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SUMMARY

This paper presents a new method to parallelize programs, adapted to manycore processors. The method
relies on a parallelizing hardware and a new programming style. A manycore design is presented, built
from a highly simplified new core microarchitecture, with no branch predictor, no data memory and a three
stage pipeline. Cores are multithreaded, run out-of-order but not speculatively and fork new threads. The new
programming style is based on functions and avoids data structures. The hardware creates a concurrent thread
at each function call. Loops are replaced by semantically equivalent divide and conquer functions. Instead
of computing on data structures, we compute in parallel on scalars, favouring distribution and eliminating
inter-thread communications. We illustrate our method on a sum reduction, a matrix multiplication and a
sort. C implementations using no array are parallelized. From loop templates, a MapReduce model can be
implemented and dynamically deployed by the hardware. We compare our method to pthread parallelization,
showing that (i) our parallel execution is deterministic, (ii) thread management is cheap, (iii) parallelism is
implicit and (iv) functions and loops are parallelized. Implicit parallelism makes parallel code easy to write.
Deterministic parallel execution makes parallel code easy to debug.
Copyright c© 0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the past decade, processors have evolved from single core CPUs to multicore and manycore
processors and GPUs. Multicores started with the 2-cores Intel Core-2 introduced in july 2006 and
have grown up to the 18-cores Intel Xeon E7-88x0-v3 introduced in may 2015. Nvidia NV1 was
the first GPU, with only one core, launched in september 1995. The Nvidia GM200 launched in
march 2015 has 3072 cores. Manycores were introduced by the Tilera Tile64 (64-cores) in 2007.
Intel followed with the 61-cores Xeon Phi (introduced with a 32-cores in 2010). Kalray proposed in
2014 the 256-cores MPPA which was recently upgraded with the 288-cores MPPA2.

These different industrial products reflect three conceptions of parallel programming. The
multicore processors (from 2-cores to a few tens) address general purpose sequential applications.
The manycore processors (from a few tens to a few hundreds) concern parallel applications. The
GPUs (a few thousands) are used for vectorized computations.
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2 COMPUTING ON MANY CORES

option 1 option 2 option 3 option 4

B =* CA B =* CA B =* CAB =* CA

Figure 1. Four threads organizations to compute a matrix multiplication C=A*B in parallel

For a given problem, how can we match its programmed solution to the best suited processor?
Should we write a sequential program run on a single thread of a multicore processor? Would it be
cost-efficient to parallelize the code and run it on a manycore processor? Or can we find enough
regularities in the data to vectorize the solution and implement it on a GPU? A fourth option could
be to decompose the problem and have multiple pieces of code running on each of the three types
of parallel processors, using an heterogeneous computer [1].

Each of the four possibilities leads to use different programming languages (Java, High Parallel
Fortran, Glasgow Parallel Haskell, Cilk, Cuda, Open-CL), libraries (Pthreads, Open-MP, MPI) and
combining tools (MPI+OpenMP, Cuda+OpenMP, Cuda+MPI). The final result, i.e. the program
solving the initial problem, is likely to be tightly binded to the target computer. Migrating from a
multicore processor to a manycore one, a GPU or a hybrid core computer means rewriting most of
the code. Adapting programs to new processors is not done through a simple recompilation.

Is this situation inherent to the variety of problems or does it come from systems which are not
abstract enough to be applicable to the whole range of computational problems?

In this paper, we advocate for reconsidering both the hardware and the software, to provide a
single frame into which parallel programs can be quickly designed and safely run.

To illustrate some aspects of the actual parallel programming choices complexity, we consider
the matrix multiplication problem. Figure 1 shows, among a full range, four organizations of the
threads computing a matrix multiplication C[m,p]=A[m,n]*B[n,p], in increasing parallelism order.
In each subfigure, the red part represents the sources and results of a single thread. Option one uses
one thread per matrix C line. Option two has one thread for a subset of one matrix C column. Option
three has one thread per matrix C element. Option four has one thread per multiplication.

These organizations result in four quite different programs, would they be coded with the pthread
library, MPI or openMP (GPUs are not further considered in the paper). This is the consequence of
the explicit parallelism, i.e. thread creations, synchronizations and communications.

In each version there are different programming difficulties. In the fourth option a result matrix
element must be shared by the n threads writing to it. In the second option, the program should pay
attention to the false sharing at the junction of two consecutive subsets of a result column, i.e. the
size of each thread computation should be adapted to the cache organizations.

There is no best choice. It depends on the number of cores, the thread creation and
synchronization cost, the communication cost which itself depends on the cores and memory
topology. Even worse, a choice can be good today and bad later, with hardware and OS upgrades.

The rightmost computation seems to be the least efficient because it involves too small threads and
the writers must be synchronized. But this organization captures all the available data parallelism.

In this paper, we describe a new parallel programming model aiming to replace actual thread
based models. The proposed model relies on a parallelizing hardware briefly presented in section
2 and on a new programming style developed in section 3. The proposed hardware is based on a
simplified out-of-order core. Our processor is made of many small cores using registers rather than
memory, as a GPU, but it is MIMD rather than SIMD.

The programming model relies on a standard programming language like C with a gcc-like
compiler suite. The parallelization, instead of being static (compiler parallelizing directives) or
semi-static (compiler directives + OS primitives), is fully dynamic, i.e. parallelism is implicit in
a code written with a standard sequential language. The syntactical order of the instructions in the
code fixes the deterministic order of the computation, i.e. the sequential semantic. The program is
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COMPUTING ON MANY CORES 3

run in parallel thanks to the parallelizing hardware. The parallel run is reproducible because the
parallel semantic is equivalent to the sequential semantic.

