processes that
move towards 12 nm manufacturing process nodes and beyond,
the high design complexity, and a fast time-to-market demand
are expected to make system components extremely unreliable.
As an example, the single bit error rate of a six-transistor SRAM
that is in the order 1:5� 10�6 for a 22 nm technology is expected
to increase up to 5:5� 10�5 in 16 nm technology and 2:6� 10�4

in 12 nm technology [1].
From a reliability perspective, system designers have to meet
precise reliability requirements. These requirements are highly
domain dependent and are influenced by the criticality of the con-
sidered system or component (e.g., aerospace and medical applica-
tions require very low failure rates). Reliability is therefore
increasingly driving several design decisions at the technology,
hardware and software level.

Error management solutions at all design/implementation
levels are feasible. Technology can be hardened [2–8], hardware
architectures may include redundancy [9–19], and finally all soft-
ware layers may implement error detection and recovery mecha-
nisms [20–26]. On the one hand, this enables designers to apply
cross-layer holistic design approaches to manage errors in their
systems. On the other hand, this enlarges the design space making
design optimization complex.

Nowadays, the dominant approach to design reliable systems
consists in worst-case design. However, it is well known that sev-
eral reliability-oriented design decisions lead to costs in terms of
area, complexity, performance and energy budget [27]. Reliability
engineers and system architects need to be provided with adegu-
ate tools to cope with this complexity and to take design decision
able to enable reliability targets to be met with minimum cost.
ERECO
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Moreover, these decision must be taken as early as possible in the
design process when redesign and optimizations are still afford-
able. Products failing to reach the reliability objectives in the late
stage of the design may lead to commercial failure with severe eco-
nomical consequences.

Current reliability analysis approaches strongly rely on massive
and time-consuming RTL fault injection campaigns, which are
becoming a bottleneck due the increasing complexity of computing
systems. Simulating a complete system composed of microproces-
sors and accelerators embedding several tens of processing cores
and memory blocks, and executing complex applications is becom-
ing prohibitive. Fault injection at the RTL level can require several
months of CPU time. This strongly impacts the project TTM and
poses a serious threat on the success of a product in case the target
reliability levels are not reached and redesign of part of the system
is required. Moreover RTL fault injection requires a full system
already designed and can be applied only in the late stages of the
design process. At these stages, design modifications to improve
reliability are excessively costly.

The FP7 Collaboration Project CLERECO addresses early system
reliability evaluation with a cross-layer approach [28–30]. The fun-
damental objective of the project is to investigate methodologies to
accurately perform system reliability analysis focusing on the early
stages of the design cycle for the future systems of the emerging
computing continuum [31].

This paper presents an overview of the CLERECO project at the
end of the first year of its research activity. It focuses on the tools
that are being developed that could be of interest for the research
community and engineering practice. Given the limited space, the
paper does not provide detailed descriptions of all developed mod-
els and tools. The emphasis of the paper is instead to present
CLERECO’s perspective on the way system reliability analysis can
be performed with a cross-layer approach considering the main
layers that constitute a modern digital system.

The paper is organized as follows: Section 2 introduces the
cross-layer approach to evaluate the system reliability. Section 3
overviews CLERECO’s general methodology to perform system reli-
ability analysis, and Sections 4 and 5 describe tools to evaluate the
hardware and software contribution to the system reliability.
Eventually, Section 6 presents final considerations and future per-
spectives for the system reliability estimation.

2. A cross-layer approach for system reliability evaluation

Performing cross-layer system reliability analysis, requires a
deep understanding of the layers where faults appear in the sys-
tem, how faults generate errors, and how errors propagate across
layers, eventually impacting the final mission of the system.

Fig. 1 provides a graphical representation of how faults may be
generated and propagated in a system. Following the Computing
Community Consortium Visioning Study on Cross-Layer
Reliability [32], a system can be seen as a stack go three main
layers:

1. the technology layer that accounts for the raw technology used
to build its hardware blocks,

2. the hardware layer that accounts for the hardware blocks and
their architectures built on top of the technology, and

3. the software layer that includes the system and user applica-
tions executed on the hardware platform.

