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Abstract—Multi-Agent Based Simulations (MABS) relies on
modeling the behavior of individual entities and their inter-
actions in a virtual environment. Nowadays, MABS are used
for studying various complex systems such as crowds, animal
societies, ecosystems, traffic behaviors or the Market. So MABS
are experimental research tools that contribute to our under-
standing of the mechanisms embedded in these complex systems.
Still, studying some complex systems may require to consider
millions of individuals. In such a case, the computing resources
which are required represent a major obstacle for MABS end-
users. In this respect, General-Purpose computing on Graphics
Processing Units (GPGPU) is a relevant approach for addressing
performance and scalability issues. However, GPU programming
requires expert skills, which strongly limits both the accessibility
and the re-usability of the frameworks developed using GPGPU.
This paper presents a MABS design guideline, dedicated to
the GPU context, which allows to use the GPU power without
sacrificing the accessibility of MABS frameworks.

Index Terms—High Performance Computing, GPGPU, Multi-
Agent Based Simulation

I. INTRODUCTION

Because complex systems are composed of many interacting
entities, studying their properties using digital simulation may
require a lot of computing resources, raising scalability issues.
So, the execution performances of a simulation model often
represent a major obstacle which strongly limits the extent to
which a model could be studied, especially with respect to
the number of considered entities and the size of their virtual
environment.

Meanwhile, in the scope of High Performance Computing
(HPC), General-Purpose Computing on Graphics Processing
Units (GPGPU) has a special place and is gaining more
attention as it can drastically increase the performance of a
simulation model for a cheap investment [1]. Indeed, almost all
today 3D graphic cards are equipped with GPGPU capacities.

However, using and programming GPU devices is not
a trivial task and requires a particular mindset because it
relies on a highly specialized architecture, which defines a
very specific programming context. Indeed, because they are
designed for graphics, GPUs are very restrictive in operations
and programming and the hardware can only be used in certain

ways. Therefore GPU programs have to (1) fit this architectural
context and (2) follow the stream processing paradigm1 [2]. So
GPGPU is only useful and effective for problems which can be
modeled with respect to these programming and architectural
contexts. Especially, it is not possible to follow a usual object-
oriented approach for modeling a system.

This paper focuses on the use of GPGPU for developing and
simulating Agent-Based Models (ABM). In such models, all
the entities of a system are concretely modeled and simulated
so that they act and interact on a shared virtual environment
[3]. Because Multi-Agent Based Simulations (MABS) mostly
rely on object-oriented implementations, usual multi-agent
models cannot use directly GPU devices without a significant
amount of translating work. Indeed, using stream processing,
many advantages of the object-oriented programming cannot
be used so that reformulating existing agent models accord-
ingly is necessary. So, to be executed on GPU devices, a multi-
agent model has to be entirely reconsidered, which requires
particularly advanced programming skills.

So, despite the existence of research works demonstrating
the huge gains which could be obtained thanks to GPU
devices (to hundreds times faster than with usual multi-
agent simulation frameworks [4]), the specificities of GPU
programming raise a number of problems that strongly limit
the accessibility and the re-usability of ABM developed using
GPU programming.

Therefore it comes as no surprise that only few research
projects are inclined to invest time in this technology be-
cause the sustainability of the produced code is difficult to
obtain. GPU programming is thus not spreading as it could
be in the MABS community. So for now, works mixing
GPU programming and MABS are mainly related to very
specific domains and experiments and do not focus on code
genericness. Notably, there is no generic MABS frameworks
integrating GPGPU, especially the widely used NetLogo [5]
and RePast [6] platforms.

1Given a set of data (a stream), a series of operations (kernel functions) is
applied to each element in the stream.



This paper reports on the work we have done to use GPU
programming in TurtleKit, a generic Logo-based Multi-Agent
Based Simulation (MABS) platform [7]. Doing so, our goal
was to (1) take advantage of the GPU for achieving large scale
simulations while (2) preserving the programming accessibil-
ity of the platform and especially its object-oriented API. The
paper presents this developing experience and proposes a GPU
MABS design guideline derived from this experiment.