A program written in a high level language like C can be interpreted as a parallel program when
the function call instruction semantic is slightly changed, assuming it forks. A resume thread is
created in parallel with the calling one. The core hardware implements the forking semantic of the
call instruction. Each core is multithreaded (like Intel Hyperthreading [2]) and communicates with
its neighbours through a bidirectional ring. At function call, a free thread slot is allocated on the
successor core to host the resume thread which is fetched in parallel with the main thread.

Parallelism is implicitly deployed and managed by the hardware. Communications and
synchronisations are implicitly derived from producers to consumers dependences. A reader is
matched with and synchronized to its unique writer by hardware renaming [3].

The model has many advantages among which:

• a run is parallel and deterministic,
• parallelism is implicit,
• loops are parallelized,
• no OS overhead,
• no hypothesis on the number of available resources,
• easy debugging of the parallelized code.

Hardware parallelization is compared to OS parallelization in section 4. Section 5 places our
proposition in the context of actual parallelizing methods and tools and concludes.

2. A PARALLELIZING HARDWARE

Figure 2 shows the manycore processor design. The left part of the figure is the general topology of
a 32-core processor and the right part is the inside of a core. The cores are linked by a bidirectional
ring (magenta color). A core communicates with its successor and predecessor: the send unit in
green is linked to the predecessor and to the successor receive units in red. The processor has a set
of shared L2 caches which hold code and I/O data (the L2 access buses are in cyan color).

L2

L2

L2

L2

receive send

Fetch Rename

PC IB IT

RT RRCompute

RR

IL1

Figure 2. A manycore processor

Each core hosts a set of threads (e.g. 16 threads per core). A thread is represented by its PC and
its renaming table (RT). The core pipeline has three stages (right part of the figure). The fetch stage
selects a ready thread PC to fetch one instruction from IL1. The instruction is saved in the thread
instruction buffer (IB). The rename stage selects a full IB and the instruction it holds is decoded and
renamed through the thread RT. The renamed instruction is saved in the instruction table (IT). The
compute stage selects one ready instruction in IT which is executed: it reads its sources from and
writes its result to the Renaming Registers (RR). At full speed, the processor runs one instruction
per cycle (IPC) per core (e.g. 1K IPC for a 1K-core processor).

The Instruction Set Architecture (ISA) is restricted to register-register, control and I/O
instructions. There are no memory-access instructions.
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4 COMPUTING ON MANY CORES

i n t sum( i n t i , i n t n ){
i f ( n==1) return f ( i ) ;
i f ( n==2) return f ( i )+ f ( i +1 ) ;
return sum( i , n / 2 ) +

sum( i +n /2 , n−n / 2 ) ;
}

void main ( ) {
p r i n t f ( ” s=%d\n ” ,sum( 0 , 1 0 ) ) ;
}
i n l i n e i n t f ( i n t i ){
return i ;
}

Figure 3. A vector sum reduction programmed in C

1 sum: cmpq $2 , %r s i /∗ i f ( n>2) ∗ /
2 ja .L2 /∗ goto .L2 ∗ /
3 movq %rd i , %rax /∗ rax = f ( i ) ∗ /
4 subq $1 , %r s i /∗ i f ( n==1) ∗ /
5 je .L1 /∗ goto .L1 ∗ /
6 addq $1 , %r d i /∗ r d i = f ( i +1) ∗ /
7 addq %rd i , %rax /∗ rax = f ( i )+ f ( i +1) ∗ /
8 .L1 : re t /∗ stop ∗ /
9 .L2 : movq %r s i , %rbx /∗ rbx = n ∗ /

10 shrq %r s i /∗ r s i = n /2 ∗ /
11 f o r k $3 /∗ s t a r t thread ∗ /
12 push %r d i /∗ send r d i ∗ /
13 push %r s i /∗ send r s i ∗ /
14 push %rbx /∗ send rbx ∗ /
15 c a l l sum /∗ rax = sum( i , n / 2 ) ∗ /
16 pop %rbx /∗ rece ive rbx ∗ /
17 pop %r s i /∗ rece ive r s i ∗ /
18 pop %r d i /∗ rece ive r d i ∗ /
19 movq %rax , %rcx /∗ rcx = rax ∗ /
20 addq %r s i , %r d i /∗ r d i = i + n /2 ∗ /
21 subq %r s i , %rbx /∗ rbx = n − n /2 ∗ /
22 movq %rbx , %r s i /∗ n = n − n /2 ∗ /
23 f o r k $1 /∗ s t a r t thread ∗ /
24 push %rcx /∗ send rcx ∗ /
25 c a l l sum /∗ rax = sum( i +n /2 , n−n / 2 ) ∗ /
26 pop %rcx /∗ rece ive rcx ∗ /
27 addq %rcx , %rax /∗ rax += sum( i , n / 2 ) ∗ /
28 re t /∗ stop ∗ /

Figure 4. A vector sum reduction translated into x86

Each core has two special units to send and receive messages to and from its neighbours. A
message is sent to the prior or next thread, hosted by a neighbour core (mostly, the successor). A
message contains a register. A new thread Program Counter (PC) value is sent to the successor core
when a call instruction is decoded. A register source r which is not locally set is imported from the
core hosting the prior thread.

Figure 3 is a vector sum reduction programmed in C and figure 4 is its translation in x86. Function
f(i) returns vector element i. The code does not implement the vector as an array but as a function
returning any of its elements (function f could, instead of providing the value itself, get it from an
input file; the OS I/O driver should allow parallel I/O, like in MPI2 [4]). The x86 translation does
not use any memory access. The computation is done within the set of architectural registers.

The fork $k instruction creates a new thread on the successor core, starting from the resume
address after the next call instruction. In between are k push r instructions. The push r instruction
sends a copy of register r to the new thread. The creating thread sends k values to the created thread.

For example, the fork $3 on line 11 starts a remote thread. The next three push instructions send
copies of registers rdi, rsi and rbx to the created thread. The call instruction sends the resume
code address, i.e. a copy of the return PC. Once the core hosting the new thread has received the
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COMPUTING ON MANY CORES 5

3 registers and the PC value, it starts fetching. The thread running the call on line 15 jumps to the
label target, i.e. to line 1 and the created thread fetches from line 16 in parallel.