The technology used to build hardware components is the main
root of hardware faults due to physical fabrication defects, aging or
degradation (e.g., NBTI), environmental stress (e.g., radiations), and
Please cite this article in press as: A. Vallero et al., Cross-layer reliability evaluati
EU project overview, Microprocess. Microsyst. (2015), http://dx.doi.org/10.101
fabrication variability, etc. Within CLERECO we focus on how these
faults propagate through the other layers composing the system.
After a raw fault manifests in a hardware block, it can be propa-
gated through the different hardware structures composing the
system. Several masking effects can mitigate the impact of these
faults. We define as vulnerability factor the conditional probability
of a component to produce an erroneous result given the occur-
rence of a raw error in one of the lower layers of the design hierar-
chy. Several vulnerability factors do exist in a system.

Faults can be mitigated at the technology level by timing effects
that prevent erroneous values to be sampled by memory elements
(Time Vulnerability Factor – TVF) [33–35], or by logic masking
effects (Cell Vulnerability Factor – CVF). Faults that manage to
cross the technology layer and enter the hardware architecture
layer can still be masked both at the micro-architecture level (l
Architecture Vulnerability Factor – lAVF) or at the architecture
level (Architecture Vulnerability Factor – AVF) [36–38]. Finally
those faults that are not masked at the hardware layer enter the
software layer of the system by corrupting either data or instruc-
tions of software applications. These errors can damage the correct
software execution by producing erroneous results if the computa-
tion is completed, or by preventing the execution of the application
by causing exceptions, interrupts, abnormal terminations or appli-
cations hang-up. Nevertheless, the software stack can also play an
important role in masking errors, introducing a further error mask-
ing effect (Software Vulnerability Factor – SVF), which may further
improve the system reliability [39–46].

Performing system reliability analysis means calculating the
different vulnerability factors associated with the components of
a system, and then understanding how all masking effects work
together and how they influence the behavior of the system.
Fig. 2 provides a high-level view of the CLERECO cross-layer relia-
bility evaluation flow. The key concept exploited in CLERECO is to
analyze the three system layers separately computing different
vulnerability factors for the different blocks. Vulnerability factors
are then statistically combined in order to infer reliability mea-
sures at the system level. Analyzing the layers in isolation has
the main advantage to reduce the complexity of the analysis focus-
ing on the peculiar masking effects each layer can provide. As
reported in Fig. 2, each layer defines an interface with the upper
layer, which in turn sets how faults can be propagated from one
layer to the next one. For each layer, in CLERECO, we devise to
identify a set of tools and models able to perform this
characterization.

Among the three layers composing the system, the technology
layer is probably the most well studied layer. Studying faults that
may affect new technologies such as FinFET [47], starts from the
definition of predictive models [48] for the technology and requires
the development of models for the basic cells (e.g., memory cells,
boolean gates, etc.) that need to be analyzed. Resorting to these
models, electrical simulations (e.g., Spice, TCAD) can be used to
compute failure probability and to derive the TVF that will be
required for the analysis of the next layers of the stack.

In this paper we focus on the vulnerability factors introduced by
microprocessors and software routines and on the statistical mod-
els used to combine those vulnerability factors.
3. System level reliability modeling

Early system reliability analysis requires the identification of a
proper high level statistical model enabling to represent the sys-
tem and its vulnerability factors and to perform statistical
reasoning.
on, moving from the hardware architecture to the system level: A CLERECO
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Fig. 1. Cross-layer error propagation. Faults manifests in the technology and then propagate through the hardware and software layers. During this propagation different
masking effects may block the error propagation thus reducing their impact on the final system’s reliability.