Section II presents examples of how GPGPU is used for
developing ABMs and highlights their limits with respect to
our objectives. Section III presents the TurtleKit platform and
the simulation model we used as a benchmark to test the
integration of GPU computing in the future third version of
this platform. Section IV details how we designed a first
GPU module by reformulating two different environmental
dynamics, namely the diffusion and the evaporation of digital
pheromones, and then reports on the results obtained. Section
V discusses how we designed a second GPU module by refor-
mulating some agent computations as environmental dynamics
computed using the GPU. Section VI presents a generalization
of our work as a MABS design guideline specifically dedicated
to the GPU context, namely the GPU delegation of agent
perceptions principle. Section VII concludes the paper and
discusses related perspectives.

II. GPGPU FOR MAS-BASED COMPLEX SYSTEMS

Thanks to hundreds of cores available on today graphic
cards, GPU allows to perform thousands of similar compu-
tations at once in parallel on the graphic card, rather than
sequentially using the CPU. This characteristic is particularly
of interest when considering complex systems which are
modeled using the Multi-Agent System (MAS) paradigm. In
such systems, similar computations have to be done billions
of times. So MAS are a perfect candidate for massive im-
provement using GPGPU and there are many works reporting
on agent-based models developed using GPGPU for different
application domains such as large scale crowd simulations (e.g.
[8]), biology (e.g. [9]) or flocking simulations (e.g. [10]).

For instance, in [11], the FLAME cellular level agent-based
simulation framework shows impressive performance enhance-
ment for GPU simulations, even when compared to a cluster
of CPUs. As highlighted by the authors, such improvements
are invaluable with respect to the fast development of such
complex models, especially because this allows for real-time
visualization and thus real-time interaction.

To obtain this result, the FLAME agent model has been
entirely translated in GPU code, thus raising the problem of
programming accessibility. Dealing with this issue, the authors
propose to abstract the end-users from knowing GPU by
defining a XML-based formalism which is used to specify the
behavior of the agents. If this is a good solution with respect to
end-users, modifying or extending the proposed agent model
still requires GPU knowledge, thus limiting both the scope the
framework and its re-usability.

Regarding genericness, [4] proposes an interesting work that
considers a whole class of ABMs at once, namely spatial

ABMs. Such ABMs consist of a 2D discretized grid containing
situated information and a collection of mobile agents. The
widely used NetLogo platform [5] is an example of this class
of ABMs. [4] clearly explains that the major challenge of
this work was to reformulate this generic ABM in terms of
stream computation, especially agent mobility, death, replica-
tion, execution orders and collision. So the authors propose
to map agent states to textures so that these dynamics can
be implemented using GPU. With respect to the execution of
standard models such as SugarScape, the reported results show
impressive enhancements in terms of speed and scalability.

Still, as remarked by the authors, applying such an all-in-
GPU approach, there is an important trade-off which is that
many advantages related with the object-oriented program-
ming are lost in the reformulation process. Especially, creating
a new simulation model requires to create new GPU kernels
to handle its specificity, and therefore GPU programming
skills. With respect to end-users, such a lack of programming
accessibility is a major limitation for the development of
generic ABM frameworks.

More generally, studying the related literature, it is clear
that the technical difficulties related with GPU programming
naturally tend to both (1) narrow the scope of the developed
frameworks and (2) limit their programming accessibility.
This because the underlying agent model is often intrinsically
related to the GPU code so that one has to directly modify
it to make the agent model evolve. All-in-GPU-based agent
frameworks are thus mostly restricted to a specific application
domain and/or require advanced GPU skills.

III. INTEGRATING GPU WITHIN TURTLEKIT

A. The TurtleKit Platform and the MLE Model

Like NetLogo, TurtleKit [7] is a spatial ABM, implemented
with Java, relying on an agent model which is inspired by
the Logo programming language. Especially, agents emit and
perceive digital pheromones which diffusion and evaporation
dynamics are handled by the environment (the 2D grid), thus
creating pheromone fields. Handling such dynamics requires
a lot of computing resources, which limits both performance
and scalability, even when few pheromones are used.

Developing TurtleKit, our primary goal is programming
accessibility so that we cannot choose an all-in-GPU approach.
That is why we apply an intermediate approach that consists
in integrating iteratively GPU parts in the simulation platform
while ensuring that the TurtleKit API remains unchanged.

To this end, we choose to prototype and experiment with
the model proposed in [12]. In this paper, a model of multi-
level emergence (MLE) of complex structures is defined using
a unique and very simple recursive agent behavior. More
precisely, starting with only one kind of agents (level-0), the
agents evolve and build a recursive structure having a circular
shape. That is, level-0 agents turn around level-1 agents that
turn around level-2 agents and so on.