The compiler inserts a pop r instruction to receive register r in the resume thread. For example,
the resume thread started at line 16 receives registers rbx, rsi and rdi sent by the main thread.

The send/receive machine instructions names are push/pop which can seem confusing. There is
no stack involved if the run is parallelized, only a value transmission (sent by push and received by
pop). A push instruction is turned into a send operation, which waits for the pushed register value
and then sends it to the destination. A pop instruction is turned into a receive operation, which waits
for the transmitted value and then writes it to the register destination. Push and pop instructions may
be run out-of-order. The reception order is irrelevant.

The presence of the push/pop instructions allows the hardware to switch between parallel and
sequential modes. The fork instruction, which creates a remote thread, is blocking until a free slot
has been allocated. If the instruction is run by the oldest thread and if no slot is free in the selected
core, a fail message is immediately sent back and the creating thread switches to sequential mode.
The call, ret and push/pop instructions regain their original stack related semantic. Each thread slot
has a fixed size private stack, which expands in L2. The thread switches back to parallel mode when
a ret instruction empties the stack. The oldest thread special behaviour guarantees that it may not be
blocked forever, ensuring a deadlock free parallel execution.

When run in parallel mode, a ret instruction stops its thread. In parallel mode, the call and ret
instructions do not save/restore the return address on the stack.

Figure 5 shows the parallelization of 11 threads summing a 10 integer vector. Each thread is
surrounded by a red rectangle. For example, thread 1 runs 26 instructions (9+9+8) on core 0. The
ret instruction on line 8 ends the thread.

step 1

step 2

step 3

step 4

step 5

step 6

step 7

thread 3 thread 4 thread 5 thread 6 thread 7 thread 8 thread 9 thread 10 thread 11thread 2thread 1

1−8 16−25

1−5,8

26−28

1

1

12

2 2

23

3 3

3

movq %rax, %rcx

7: addq %rdi,

24: push %rcx

27: addq %rcx, %rax

1,2,9−15

1−8

1−8

1−8

1−5,8

%rax

19:

pop %rcx

27: addq %rcx, %rax

1,2,9−15

1,2,9−15

1,2,9−15

1,2,9−1516−25

16−25

16−25

16−25

26−28

26−28

26−28

26−28

26:

core 0 core 1 core 2 core 2 core 3 core 3core 4core 3 core 2 core 1 core 2

Figure 5. Trace of sum(0, 10)

When the fork $3 instruction on line 11 is run, a new thread is started (thread 6, on successor
core 1). When the call instruction on line 15 is run, the return address (line 16) is sent to the created
thread as its starting fetch address. Thread 1 starts successively threads 6 and 2, both at line 16.

Every thread is linked by the hardware to its predecessor and successor (red lines on the figure).
When the successor links are followed, the sequential trace is built. Threads have a hierarchical
level, depicted in red figures on the top right corner of the threads surrounding rectangles. The
higher the level, the lower its figure. For example, threads 1, 6 and 11 form highest level 1.

The eleven threads are deployed in seven successive steps in the manycore thread slots.
As soon as a thread has executed all its instructions, it frees its hosting slot. In the example given

on figure 5, threads 3 and 8 are first freed, then 4 and 9, eliminating level 3. The oldest thread (i.e.
thread 1) is freed in parallel with 3 and 8. A thread can be freed if it is the oldest or if its predecessor
has a higher level and its successor has a higher or equal level.

During the run the tree of threads expands on the right and the bottom (new threads) and contracts
on the left and the bottom (ended threads). If a core gets saturated with threads, the expansion stops
there while no free slot is available but the contraction continues, freeing slots.
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6 COMPUTING ON MANY CORES

Concerning synchronizations and communications, the hardware matches a reader with its writer
through register renaming. The written value is copied to the reading source. For example on figures
4 and 5, instruction 7 in thread 1 writes the sum f(0)+f(1) into register rax (lower blue box on
figure 5). Instruction 19 rax source in thread 2 (upper blue box) is matched with instruction 7 rax
destination in thread 1, as it is the first rax writer met on the backward travel along the ordered
threads, starting from thread 2. In the same manner, instruction 27 rax source in thread 11 (upper
light blue box) is matched with instruction 27 rax destination in thread 10 (lower light blue box).
In a different way, instruction 26 rcx popped in thread 11 (rightmost green box) is matched with
instruction 24 rcx pushed in thread 6 (leftmost green box). In this case, the rcx value is directly
sent from thread 6 (core 1) to thread 11 (core 2) when computed. All these communications concern
neighbour cores.

3. A NEW PROGRAMMING STYLE

To take advantage of the parallelizing hardware, the programmer should adopt a new programming
style, including the following requirements:

• decompose the code into functions,
• translate for and while loops into divide-and-conquer template functions,
• avoid separating inputs and outputs from computations,
• recompute rather than store and load,
• avoid data structures, only use scalars: no memory, no pointer, no array, no structure.

This is illustrated by a parallelized matrix multiplication and a parallelized sort.
The programming style we describe looks like the functional programming paradigm [5] [6] [7].

The program examples are written in C and most of them would be more elegant in Haskell. We
have choosen C and x86 to keep close to the hardware.

The programming style we use is in some way more restrictive than the functional paradigm. A
program is a composition of functions which only compute scalars, rather than lists like in Lisp. We
want the computation to be optimally distributed, which requires to compute on scalars instead of
data structures. The programming style we propose is close to lambda-calculus [8], with expansion,
i.e. substitution, and reduction. But it may allow a restricted form of assignment, to save to registers
and later reuse intermediate computed scalars.

The general programming pattern is to organize a parallel computation from each result to output
and backward up to the inputs it uses. Each result is produced by an independent computation,
using its own copies of the inputs. Each computation is a succession of transformations from the
used inputs to the target output, with no intermediary structured storing.