Fig. 2. CLERECO cross-layer reliability evaluation flow.
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Fault Tree Analysis (FTA) is a very common statistical reliability
analysis [49]. FTA is a top down, deductive failure analysis in which
an undesired state of a system is analyzed using Boolean logic to
combine a series of lower-level events. It is mainly used in the
fields of safety engineering and reliability engineering to under-
stand how systems can fail. Another very similar technique that
is usually employed to statistically investigate the reliability of a
system is Reliability Block Diagram (RBD). The most fundamental
Please cite this article in press as: A. Vallero et al., Cross-layer reliability evaluati
EU project overview, Microprocess. Microsyst. (2015), http://dx.doi.org/10.101
difference between FTD and RBD is that RBD works in the ‘‘success
space’’, and thus looks at system successes combinations, while
FTD works in the ‘‘failure space’’ and looks at system failure com-
binations. Both FTD and RBD do not enable to model reliability
interactions among components or subsystems, or to represent
system reliability configuration changes [50].

Markov chains represent a significant alternative to FTD or RBD
analysis [51]. A Markov chain is a random process that undergoes
on, moving from the hardware architecture to the system level: A CLERECO
6/j.micpro.2015.06.003
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transitions from one state to another on a state space. The proba-
bility distribution of the next state only depends on the current
state (Markov property). Markov chains have several modeling
issues when applied to reliability analysis. First, the whole system
is modeled as a set of states, which may explode in complex sys-
tems. Second, the Markov property limits the possibility to fully
analyze the propagation of errors among states.

Recently Bayesian Networks (BN) are gaining interest in model-
ing system reliability in hardware devices [52]. BNs are a statistical
model to represent multivariate statistical distribution functions.
They can model relationships among random variables and their
respective probability density functions by means of conditional
probability functions. They main advantage with respect to the
previous techniques is the degree of freedom they have to define
input causes of failure. The system can be described in terms of
blocks and not just states. Blocks can be studied locally to populate
the model, leaving the analysis of the interaction of the blocks to a
high-level statistical reasoning. Bayesian networks have been
selected in CLERECO as basic model to build early system reliability
analysis.

Fig. 3 shows a very simplified example of Bayesian system mod-
eling. It is important to highlight that this is not an example of a
real model. Real models can account for up to hundreds of nodes
and arcs. However, this simplified example can be used to intro-
duce the basic modeling concepts and to show how statistical rea-
soning on system reliability can be implemented.

System modeling using a BN starts by identifying the networks
nodes. Network nodes model the components of the system. They
can be split into technology nodes, hardware nodes and software
nodes following the three layers introduced in Fig. 2. Each node
is associated to a state. The state space can be either discrete or
continue. For the sake of simplicity in this example we simply con-
sider a binary state space including the failure and success state.

The technology layer plays an active input role. Technology
nodes are the root of the system model. Each node identifies a
HW Layer 

SW Layer 

Flip-FloSRAM. Technology 

Tech. Layer 

L1 Cache R

X86 microproce

Wrong Data In Oper

Func.1 

Application 

Spice simulations  
Analysis of real 
devices 

Micro-architectural fault 
injection 
Analytical model 
Average estimation for 
different application domains 

Software fault-injection (e.g. 
LLVM) 

Fig. 3. System level reliability evaluation using Bayesian a Bayesian model of the sys
software), while edges represent how these resources influence each other when faults

Please cite this article in press as: A. Vallero et al., Cross-layer reliability evaluati
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specific technology process used to build a certain hardware block
embedded in the system. Each technology node is characterized by
the raw failure probability with respect to the target fault model
(e.g., soft error rate). It can be either provided by manufacturers
or estimated through electrical simulations on predictive models.

Hardware nodes are intermediate nodes of the network that
define the hardware resources assembled together to compose
the hardware infrastructure. Each hardware node is connected to
a technology node to model the relationship between the hard-
ware architecture and the underlying technology. Moreover, hard-
ware nodes can be connected to other hardware nodes to model
error propagations or masking between components. Each inter-
mediate node is characterized by a Conditional Probability
Table (CPT). This table considers all possible combinations of states
of the parents nodes (instantiations). For each distinct instantiation
of parent nodes, the CPT defines the probability of the node to be in
a certain state (e.g., failure or success) given the instantiation of the
parents nodes.