To achieve this, the agent behavior relies on perceiving,
emitting and reacting to three different types of pheromones:
(1) presence, (2) repulsion and (3) attraction. Presence is used



Fig. 1. agent computations versus environment computations in pure Java MLE model simulations

by an agent to evaluate how many agents are in its vicinity
and decide if it has to mutate to the next or preceding level.
Roughly a mutation occurs if an area is overcrowded or empty.
Repulsion and attraction are both used by the agents to create a
circular zone of attraction around them. The behavioral process
is decomposed in four stages: Perception, Emission, Mutation
and Move. So, the state and the behavior of each agent is
completely defined by only one integer which is its current
level. The level simply modifies the agent’s emission rate and
limits perceptions to pheromone of adjacent levels.

B. MLE as a Benchmark for Integrating GPU Modules

Theoretically, the highest level which could be observed
with the MLE model is related to only two parameters: (1)
the size of the environment, because large structures require
room to appear and (2) the number of initial agents, because
level-i structures need a certain number of level i-1 agents to
appear, and so on.

Considering our objectives, reimplementing the MLE model
is thus a perfect benchmark because it rapidly requires to
increase both the size of the environment and the number
of agents. Moreover, each additional level requires to manage
three additional pheromones. So, scaling up MLE simulations,
the first issue is related to the computing resources required
for applying the diffusion and the evaporation processes: Each
pheromone requires to perform computations for each cell
of the grid. So, even if simple, the complexity of these
computations is quadratic with respect to the grid’s side length.

And indeed, as illustrated on figure 1 which reports on
simulations of the MLE model done without GPU, even when
the population of agents is low, the time required to compute
environmental dynamics becomes very high as soon as the size
of the environment is increased.

That is why we decided to test the integration of GPU parts
in TurtleKit by first translating the diffusion and evaporation
dynamics into GPU code. Indeed, because they are completely
decoupled from the agent behavioral model, it is possible to
create a GPU module that does not modify the agent model
API at all.

IV. THE GPU DIFFUSION MODULE

A. GPU Translation for the Evaporation Process

To explain how these computations have been translated,
we now focus on evaporation because it is the simplest one.
The evaporation of a pheromone on the grid simply relies on
multiplying the quantity which is on each cell by a certain
coefficient between 0 and 1 (the evaporation factor). The
sequential implementation of this dynamic could be as follows:

Algorithm 1 evaporation(cells, width, height, evapCoef)

for i = 0 to width do
for j = 0 to height do
cells[i][j]← cells[i][j]× evapCoef

end for
end for

Before presenting the corresponding translation, let us first
explain how GPU code is designed so that it could be executed
on a GPU device. Roughly, a GPU device is able to proceed the
parallel execution of a procedure, namely a kernel, by numer-
ous threads. These threads are organized in blocks, which are
themselves organized in a grid of blocks. Each thread notably
has 3D coordinates, x, y and z localizing it within a block,
and each block also has three spatial coordinates that localize
it within the grid. Moreover, each block has a limited thread
capacity according to the hardware in use.

So, considering only the 2D coordinates of the blocks and
threads, it is possible to define a 2D grid of threads that maps
a concrete 2D array of data. For instance, if the capacity of a
block is 1024 threads, one can work with a grid of 1000×1000
by allocating a grid of blocks which size is 32×32, with each
block having a size of 32×32. This produces a global over-
sized matrix containing 1024×1024 threads. This too large
size is not a problem as it will be handled in the GPU code.
So, the dimension of the grid and the dimension of the blocks
are two fundamental parameters which are used when calling
a kernel for execution on the graphic card. In our case, this
allows to map each cell of a grid with a unique thread.

So, the evaporation kernel could be programmed as follows:



Algorithm 2 GPU evap(cells, width, height, evapCoef)

i← blockIdx.x× blockDim.x+ threadIdx.x;
j ← blockIdx.y × blockDim.y + threadIdx.y;
if i < width and j < height then
cells[i][j]← cells[i][j]× evapCoef

end if

When the execution of this kernel is called on the GPU, all
the allocated threads execute the GPU evap procedure. The
two first lines of this procedure determine the coordinates of
the executing thread. Then a test is done to know if this thread
is inside the grid boundaries. If it is the case, the corresponding
cell is updated according to its current value.