If a set of scalar results are to be used more than once, each scalar may either be individually
recomputed or register saved and later restored. But the structured set of data should not be built in
memory and loaded because storing a structure in a manycore centralizes its data. In a manycore,
it is slower to gather a data structure, keep it in memory and later scatter its components than to
compute and use elements separately. It is also probably less energetically efficient because of the
energetical cost of memorization and communication. If the program should compute on structured
data, the data should only be structured externally from the computation. A data structure is input in
parallel and its scalar components are distributed to the set of parallel read instructions. The scalar
elements composing an output data structure are written in parallel. The parallel computation itself
does not manipulate any data structure.

The hardware is composed of some external memory holding the code to be run and the structured
input and output data. This external memory has a high throughput to allow for parallel I/O requests
from the processor. The processor is the one described in section 2, using private and shared caches
to shorten the external memory access latency. Input machine instructions move the data from the
external input to the processor, where the results are computed, which are sent back to the external
memory with output machine instructions. The memory hierarchy is naturally coherent as output
destinations are written only once.
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COMPUTING ON MANY CORES 7

The sum reduction program given on figure 3 is a composition of scalar sums. There is no vector
in the computation. The scalars to be summed are input when needed, i.e. when the sum function
reaches a recursion stop condition to sum up two adjacent values. They are given by an initializing
function f returning the vector value for index i. The final sum is sent to output.

The sum reduction does not use any storing memory. Intermediate sums are computed in allocated
renamed registers, which are freed with their computing thread. Each core contains 128 renaming
registers (RR file on figure 2, right), shared by its 16 thread slots. A 1K core processor has 128K
registers, making data memory unnecessary to hold intermediate results.

As the programming style avoids memory storing and loading, communications are reduced to
the sent/received registers and the result transmission from a main thread to a resume one. Because
a complex computation is decomposed into scalar computations, the run is fully distributed. The
thread creation being done by the hardware, there is no overhead and parallelization can be fine
grain. Eventually, thread ordering and renaming ensures a deterministic computation because the
partial order run preserves the producer to consumer dependences of the sequential order.

A consequence of the implicit parallelism is that the parallel code can be tested on a sequential
machine. The deterministic execution makes debugging as easy as for a sequential run. Bugs are
reproducible. As an illustration, all the C codes in this paper can be compiled with a standard gcc
compiler and their run on a sequential processor produce the same results in the same order as the
parallel run would on a parallelizing hardware, thanks to determinism.

/ / f o r ( i = lower ; i<upper ;
/ / i ++) body ( i , arg ) ;
/ / to p a r a l l e l i z e the loop
/ / rep lace i t by a c a l l to
/ / f o r l o o p ( lower ,
/ / upper−lower , body , arg ) ;

void f o r l o o p ( i n t i , i n t n , void (∗ body ) ( ) ,
void ∗arg ){
i f ( n==1){body ( i , arg ) ; return ;}
i f ( n==2){body ( i , arg ) ; body ( i +1 , arg ) ; return ;}
f o r l o o p ( i , n / 2 , body , arg ) ;
f o r l o o p ( i +n /2 , n−n /2 , body , arg ) ;
}

Figure 6. For loop template function

for_loop(0,10,...)

for_loop(0,5,...)

for_loop(0,2,...) for_loop(2,3,...)

for_loop(5,10,...)

for_loop(5,2,...) for_loop(7,3,...)

for_loop(3,2,...)for_loop(2,1,...) for_loop(7,1,...) for_loop(8,2,...)

body(0) body(1) body(2) body(4) body(5)body(3) body(6) body(7) body(8) body(9)

Figure 7. Threads created by a 10 iterations parallelized for loop

The time complexity of algorithms and programs in the proposed parallel execution model is not
measured in terms of operations but in terms of depending threads. For example, the sum reduction
complexity is O(log n), which means that log n threads launching steps are needed to deploy the
code on a hardware having enough available thread slots.

3.1. Parallelizing loops

To be parallelized by our hardware, a loop must be written as a function.

3.1.1. For loops. Figure 6 shows a for loop template function. Each loop parallelized this way has a
O(log n) complexity to deploy the threads running the n iterations. An iteration excluding condition
is added as an argument on figure 8 right template.

Figure 7 shows the threads created by a 10 iterations parallelized for loop.
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8 COMPUTING ON MANY CORES

The figure 6 template function uses pointer arg to encapsulate the body function arguments. This
way to transmit an unknown number of values was choosen to keep the code close to the pthread
usage. As the parallelizing hardware we propose does not have any memory access instruction in
the ISA, pointers and structures are not available. The encapsulated arguments should be interpreted
as a list of scalar values rather than a C structure, as a va list type provided by stdarg.h.

/ / i = lower ;
/ / wh i le ( ! cond ( i , arg cond ) ) {
/ / body ( i , arg body ) ; i ++;
/ / }
/ / to p a r a l l e l i z e the loop
/ / rep lace i t by a c a l l to
/ / wh i l e l oop ( lower ,1 ,
/ / cond , arg cond , body , arg body ) ;