In order to decouple the analysis of the software nodes from the
one of the hardware nodes special attention is required to define
the interface between the two layers. In CLERECO we have identi-
fied a set of high level Software Fault Models (SFMs), which model
how hardware errors propagate to software (see Section 5). They
mainly rely on alterations that have an impact on the Instruction
Set Architecture (ISA) of the microprocessor. They are modeled as
additional nodes that represent an intermediate layer between
the hardware nodes and the software nodes (e.g., wrong data in
operand node in Fig. 3).

Eventually, the software nodes are the final players of the sys-
tem model. Errors generated in the technology can be propagated
up to the software. At this level they can further propagate during
the computation, mainly based on how the software manipulates
data or on the way the flow of execution follows its proper path.
Software nodes represent software functions or portions of soft-
ware functions. Arcs at this level model propagation of errors
p Technology 

egister File 

ssor 

RAM 

DRAM Technology 

and 

Func.2 

tem. Nodes of the model represent system resources (e.g., technology, hardware,
arise in the system.
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among different portions of the software. Again each node must be
characterized using a CPT expressing the failure probability of the
node given the instantiations of the parent nodes.

Once a Bayesian system reliability model is built, the model can
be used to reason about the overall reliability properties of the
system.

Bayesian networks provide full representations of probability
distributions over their variables. That implies that they can be
conditioned upon any subset of their variables, supporting any
direction of reasoning. For example, one can perform diagnostic
reasoning, i.e., reasoning from symptoms to cause, such as when
we observe a failure in the application, we can update our belief
about the contribution of each node to this failure, thus identifying
those nodes that most likely contribute to the failure. Note that
this reasoning occurs in the opposite direction to the network arcs.
Differently, one can perform predictive reasoning, starting from the
information about causes (i.e., raw technology failure rates) to new
beliefs about effects (i.e., application failures), following the direc-
tions of the network arcs. Statistical reasoning resorting to
Bayesian models is a well known statistical approach and the
reader may refer to [53] for more detailed descriptions.

By resorting to the proposed high-level statistical reasoning,
system designer are provided with a tool enabling to perform early
estimation of the overall system reliability. Moreover, using diag-
nostic reasoning, weak components can be probabilistically identi-
fied. This provides means to drive the reliability design effort
toward the most critical components of the system thus optimizing
the overall system. Nevertheless, computing the conditional prob-
abilities that populate the Bayesian model is still a complex task
that requires dedicated tools to be completed. These probabilities
represent the vulnerability factors introduced in Section 1. Next
sections overview two of the main tools developed in CLERECO
to accomplish this task.
4. Evaluating the hardware contribution to system’s reliability
through micro-architectural simulation

Functional modules such as microprocessors, accelerators (e.g.,
GPUs, APUs) and memory controllers represent the most complex
hardware components of modern digital system. Therefore, they
are likely to provide a major impact on the hardware vulnerability
factors of a system. For this reason creating tools able to character-
ize them in the framework of the presented system reliability
model is one of the most critical tasks considered in CLERECO.

In general, there are two categories of tools that enable to study
these complex modules:

1. RTL-simulators, and
2. micro-architectural simulators.

RTL simulators enable to consider several circuit-level charac-
teristics facilitating accurate hardware reliability estimations.
However, their low simulation throughput is a limiting factor.