The diffusion kernel is also easy to derive from its sequential
counterpart. So, we produced a GPU module for evaporation
and diffusion, called GPU diffusion module latter on for
simplicity.

B. Results for the GPU Diffusion Module

Here we compare the GPU diffusion module with a sequen-
tial implementation. Figure 2 shows the results we obtained
with tests done outside any concrete simulation model, thus
avoiding noise produced by other treatments. Besides, as we
want to keep Java as main language for TurtleKit, we use
the JCuda (Java bindings for Cuda2) library which allows to
call GPU kernels, written in C, directly from Java. The tests
have been done using an Intel Xeon CPU @ 2.67GHz and a
Nvidia Quadro 4000 embedding 256 cores, which constitutes
an average number for a GPU device at the present time.
The version of the Cuda toolkit used for all the presented
experiments is the 4.1 and the version of the JCuda library is
the 0.4.1.

Figure 2 shows the results obtained with different environ-
ment sizes for the diffusion and evaporation of one pheromone.
Not surprisingly, results show that even for the smallest grid
(100×100) the JCuda version performs better. As the environ-
ment size increases, the GPU module completely outperforms
the sequential version: On an environment of 2000×2000, the
GPU module is more than twenty times faster.

With respect to our objectives, in these tests we take
into account that the result of one iteration should be made
available for use in the Java code, i.e. Java agents should
be able to perceive the result at each time step in a real
simulation. This requires to call synchronization procedures
that synchronize the CPU and the GPU so that they do not
modify the data at the same time. If we let the GPU do all the
iterations without being interrupted, the GPU then performs
more than ten times faster than when using synchronizations.

Other remark, there are a lot of existing Cuda parameters
that could be set. Some of them can greatly impact the
efficiency of a kernel call. For instance, a general GPU
programming rule is to make a kernel call with at least as

2Compute Unified Device Architecture, Cuda is the programming frame-
work for Nvidia GPU graphic cards.

Fig. 2. Diffusion process: Java sequential vs. JCuda

many blocks as available cores on the graphic card. While not
mandatory, not considering this rule can dramatically reduce
the efficiency of a kernel call.

Therefore, looking at these results, one has to keep in
mind that this is only what is obtained in the context of our
particular software and hardware configuration. Depending on
the configuration, it is possible to obtain very different results
in terms of ratio. Here, the most important information is
that the GPU diffusion module does scale very well while
the sequential one does not at all.

V. THE GPU FIELD PERCEPTION MODULE

A. Next Bottleneck: The Agents

The integration of the GPU diffusion module within
TurtleKit was not a problem thanks its modularity: It only
concerns environmental dynamics. Besides, the enhancement
provided by the module was easy to observe. So, when we
experimented this GPU module on the MLE model, we were
able to scale up the size of the environment to values that were
out of reach before.

Figure 3 presents some of the results we obtained on the
MLE model with different sizes of environments and agent
populations. The corresponding experiments clearly show that
scaling up the size of the environment is easy only when Cuda
is in use. Indeed, as the size of the environment increases
the pure Java version becomes very slow because of the
sequential nature of the diffusion algorithm. We thus reach one
of our goals which was to be able to scale up the size of the
environment while using complex environmental dynamics. In
this respect, the GPU module clearly makes the difference,
especially considering small agent populations.

However, as previously explained, obtaining higher level
structures for the MLE model requires to simultaneously
increase both the size of the environment and the number of
initial agents. And as the number of agents was increasing,
we observed that most of the execution time was now used
for agent-level computations. Indeed, analyzing figure 3, one
can notice that the benefit which is obtained thanks to the
GPU is less obvious for the highest population densities. More
precisely, the agent computations, that is the CPU computing
part, take more and more importance in the simulation total
time, making the environmental dynamics computations, that



Fig. 3. Comparison of MLE simulations done with Java only versus using the GPU field diffusion module

is the GPU computing part, small in terms of time with respect
to all the computations that have to be done.

Figure 4 and 5 illustrate this aspect by showing how much
time is taken by each part of the simulation model, namely
(1) the agents and (2) the environment, for each simulation
mode: Pure Java and with the GPU module respectively. On
figure 4, as previously mentioned, one can see that environ-
mental computations clearly represent a major problem for the
pure Java version as soon as the size of the environment is
increased. Still, as the environment becomes more populated
with agents, the agent computations become more and more
important to the point that they eventually represent another
bottleneck when simulating the MLE model with a big number
of agents.