/ / r e tu rns the number o f
/ / i t e r a t i o n s i n the whi le
/ / launches n , 2∗n , 4∗n . . .
/ / i t e r a t i o n s u n t i l cond
i n t wh i l e l oop ( i n t i , i n t n ,

i n t (∗ cond ) ( ) , void ∗arg cond ,
void (∗ body ) ( ) , void ∗arg body ){
i n t n b i t e r =

fo r cond ( i , n ,
cond , arg cond , body , arg body ) ;

i f ( n b i t e r ==n )
n b i t e r +=
wh i l e l oop ( i +n ,2∗n ,
cond , arg cond , body , arg body ) ;

return n b i t e r ;
}

/ / launches n i t e r a t i o n s
/ / r e tu rns the number o f i t e r a t i o n s
/ / not excluded by the cond f u n c t i o n
i n t fo r cond ( i n t i , i n t n ,

i n t (∗ cond ) ( ) , void ∗arg cond ,
void (∗ body ) ( ) , void ∗arg body ){

i n t c1 , c2 ;
i f ( n==1){
c1=cond ( i , arg cond ) ;
i f ( ! c1 ) body ( i , arg body ) ;
return ! c1 ;
}
i f ( n==2){
c1=cond ( i , arg cond ) ;
i f ( ! c1 ) body ( i , arg body ) ;
c2=cond ( i +1 , arg cond ) ;
i f ( ! c2 ) body ( i +1 , arg body ) ;
return ( ! c1 ) + ( ! c2 ) ;
}
c1= for cond ( i , n / 2 , cond , arg cond ,

body , arg body ) ;
c2= for cond ( i +n /2 , n−n /2 ,

cond , arg cond , body , arg body ) ;
return c1+c2 ;
}

Figure 8. While loop and conditional for loop template functions

3.1.2. While loops. The left part of figure 8 shows the while loop template function. The for cond
function shown on the right part of the figure is a for loop with an exclusion condition cond. It
returns the number of non excluded iterations. The while loop runs n iterations in a for cond loop.
If no iteration is excluded by the for cond, the while loop function is called recursively to run 2 ∗ n
more iterations. It runs 1 iteration, then 2, 4, 8 ... until the for cond reaches the cond condition. It
returns the number of iterations in the while loop. Each while loop parallelized this way also has a
O(log n) complexity to deploy the threads running the n iterations.

Figure 9 shows two applications, the left one using figure 8 while loop pattern. On the left of
the figure is the parallelized computation of my strlen. The while loop function runs 1+2+4+8
iterations. The for cond called for 8 iterations returns 4, which stops the while loop recursion. The
computed string length is 1+2+4+4=11. (It may seem tedious to write a function like s(i) for each
declaration of an initialized array. The compiler can be adapted to translate such declarations into
functions). On the right of figure 9 is a parallelized computation of a search of a character in a string.
The my strchr function uses the for reduce pattern defined on figure 11.

The parallelization of a while loop launches iterations after the exit condition. In the while loop
pattern, it is assumed that when cond is true, it remains true for the following iterations, which are
all excluded by the for cond loop. It works for the my strlen function example (left of figure 9)
because accessing beyond the string end returns ′\0′. It does not work for the my strchr function
(right part of the figure). In a search, iterations after the searched element are parasitic and should
be explicitely excluded. The loop is parallelized by the for reduce function, which is a for loop
computing a reduction. The length l of the searched string s is computed and the searched character
is compared in parallel to each character of s. The reduction returns the leftmost match index. If the
searched character is not found, the reduction returns l + 1.
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COMPUTING ON MANY CORES 9

/ / to compute s t r l e n ( char ∗s )
/ / char s [ ] = ” h e l l o wor ld ” ;
/ / the compi ler b u i l d s f u n c t i o n s ( i )
typedef struct { i n t (∗ s ) ( ) ; } ArgC ;
i n t s ( i n t i ){
switch ( i ){

case 0: return ’ h ’ ; case 1: return ’ e ’ ;
case 2: return ’ l ’ ; case 3: return ’ l ’ ;
case 4: return ’ o ’ ; case 5: return ’ ’ ;
case 6: return ’w ’ ; case 7: return ’ o ’ ;
case 8: return ’ r ’ ; case 9: return ’ l ’ ;
case 10: return ’ d ’ ; defaul t : return ’ \0 ’ ;
}
}
i n t ex i t cond ( i n t i , void ∗arg cond ){
ArgC ∗a=(ArgC ∗ ) arg cond ;
return ( ( a−>s ) ( i )== ’ \0 ’ ) ;
}
void nu l l body ( i n t i , void ∗arg body ){}
i n t my st r len ( i n t (∗ s ) ( ) ) {
ArgC ac ; ac . s=s ;
return wh i l e l oop (0 ,1 , ex i t cond , ( void∗)&ac ,

nu l l body ,NULL ) ;
}
void main ( ) { p r i n t f ( ”%d\n ” , my s t r len ( s ) ) ; }

/ / my s t rchr ( s , c ) i s the p o s i t i o n
/ / o f f i r s t c i n s
typedef struct {char c ; i n t l ;

i n t (∗ s ) ( ) ; } Arg ;
i n t min ( i n t i , i n t n ,

i n t a , i n t b , void ∗arg ){
i f ( a<b ) return a ;
else return b ;
}
i n t found ( i n t i , void ∗arg ){
Arg ∗a=( Arg ∗ ) arg ;
i f ( a−>s ( i ) ! = a−>c ) return a−> l ;
else return i ;
}
i n t my st rchr ( i n t (∗ s ) ( ) ,
char c ){
Arg a ; i n t l =my s t r len ( s ) ;
a . c=c ; a . l = l ; a . s=s ;
return f o r reduce (0 , l , l +1 ,

found , ( void ∗)&a , min ,NULL ) ;
}
main ( ) {

p r i n t f ( ” f i r s t o a t %d\n ” ,
my s t rchr ( s , ’ o ’ ) ) ;

}

Figure 9. Parallelizing my strlen (left) and my strchr (right)

h

e l

l o w 

ro

l d

\0 \0

\0 \0

my_strlen("hello world\0")

while_loop(0,1,...)

while_loop(1,2,...)

for_cond(1,2,...) while_loop(3,4,...)

for_cond(3,4,...)

for_cond(5,2,...)for_cond(3,2,...) while_loop(7,8,...)

for_cond(7,8,...)

for_cond(7,4,...) for_cond(11,4,...)

for_cond(0,1,...)

for_cond(7,2,...) for_cond(11,2,...)

for_cond(9,2,...) for_cond(13,2,...)