Micro-architectural simulators have the ability of executing fas-
ter simulations than RTL simulators. It is widely known that many
important components modeled in micro-architectural simulators
have a very direct relation to the actual hardware implementation.
Such components are mainly storage-related components like
DRAMs, SRAMs (caches), registers and register files, buffers and
queues. In a micro-architectural simulator these structures are
implemented as single or double-dimensional arrays of variables
in the programming language used to implement the simulator.
It is widely known that many important components modeled in
micro-architectural simulators have a very direct relation to the
actual hardware implementation. Fault injection analysis through
Please cite this article in press as: A. Vallero et al., Cross-layer reliability evaluati
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micro-architectural simulators for these structures very closely
model the hardware components and a major effort has been
devoted in the project for the development of these type of tools.
On the other hand, control logic blocks and functional components
are very simply implemented on architectural simulators and dif-
ferent approaches are under investigation to compensate for this
inaccuracy.

MAFin is the CLERECO fault injector framework created on top
of the MARSSx86 micro-architecture level simulator [54].
MARSSx86 [55] is a full system simulator built on top of PTLsim
simulator [56] and incorporating the QEMU emulator. PTLsim sim-
ulates the details of an x86 microprocessor while QEMU provides
to MARSSx86 its full system capabilities.

We selected MARSSx86 as the base of the development of our
fault injector tool because it is a full system simulator that models
accurately x86 architectures (cycle accurate), it is publicly avail-
able and regularly supported. Moreover, MARSSx86 models both
a complex out-of-order and a simpler in-order (Atom-like model)
single core architecture, as well as multicore x86 architectures.
Thus, the features and capabilities of the original MARSSx86 model
coupled with our extensions cover the characterization of micro-
processors employed in both High Performance Computing and
Embedded Computing and based on the widespread x86 ISA.

The fault injection infrastructure provides users with the capa-
bility of tracing the propagation of a fault in a hardware structure
at the micro-architectural level, till its manifestation at the ISA,
operating system or application level [54].

Fig. 4 summarizes all structures at the micro-architectural level
that can be studied through fault injection. A complete reliability
study for all storage arrays is fully supported. These storage arrays
are significantly more vulnerable to faults than control logic (in
particular for transient faults). Moreover, the issue queues, i.e.,
the data-structures which facilitate the out-of-order execution in
modern microprocessors can be studied as well.

4.1. Fault models

The fault injection infrastructure enables injection of both sin-
gle faults and multiple faults. Single faults can be transient, inter-
mittent and permanent. Multiple faults can be every possible
combination of single faults in the form of spatial faults or tempo-
ral faults. For instance, spatial faults may represent the effect of a
single particle strike that flips the state of multiple storage ele-
ments on a contiguous rectangle or square. Temporal faults may
instead be the effect of multiple but independent single-event
upsets that are distributed over time.

Transient faults are modeled by flipping (XOR) the value of a
randomly selected bit in a randomly selected clock cycle during
simulation. Intermittent faults are modeled by setting the state
of storage elements to 1 (OR) or 0 (AND), in a randomly selected
cycle, for a random period. Permanent faults are modeled by set-
ting persistently to 1 (OR) or to 0 (AND) the value of a randomly
selected storage element for the entire simulation time.

In general, the set of fault models considered by the injector is
flexible enough to reproduce a wide set of real fault models iden-
tified during the characterization of the technology layer.

4.2. Fault injection framework

Fig. 5 shows the general architecture of MaFIN.
For the development of our tool, we extended the original ver-

sion of MARSSx86 by adding data arrays in caches as well as by
making all the necessary extensions to support comprehensive
fault injection campaigns. Our extensions increase the simulation
time but these modifications are necessary to realize fault injec-
tions in these important missing arrays. Overhead in simulation
on, moving from the hardware architecture to the system level: A CLERECO
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time due to the fault injection infrastructure was kept to a mini-
mum to enable fast vulnerability factors computation. To perform
a micro-architectural fault injection campaign for a given work-
load, four steps are required to obtain the desired results.