And indeed, this aspect can also be observed on figure
5 that details the different computation times with respect
to the GPU diffusion module version. Especially one can
see that, despite the fact that computing the environmental
dynamics using the GPU seriously reduced the simulation
time, as the number of agents increases, the computation time
required for their behaviors is so high that the environment
part becomes negligible. So, even if the problem we had
with the performance related with computing environmental
dynamics has been addressed successfully, the time required
for computing the behaviors of the agents clearly becomes the
next bottleneck when scaling up the MLE model.

Profiling the execution of the MLE model, we easily found
out that the agents use most of their (CPU) time computing
how they should move with respect to pheromone field gra-
dients. More precisely, each agent has to know the direction
of the neighboring cell having the smallest/greatest quantity
for a particular pheromone to decide the heading of its next
move: Methods such as getMaxDirection(attractionField) or
getMinDirection(repulsionField) are intensively used by the
MLE agents. Such computations requires to probe all the cells

around the agent one time per pheromone of interest, and then
to compute the direction of the minimum and/or maximum
values. Figure 6 shows an example of this computation for
one cell (the east direction corresponds to 0 degree).

In the present case study, the diffusion and the evaporation
processes are the only environmental dynamics used in the
MLE model. As we already successfully translated them, it
is obvious that the next GPU module to try should take care
of the agents. However, sticking to our priority of keeping the
programming accessibility of the agent model implementation,
a solution that does not imply an all-in-GPU approach has to
be found. The next section presents the solution we use and
shows how it takes advantages of the GPU for the agents while
ensuring the stability of the agent API.

B. Delegating Agent Perceptions to the Environment

Considering how MLE agents perceive and analyze
pheromone fields, it should be remarked that the related
computations do not involve the state of the agent that triggers
the perception. So, these computations always give the same
result for a particular time step: Pheromone field gradients are
the same whatever the state of the agents.

So, thanks to this independence between the agent’s state
and these computations, the idea is to do these perceptions
using a GPU module. However, at first sight, this would mean
to finally translate the agent model within a GPU module
because these perceptions are triggered by the agents, not by
the environment as it is the case for the diffusion process.

To overcome this difficulty, the proposed solution is to com-
pute these high level perceptions directly in the environment
everywhere and every time. Doing so literally reifies all these
perceptions as one single environmental dynamic, just like the
diffusion process is. In other words, we define a new GPU
module representing a new environmental process which will
be in charge of computing all the perception results which



Fig. 4. Comparison computation time considering agent computations versus environment computations for the Java version

Fig. 5. Comparison computation time considering agent computations versus environment computations for the GPU diffusion version

could be asked by the agents.
This solution may seem counterintuitive for anyone who

is not used to GPU programming. Especially because many
of the computed results will not be used by the agents. But
this is where the specificities of GPU programming come into
play. Caricaturing and ignoring the details, making a GPU
computation for only one cell takes about the same time as
doing it for all the cells.

One can reasonably argue that the previous statement is only
a rough approximation of reality: Doing unused computations
should be avoided as far as possible. To this end, another
solution would be to create and maintain another grid keeping
track of the agents’ presence so that a thread could test if a

computation should be done or not. But in our case it turns out
that this solution did perform really poorly: The cost induced
by the maintenance of this grid is too high and far greater than
when this information is ignored and thus not maintained.

Besides performance, the proposed solution completely de-
couples this new dynamic from the state of the agents. So this
new module is more independent and thus reusable, which is
desirable from a software engineering point of view.

Following this solution, we have implemented a GPU
module which we call the GPU field perception module.
Implementing this module, we define a new GPU kernel in
the same way we have done for the diffusion module. The
main difference is that this new kernel works on three grids



of data: One for the actual quantity of pheromone on each
cell and two others for stocking the minimum and maximum
directions of the field for each cell.

Fig. 6. Example of field min and max directions for a cell

C. Results Obtained with the GPU Field Perception Module

This section compares the results which have been obtained
on the MLE model with only the GPU diffusion module and
with both modules [13]. Considering the hardware configura-
tion, the experimental setup used for obtaining the presented
results is the same as in section IV-B. The results reports
on MLE simulations where the maximum level of an agent
has been set to 5 so that there are 15 pheromone fields to
handle for each time step (45 grids of data). Figure 7 compares
the simulation speed for various agent population density and
environment size. For instance, for a density of 140% in an
environment of 2000× 2000, there are 5.6 millions of agents
interacting on a gird of 4 millions cells.