Figure 10. Threads created by the run of my strlen(”hello world\0”)

As the for loop, the while loop, the for cond and the for reduce template functions use pointer
arguments to be interpreted as lists of scalars, transmitted from the caller to the callee through
registers.

Figure 10 shows the threads created by the my strlen(”hello world”) execution.
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10 COMPUTING ON MANY CORES

3.1.3. Reduce for loops. Figure 11 shows the template of a reduction for loop and a revisited version
of the vector sum reduction. Any similar template can be written to provide a while reduce and all
the necessary tools to build a MapReduce program [9].

The get and reduce functions in for reduce and cond and body functions in for loop, for cond
and while loop should be carefully programmed to avoid any serialization of the run, as we have
done in the given examples. It would be a design error to increment a counter in the my body
function of the my strlen example to compute the length. The hardware would run the loop
correctly but serially because of the recurrence in the iteration body.

/ / rnv i s the reduc t ion n e u t r a l value
i n t f o r reduce ( i n t i , i n t n , i n t rnv ,

i n t (∗ get ) ( ) , void ∗arg get ,
i n t (∗ reduce ) ( ) , void ∗arg reduce ){
i f ( n==1) return reduce ( i , n ,

get ( i , a rg ge t ) , rnv , arg reduce ) ;
i f ( n==2){
return reduce ( i , n , get ( i , a rg ge t ) ,

get ( i +1 , a rg ge t ) , arg reduce ) ;
}
return reduce ( i , n ,

fo r reduce ( i , n / 2 , rnv , get , arg get ,
reduce , arg reduce ) ,

fo r reduce ( i +n /2 , n−n /2 , rnv , get ,
arg get , reduce , arg reduce ) ,

arg reduce ) ;
}

typedef struct { i n t (∗ f ) ( ) ; } Arg ;
i n t v ( i n t i ){ return i ;}
i n t sum( i n t i , i n t n , i n t a , i n t b ,

void ∗arg ){ return a+b ;}
i n t get ( i n t i , void ∗arg ){
Arg ∗a=( Arg ∗ ) arg ; return a−>f ( i ) ;
}
i n t sum reduct ion ( i n t (∗ get ) ( ) ,

void ∗arg get , i n t n ){
return f o r reduce (0 , n ,0 ,

get , arg get , sum,NULL ) ;
}
main ( ) {

Arg a ; a . f =v ;
p r i n t f ( ”sum=%d\n ” , sum reduct ion (

get , ( void ∗)&a , SIZE ) ) ;
}

Figure 11. A reduce for loop template and a revisited version of sum

i n t a [2 ] [3 ]={{1 ,2 ,3} ,{0 ,1 ,2}} ,
b [3 ] [4 ]={{2 ,3 ,4 ,5} ,{3 ,2 ,1 ,0} ,

{0 ,1 ,2 ,3}} ,
c [ 2 ] [ 4 ] ;

void p r i n t m a t ( i n t ∗a , i n t m, i n t n ){
i n t i , j ;
for ( i =0; i<m; i ++){

for ( j =0; j<n ; j ++)
p r i n t f ( ”%d ” ,∗ ( a+ i ∗n+ j ) ) ;

p r i n t f ( ” \n ” ) ;
}
}
void imatmul ( i n t m, i n t n , i n t p ){

/ / c [m] [ n ] = a [m] [ p ] ∗ b [ p ] [ n ]
i n t i , j ;
for ( i =0; i<m; i ++)

for ( j =0; j<n ; j ++)
∗ ( ( i n t ∗ ) c+ i ∗n+ j ) = sum(0 , p , i , j , n , p ) ;

}

i n t sum( i n t fk , i n t nk , i n t i ,
i n t j , i n t n , i n t p ){

i f ( nk==1)
return ∗ ( ( i n t ∗ ) a+ i ∗p+ f k ) ∗

∗ ( ( i n t ∗ ) b+ f k ∗n+ j ) ;
i f ( nk==2){
return

( ∗ ( ( i n t ∗ ) a+ i ∗p+ f k ) ∗
∗ ( ( i n t ∗ ) b+ f k ∗n+ j ) ) +

( ∗ ( ( i n t ∗ ) a+ i ∗p+ f k +1) ∗
∗ ( ( i n t ∗ ) b+( f k +1)∗n+ j ) ) ;

}
return sum( fk , nk /2 , i , j , n , p ) +

sum( f k +nk /2 , nk−nk /2 , i , j , n , p ) ;
}
main ( ) {

p r i n t m a t ( ( i n t ∗ ) a , 2 , 3 ) ;
p r i n t m a t ( ( i n t ∗ ) b , 3 , 4 ) ;
imatmul ( 2 , 4 , 3 ) ;
p r i n t m a t ( ( i n t ∗ ) c , 2 , 4 ) ;
}

Figure 12. A matrix multiplication programmed in C

3.2. A Parallelized Matrix Multiplication

3.2.1. The classical matrix multiplication program. Figure 12 shows the C code of a matrix
multiplication. The classical matrix multiplication algorithm is a good illustration of how the
parallelizing hardware can parallelize nested for loops.
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COMPUTING ON MANY CORES 11

If we use the program on figure 12 as a canvas for a parallelized implementation, the parallel
program will probably be organized in three different phases. The first phase sets the inputs, the
second phase computes the product and the third phase outputs it. The first phase appears in the
sequential code as matrix a and b initializations. This job is done by the OS at process start, by
copying the data segment from the ELF file into the memory. The third phase sends each element of
the product matrix to the OS output buffer (logical output driver called by printf ) and from there,
the buffer content is sent to the physical driver (either a display or a file).

If the OS is not parallelized (e.g. Unix), I/O are sequential, which sequentializes phases one and
three. Otherwise, the three phases may all be parallelized.