Step 1. This is a preliminary step used to create a so called
checkpoint chk_x for the given workload. A checkpoint
includes the output as well as other parameters (e.g., execution
time) related to the execution of the workload without
injecting any fault. chk_x represents the golden execution
used to classify the effect of the injected faults as reported in
Step 4.
Step 2. After chk_x is calculated, the Fault Generator can per-
form its task. It is executed every time a new injection cam-
paign must be performed. Its main goal is to generate a
database of faults (fault database) according to the fault injec-
tion requirements. More specifically, every single injection
experiment is characterized by a fault mask that is built accord-
ing to the target fault model. The fault mask embeds several
fault attributes including:
1. processor_id: the targeted processor in a multicore

architecture.
2. module_id: the targeted micro-architecture module in the

processor.
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3. fault_mask: the set of bits that may change the value in a
storage array.

4. fault_type: transient, intermittent and permanent. It
determines the type of bitwise operation that is executed
between the fault masks and the targeted storage arrays
(i.e., for stuck-at-0 AND, for stuck-at-1 OR, for bit flip
XOR). In the case of multiple faults,different sets of fault
mask bits do exist.

5. duration: used in the case of intermittent faults to specify
for how many clock cycles the fault is active.

6. activation cycle: the point in time during the simula-
tion in which the fault is injected in the targeted structure.

As soon as a fault mask for a single experiment is generated, it is
stored into a database containing all fault masks needed for the
fault injection campaign. The Fault mask generation process is very
flexible since it allows to generate a large set of fault models.

Step 3. At this point, the fault injection campaign is ready to
start. The Fault Handler and the Stats Handlers are responsible
for two independent processes:
1. The Fault Handler manages the fault injection campaign,

i.e., it manages the fault injection experiments. Each fault
injection experiment consists in the execution of the
on, moving from the hardware architecture to the system level: A CLERECO
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workload during which faults are injected according to
fault masks. In details, the set of fault mask attributes are
passed through the Injection Interface from the fault mask
database to the extended MARSSx86 simulator.

2. The Stats Handler manages the collection of information
related to fault injection experiments required to classify
the outcome of the system. In particular, it collects the fol-
lowing files for any given fault injection experiment: (i) the
output of the application, (ii) the file that includes the redi-
rected std_err, (iii) the file of statistics, (iv) the file with
logs.
The injection campaign ends when all fault injection exper-
iments have been executed to the end. At this point, the most
time consuming part of the overall process is complete.

Step 4. Last step is to establish the final outcome of each fault
injection experiment so that statistics about fault injection
can be collected. More specifically the Parser is responsible for
comparing the files provided by the Stats Handler with the
checkpoint chk_x. The outcome of each experiment is classified
according to the categories reported in Table 1 and vulnerability
factors for the different structures can be computed based on
these results and used to feed the presented system reliability
model.

5. Evaluating the software contribution to system’s reliability
through software virtualization

The software stack plays an important role in masking errors,
thus enabling to improve the system reliability. In order to decou-
ple the analysis of software masking probabilities from the target
hardware architecture, therefore enabling refuse of computed
statistics, we need to investigate methods and tools to:

� describe the software independently from the target hardware
architecture, and
� study how errors in the hardware resources propagate through

the software routines and possibly impact the correct behavior
of the applications.

Fig. 6 summarizes the main concepts used in CLERECO to ana-
lyze the software vulnerability factor of a system.

When analyzing software applications independently from the
target hardware layer, the Instruction Set Architecture (ISA) used
to encode the program, which represents the main link between
the hardware and the software domain, is still undefined. It cannot
therefore be exploited to analyze the fault propagation through the
software stack.

In CLERECO, we rely on the concept of software virtualization as
an efficient, flexible and cost saving solution to enable the abstrac-
tion of the ISA from the hardware layer. The software vulnerability
factor will depend on a Virtual Instruction Set Architecture (VISA)
used to describe complex programs, as well as on a set of Software
Fault Models describing the way hardware errors can manifest in a
program.

Resorting to these two basic building blocks, fault injection of
software fault models in a virtual environment can be efficiently
Table 1
Set of categories in which results of a fault injection experiment can be classified.