Figure 7 shows that adding the GPU field perception module
does not speed up the simulation only for the lowest densities
and environment size which are here reported. One partial
explanation for this negative result is the overhead induced by
the additional synchronizations required between the GPU and
the CPU on the different stocked grids. This also shows that,
with our particular configuration, there is of course a threshold
under which it is not worth to trigger a GPU kernel because
of synchronizations, the worst case being only one agent in
a huge environment. And indeed, when simulating this worst
case the simulation is always slower. However, in our tests
this overhead was not very high for densities around 5% and
becomes negligible for the 10% density, which is a low value
with respect to the MLE benchmark for instance.

So, even with the overhead induced by the additional GPU
calls, the field perception module becomes efficient when the
agent population density is 20% on the largest environments.
Then, the simulation is always faster with the GPU field
perception module, especially it is about two times faster for
the biggest cases. Considering the fact that we used an average
GPU device, these results are really promising and at least
show the feasibility and the interest of the proposed approach,
especially with respect to scalability.

Still, solely based on the experiments we have done so far,
it should be remarked that our results are far from being as fast

as systems applying an all-in-GPU approach. Obviously, there
is still a trade-off to accept for keeping the agent model so that
its implementation is safe from the difficulties and specificities
of the GPU programming.

But, let us remind again that the presented results are deeply
related to the configuration used. Especially, we use a NVidia
Quadro 4000 containing 256 cores while the recent NVidia
Tesla K10 contains 2 GPUs with 1536 cores each: A total
of 3072 cores on only one card. So, the perspectives offered
by GPU programming are really promising and encourage us
to keep on going with the presented approach for TurtleKit.
Especially, we plan to benchmark other models to identify
other GPU modules using the presented approach. To this end,
in the next section we propose a generalization of the work
we have done in the form of a design guideline dedicated to
the GPGPU context, namely GPU environmental delegation
of agent perceptions.

VI. GENERALIZING THE DELEGATION STRATEGY

A. Environment, First Order Abstraction in MAS

From a high level perspective, the proposed solution relies
on transforming agent-level perceptions into environmental
dynamics. This makes the environment an even more crucial
entity in the design of our ABM. So, generalizing our work,
the proposed strategy could be related to other research works
that consider the environment as a core concept of MAS.

Considering the environment as a first order abstraction in
MAS is today well accepted and has proved to be a relevant
approach for modeling and developing MAS [14]. Especially,
it could help to enhance the efficiency of agent interactions.
For instance, in [15], real-world unmanned vehicles (AGVs)
use a virtual environment which is in charge of validating their
future moves. When detecting a possible future collision, the
environment prioritizes the different moves and thus automati-
cally solve spatial conflicts. Doing so, the agents do not have to
handle this problem on their own, which allows to (1) decrease
the complexity of the agent behavior and (2) make the agents
focus on their real task which is to go from point A to B.

More generally, using the environment as an active entity
is very interesting for simplifying the behavioral process of
the agents. The underlying idea is that agents are in fact
usually not interested in low level environmental properties
but rather in high level percepts. So, it makes sense to let the
environment do the work of producing high level percepts from
raw environmental data. Such an approach allows to design
MAS with a clear separation of concerns [16].

Within the specific scope of MABS, considering the en-
vironment as a core entity during the modeling phase has
also been identified as a good design principle that brings
simplification and eases the reuse and the integration of the
different simulation processes [17].

B. GPU Environmental Delegation of Agent Perceptions

In the scope of our work, considering the environment as a
first class entity is the heart of the solution. This enables us
to reach our two requirements: (1) keeping the programming



Fig. 7. Comparison of MLE simulations done with and without the GPU field diffusion module

accessibility of the agent model in a GPU context and (2)
being able to scale up both the number of agents and the size
of the environment.

From this developing experience, we derive and propose
a design guideline which (1) follows the idea of an active
environment and (2) takes into account the context of GPU
programming. This guideline, namely GPU Environmental
Delegation of Agent Perceptions, could be stated as follows:

Any agent perception computation not involving the
agent’s state could be translated to an endogenous
dynamic of the environment, and thus considered as
a potential GPU environment module.