To avoid serializations, input and computation may be fused (i.e. start some computation product
as soon as their input data are set) as well as computation and output (i.e. output one element as
soon as it is computed). Input matrix elements are copied from file to memory in parallel. In parallel
with the inputs, products are computed with the available data from memory. In parallel with the
products computations, the computed sums of products are copied to the output file.

Even though we parallelize this much, we have a big communication problem. The input matrices
are centralized in the core which runs the loader start function. Each element is consumed by
many products, which can be distributed on many cores, requiring many communications from the
owner cache to the consumers ones. The same communication problem applies between the product
producers and the vector sum consumers, with the aggravating difficulty of coherent cache updates.

The parallelizing processor we have described in section 2 runs the four function calls in main
in parallel (figure 12, bottom right part). It parallelizes the input matrix printing, the product matrix
computation and its printing. However, it does not parallelize the for loops as iterations are not
functions. The classical matrix multiplication program is not suited to our parallelizing hardware.

3.2.2. Parallelizing the matrix printing and the vector product. Figures 13 and 14 show functions
get a and get b to read one element of matrices a and b. Instead of reading the input values from the
data memory, the threads read them from the code memory (or from a file), which can be duplicated
and cached in all the requesting cores.

i n t get a ( i n t i , i n t j ){
switch ( j ){

case 0: i f ( i ==0) return 1; else return 0;
case 1: i f ( i ==0) return 2; else return 1;
case 2: i f ( i ==0) return 3; else return 2;
}
}

typedef struct { i n t f j ; i n t n j ;
i n t n ; i n t p ; void (∗ body j ) ( ) ;
i n t (∗ get m ) ( ) ; } A r g i ;

typedef struct { i n t i ; i n t n ;
i n t p ; i n t (∗ get m ) ( ) ; } A r g j ;

Figure 13. Function to get matrix a elements

i n t get b ( i n t i , i n t j ){
switch ( i ){

case 0: switch ( j ){
case 0: return 2; case 1: return 3;
case 2: return 4; case 3: return 5;}

case 1: switch ( j ){
case 0: return 3; case 1: return 2;
case 2: return 1; case 3: return 0;}

case 2: switch ( j ){
case 0: return 0; case 1: return 1;
case 2: return 2; case 3: return 3;}

}
}

void b o d y p r j ( i n t j , void ∗arg ){
A r g j ∗a=( A r g j ∗ ) arg ;
p r i n t f ( ”%d ” ,a−>get m ( a−>i , j ) ) ;
i f ( j ==a−>p−1) p r i n t f ( ” \n ” ) ;
}
void b o d y p r i ( i n t i , void ∗arg ){

A r g i ∗ a i =( A r g i ∗ ) arg ; A r g j a j ;
a j . i = i ; a j . n=ai−>n ;
a j . p=ai−>p ; a j . get m=ai−>get m ;
f o r l o o p ( ai−> f j , a i−>nj ,

a i−>body j , ( void ∗)& a j ) ;
}

Figure 14. Functions to get matrix b elements and to print a matrix
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12 COMPUTING ON MANY CORES

The right part of figure 14 shows the two nested loops to print a matrix. It illustrates the way the
for loop template function implements nested loops.

3.2.3. Parallelizing the matrix multiplication. On figure 15 in the body mm function, the computed
sum s should be stored into an array element saving C[i, j]. Element C[i, j] is consumed by the
printing function rather than stored. The threads sequential ordering ensures that even though the C
values are computed out-of-order, they are output in order. It is easy to check that when the code is
sequentially run, matrix C is properly printed. As the parallel run preserves sequential dependences,
the computed C values can be written in order by an ad hoc OS output driver in the video memory.

void body mm( i n t i , i n t j , i n t n ,
i n t p ){

ArgProd a ;
i n t s ; a . i = i ; a . j = j ;
s=sum reduct ion ( prod , ( void ∗)&a , p ) ;
p r i n t f ( ”%d ” , s ) ;
i f ( j ==n−1) p r i n t f ( ” \n ” ) ;
}
void my body mm j ( i n t j , void ∗arg ){

A r g j ∗a=( A r g j ∗ ) arg ;
body mm( a−>i , j , a−>n , a−>p ) ;
}
void my body mm i ( i n t i , void ∗arg ){

A r g i ∗ a i =( A r g i ∗ ) arg ;
A r g j a j ;
a j . i = i ; a j . n=ai−>n ; a j . p=ai−>p ;
f o r l o o p ( ai−> f j , a i−>nj , a i−>body j ,

( void ∗)& a j ) ;
}

typedef struct { i n t i ; i n t j ;} ArgProd ;
i n t prod ( i n t i , void ∗arg prod ){
ArgProd ∗a=( ArgProd ∗ ) arg prod ;
i n t le , r i ;
l e =get a ( a−>i , i ) ;
r i =get b ( i , a−> j ) ;
return l e ∗ r i ;
}
main ( ) {

A r g i a ;
a . f j =0; a . n j =3; a . n=2; a . p=3;
a . body j= b o d y p r j ; a . get m=get a ;
f o r l o o p (0 ,2 , body pr i , ( void∗)&a ) ;
a . f j =0; a . n j =4; a . n=3; a . p=4;
a . body j= b o d y p r j ; a . get m=get b ;
f o r l o o p (0 ,3 , body pr i , ( void∗)&a ) ;
a . f j =0; a . n j =4; a . n=4; a . p=3;
a . body j=body mm j ;
f o r l o o p (0 ,2 , body mm i , ( void∗)&a ) ;
}

Figure 15. Computing the matrix product and main function

The run is fully distributed to capture all the available data parallelism.