Hangs The application does not terminate within a reasonable time
interval. (we have set this interval to 3� of the execution time of
the fault-free case)

SDC The output of application has been corrupted
DUE An unexpected exception, assertion, or segmentation fault,

deadlock or interrupt occurred. Simulator crashes, either during
simulation or emulation phase, are also clustered into this category

Masked No mismatch at the application output
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exploited to analyze how faults propagate through the software
application, and how they impact the correctness of the results.
It is worth remembering that performing fault injection campaigns
at the software layer is far less computational intensive than per-
forming similar campaigns at the architectural or RTL level. This
enables us to characterize realistic applications in a limited com-
putational time.

5.1. Virtual instruction set architecture

Different virtualization systems implementing VISAs are avail-
able in the literature: Java [57], .NET [58]/Mono [59], and LLVM
[60].

Java is widely used in web-based applications. However, it has
the disadvantage of not being really suitable for both High
Performance Computing and Embedded Applications. Moreover,
the Java virtual machine is restricted to the Java programming lan-
guage, thus limiting the spectrum of software that can be analyzed.

The .NET framework consists of a virtual machine able to exe-
cute programs written using the Common Language
Infrastructure (CLI) defined by Microsoft and standardized by ISO
and ECMA. To the best of our knowledge, no fault injection envi-
ronment is actually available for this framework.

LLVM (Low Level Virtual Machine) is a framework that uses vir-
tualization with Virtual Instruction Sets to perform complex anal-
ysis of full software applications on different architectures.

LLVM is a compiler framework designed to support transparent,
life-long program analysis and transformation for arbitrary pro-
grams, by providing high-level information to compiler transfor-
mations at compile-time, link-time, run-time, and in idle-time
between runs. In addition to the full tool chain required for soft-
ware design (e.g., compiler, optimizer), LLVM provides a set of
additional tools explicitly devoted to perform investigation of dif-
ferent software properties.

LLVM uses the Intermediate Representation (IR) as a form to
represent code in the compiler. It symbolizes the most important
on, moving from the hardware architecture to the system level: A CLERECO
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aspect of the framework, because it is designed to host mid-level
analysis and transformations found in the optimizer section of
the compiler. The LLVM IR is independent from the source lan-
guage and the target machine. It is easy for a front-end to generate,
and expressive enough to permit important optimizations to be
performed for real targets.

Given these premises LLVM represents a very promising virtual-
ization platform for the analysis of the Software Vulnerability
Factor of complex applications. It has therefore been selected as
target VISA for the CLERECO project.

5.2. Software fault models

Research approaches that try to consider the impact of software
in the reliability of a full system still start from low level hardware
faults [61,62], trying to propagate them through the hardware
architecture to the software layers in order to evaluate their impact
on the final system outcome [63–65]. This propagation method
requires complex and time consuming simulations of hardware
models that do not enable to analyze complex software stacks.

CLERECO software analysis approach starts from a set of soft-
ware fault models defined at the VISA level that can be directly
linked to the effect of faults arising at the hardware level. Table 2
reports a preliminary list of identified Software Fault Models con-
sidered in CLERECO. Software fault models can be grouped in three
main categories:

� Data fault models: they enable to model errors corrupting data
processed by a software application. They include: (i) Wrong
Data in a Operand, (ii) Not-accessible Operand, and (iii) Operand
Forced Switch.
� Code fault models: they enable to model errors that corrupt the

set of instructions composing a program. They include: (i)
Instruction Replacement, (ii) Faulty Instruction, (iii) Control Flow
Error.
� System fault models: they enable to model both timing errors

and communication/synchronization errors during the software
execution. They include: (i) External Peripheral Communication
Error, Signaling Error, Execution timing Error, Synchronization
Error.

5.3. LLVM based fault injector

LLVM already comprises two projects aimed at developing
LLVM based fault injectors: (i) LLFI [66,67] and (ii) KULFI [68].
Table 2
Software Fault Models.