Such a guideline does not only follow the idea of consid-
ering the environment as a first order abstraction, but more
importantly also focus on easing re-usability of developed
GPU modules. For instance, in our case we are able to directly
use the developed GPU modules with other agent models
working on pheromone fields such as ant-based ones.

Therefore we argue that such an approach could help to
address the re-usability issue by promoting the development
of more generic GPU modules. Indeed, such modules only deal
with environmental dynamics and high level information (e.g.
perceptions) that do not rely on a particular agent model, but
only on a particular model of environment. Additionally, this
guideline suggests a more fine grained approach for integrating
GPU modules which eases the development and maintenance
tasks thanks to a clear separation of concerns.

Considering applicability, for now we explicitly limits the
scope of our approach to computations that do not involve
agent states. Regarding more complex perceptions, obviously
it will not be always possible to find an equivalent environ-
mental model but addressing this limitation should increase
the scope of the approach and is in our future research plans.

Finally, we want to emphasize that the interest of GPU
environmental delegation is not restricted to our objectives.

Indeed it could be also considered when applying an all-in-
GPU approach for MAS because its main point is to promote
re-usability in the particular context of GPU programming.

VII. CONCLUSION AND PERSPECTIVES

Studying complex systems with MABS, one may have to
deal with model composed of thousands of entities evolving in
large environments, which requires a lot of computing power.
In this respect, scalability issues obviously represent a major
limit to the extent a model could be studied. In this paper,
we first explain why GPGPU represents a very interesting
solution to the scalability problems which may be encountered
when using MABS. GPU devices are cheap, available on the
majority of today graphic cards, and can dramatically increase
the performance of MABS.

Using GPGPU for MABS, we argue that there is need for
an approach which differs from an all-in-GPU perspective
for MABS: The development works which are done in this
scope cannot be easily reused due to the GPU programming
specificities. Indeed, GPU programming is so specific that one
can hardly use them in another experimental context: The
development efforts are simply lost as the complexity of the
programs which are obtained is too high.

In this respect, we presented the modular approach we use
to iteratively integrate some GPU modules in the prototype of
the third version of the TurtleKit MABS platform. Doing so,
the purpose of our work is to study the extent to which it is
possible to benefit from GPGPU without sacrificing the object-
oriented API of the TurtleKit agent model. To this end, we
have first explained how environmental dynamics such as the
diffusion and the evaporation of digital pheromones could be
easily translated in GPU code. Then, we showed why it could
be interesting to consider some of the agent computations for
GPU translation in order to further increase the simulation
performance.



So we have presented a second GPU module which has
been integrated within TurtleKit and showed how our approach
enables us to use the power of GPU devices, once again
without changing the object-oriented API of the agent model,
thus fulfilling our primary objectives. Especially, we show how
it is possible to translate some of the perception behaviors of
the agents into environmental dynamics. So, the heart of this
work is to consider that the agents could be, and should be,
freed from the computations which are not specifically related
to their internal state. As discussed, this idea has to be related
with the principle according to which the environment is a
first class entity of multi-agent systems [14], [18].

Generalizing this work, we proposed the principle of GPU
environmental delegation of agent perceptions and advocated
that it represents an interesting design guideline for tackling
the re-usability issue in the context of GPU programming for
MABS. We argue that using such a guideline should help
to produce GPU modules that will be more easily reusable,
precisely because they will be completely disconnected from
any agent model, enabling code genericity and reuse.

A short term perspective of this work is to study other
models that require a lot of computing power like the MLE
model. For instance, in the scope of the simulation of flocking
models, the behaviors of the agents are largely based on com-
puting how they should move with respect to the positioning
of their neighbors. Such an information is not related to the
agent internal state and could be somehow related to the notion
of gradients. Therefore we expect that it should be possible to
define other GPU modules of interest by studying such models.

As a long term perspective, we intend to develop a library
of GPU modules implementing various environment dynamics
specifically designed for spatial ABMs. Today there are several
generic GPU libraries which have been produced such as
Nvidia CuBLAS (Compute Unified Basic Linear Algebra Sub-
programs), NPP (Nvidia Performance Primitives) for image,
video, and signal processing, GPU AI path finding, etc. We
think that applying such a modular approach in the scope of
MAS-based complex systems is one relevant way to go.
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