Software Fault Model Description

Wrong Data in a
Operand

An operand of the ISA instruction changes its
value

Not-accessible Operand An operand of the ISA instruction cannot change
its value

Source Operand Forced
Switch

An operand is used in place of another

Instruction Replacement An instruction is used in place of another
Faulty Instruction The instruction is executed incorrectly
Control Flow Error The control flow is not respected (control-flow

faults)
External Peripheral

Communication Error
An input value (from a peripheral) is corrupted or
not arriving

Signaling Error An internal signaling (exception, interrupt, etc.) is
wrongly raised or suppressed

Execution timing Error An error in the timing management (e.g. PLL)
interferes with the correct execution timing

Synchronization Error An error in the scheduling processes causes an
incoherent synchronization of processes/tasks
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Nevertheless, both projects do not fit CLERECO requirements.
Their main limitation is the set of considered fault models, which
are mainly limited to bit-flips in the microprocessor and do not
consider high level fault models as the one defined in Table 2.
Moreover, both LLFI and KULFI define the outcome of the fault sim-
ulation as the impact of the hardware faults on the whole system
while in CLERECO we are interested on evaluating the impact of
the defined software fault models on the software execution,
decoupling this analysis from the hardware architecture.

We therefore designed an ad hoc fault injection infrastructure
on top of the LLVM virtualization framework. The tool is able to
process the following information items:

� The original target source code written in any programming
language supported by LLVM [69] (e.g., C, C++, Objective-C,
Fortran, Python).
� An input file containing the fault injection parameters: the set

of software fault models to inject and the corresponding num-
ber of simulations to perform, as well as the list of variables
to monitor after the injection and their corresponding location.
� A set of parameters that enable to tune how the simulation

results are compared against a golden execution to identify
classes of faulty software behaviors.

As an output the tool provides a set of statistics on the identified
software faulty behaviors as classified in Table 1.

Fig. 7 presents the structure of the fault injector environment.
Starting from the original source code, the tool generates the
LLVM code that is used in the whole process of injection and anal-
ysis. Three main steps are then performed.

Step 1. Software fault models are injected into the LLVM code
respecting the input parameters. A LLVM file representing a
faulty program is generated for each fault.
Fig. 7. Design of the fault simulator.
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Step 2. The faulty programs are executed and each output is
saved in a log file. Also the original LLVM code is executed
and its output is redirected to a golden file.
Step 3. The final step is the analysis, where the log files corre-
sponding to the outputs of the fault injection are compared
with the golden output in order to evaluate the different soft-
ware behaviors. Based on these statistics, vulnerability factors
for the different software functions can be easily computed
and eventually used to populate the system level reliability
model proposed in Section 3.

6. Conclusions

Reliability is a key challenge for the next generation computing
systems, and its precise evaluation in the early stage of the design
process is pivotal for the design of high optimized and efficient
future systems.

Current tools and models are still not mature to provide early
reliability evaluations for a large set of applications as the ones that
will be expected in the upcoming computing continuum. By clos-
ing this gap, significant improvements in the products perfor-
mance and quality will be expected.

In this paper we have presented a very high level overview of
the preliminary achievements obtained by the FP7 CLERECO pro-
ject. We are aware that, due to limits in space several technical
details on the specific methodology could not be included.
Nevertheless, the paper should give the reader an indication on
the roadmap followed in the project to implement cross-layer early
reliability evaluation tools. Results presented in this paper are
related to the first year of activity of the project. Several activities
are still on-going and new tools and models are expected to be
delivered in the upcoming months in order to build a full frame-
work enabling reliability evaluation starting from the technology
up to the full system.

To conclude we would like to emphasize that CLERECO solu-
tions are not intended to replace reliability validation techniques
employed at the end of the design to assess the final reliability of
a product before its commercialization (e.g., stress tests, radiation
tests, etc.). Instead they work at the beginning of the design cycle
to help reliability engineers taking decisions able to optimize the
designed systems and to increase the probability of success of
the designed products.
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