#define SIZE 10
struct node{

i n t i ;
struct node ∗ l ; struct node ∗ r ;

} ;
i n s e r t ( i n t i , struct node ∗∗ r ){

i f (∗ r == NULL){
∗ r = ( struct node ∗ )

mal loc ( sizeof ( struct node ) ) ;
(∗ r )−> i = i ;
(∗ r )−> l = NULL ; (∗ r )−> r = NULL ;
}
else i f ( i < (∗ r )−> i ){

i n s e r t ( i , &(∗ r )−> l ) ;
}
else i n s e r t ( i , &(∗ r )−> r ) ;
}

i n t v [ SIZE ]={3 ,0 ,1 ,5 ,9 ,7 ,6 ,3 ,4 ,1} ;
struct node ∗ r = NULL ;
void t r a v e l ( struct node ∗ r ){

i f ( r != NULL){
t r a v e l ( r−> l ) ;
p r i n t f ( ”%d ” , r−> i ) ;
t r a v e l ( r−>r ) ;
f r ee ( r ) ;
}

}
main ( ) {

i n t i ;
for ( i =0; i<SIZE ; i ++)

i n s e r t ( v [ i ] , &r ) ;
t r a v e l ( r ) ;
p r i n t f ( ” \n ” ) ;
}

Figure 16. A binary tree sort programmed in C

To summarize, the parallelized matrix multiplication C[m, p] = A[m,n] ∗B[n, p] is a set of
m ∗ n ∗ p threads, each computing a single product. C[i, j] is a sum reduction of the k products
A[i, k] ∗B[k, j]. The input matrices are not organized as arrays. Their elements are given by two
access functions get a and get b returning A[i, j] and B[i, j] for indexes i and j. The resulting matrix
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COMPUTING ON MANY CORES 13

is neither stored as an array. Each element is sent to output as soon as computed. The complexity is
O((log m) ∗ (log n) ∗ (log p)), requiring (log m) ∗ (log p) steps to deploy all the threads to compute
the m ∗ p elements of matrix C and from there, log n steps to sum n products by a reduction.

3.3. A Parallelized Sort

Figure 16 shows a binary tree sort programmed in C. This is not the best sorting algorithm to be
parallelized but it emphasizes the potential communications problems. The process running the
program sets the initial unsorted vector in the data region (OS copy from the ELF file). The for loop
inserts each element of the vector into a binary tree. The travel function copies each element of the
tree into the output buffer.

Concurrent updates of a tree require complex mutual exclusion, especially if we want to interleave
the tree construction, its travelling and its destruction to fully parallelize the sort. Even if a satisfying
parallel code is built, its run requires three copies of each element (from ELF file to data region, then
to tree and from tree to output buffer). These copies involve communications which might be long
distance in a manycore processor. Binary tree writes imply complex memory coherence control.

Figure 17 shows the main and print body functions of a parallel sort with no array. The input
data are given by function my random, delivering a precomputed random value. The random value
precomputation avoids the pseudo-random suite dependences. The main function prints the initial
set of unsorted values and in parallel prints the sorted set.

#define SIZE 10
i n t my random ( i n t i ){
switch ( i ){

case 0: return 3; case 1: return 0;
case 2: return 1; case 3: return 5;
case 4: return 9; case 5: return 7;
case 6: return 6; case 7: return 3;
case 8: return 4; case 9: return 1;
}
}

typedef struct { i n t i ; i n t v ;
i n t (∗ f ) ( ) ; } Arg ;

void p r i n t body ( i n t i , void ∗arg ){
p r i n t f ( ”%d ” ,my random ( i ) ) ;
}
void main ( ) {

f o r l o o p (0 , SIZE , p r in t body ,NULL ) ;
p r i n t f ( ” \n ” ) ;
f o r l o o p (0 , SIZE , sor t body ,NULL ) ;
p r i n t f ( ” \n ” ) ;
}

Figure 17. A parallel sort programmed in C: main, initial element print and my random input functions

i n t get ( i n t i , void ∗arg ){
Arg ∗a=( Arg ∗ ) arg ;
return ( a−>f ( i )<a−>f ( a−>v ) ) ;
}
i n t ge t nex t ( i n t i , void ∗arg ){
Arg ∗a=( Arg ∗ ) arg ;
return ( a−>f ( i )<=a−>f ( a−>v ) ) ;
}
i n t f o r pos ( i n t i , i n t n , i n t v ,

i n t (∗ f ) ( ) ) {
Arg a ; a . f = f ; a . v=v ;
return f o r reduce ( i , n , 0 ,

get , ( void ∗)&a , sum,NULL ) ;
}
i n t f o r po s ne x t ( i n t i , i n t n , i n t v ,

i n t (∗ f ) ( ) ) {
Arg a ; a . f = f ; a . v=v ;
return f o r reduce ( i , n , 0 ,

get next , ( void ∗)&a , sum,NULL ) ;
}

i n t sum( i n t i , i n t j ,
i n t a , i n t b , void ∗arg ){

return a+b ;
}
void element body ( i n t i , void ∗arg ){

Arg ∗a=( Arg ∗ ) arg ;
i n t p , pn , v=a−>f ( i ) ;
p= fo r pos (0 , SIZE , i , a−>f ) ;
pn= fo r po s ne x t (0 , SIZE , i , a−>f ) ;
i f ( p<=a−> i && a−>i<pn ) a−>v=v ;
}
i n t element at pos ( i n t i ){
Arg a ; a . f =my random ; a . i = i ;
f o r l o o p (0 , SIZE , element body ,

( void ∗)&a ) ;
return a . v ;
}
void sor t body ( i n t i , void ∗arg ){

p r i n t f ( ”%d ” , e lement at pos ( i ) ) ;
}

Figure 18. The parallel sort
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14 COMPUTING ON MANY CORES

The initial set print launches 11 threads, among which 8 read one or two elements from the
my random function, i.e. copy a value from the code to the output buffer.

Figure 18 shows the sort. Function element at pos(i) returns element at position i in the sorted
set. Function for pos(..., v) returns the position of the first occurrence of v in the sorted set.
Function for pos next(..., v) returns the position of the first element next to v in the sorted set.

It implements a very poor sequential sorting algorithm, requiring O(n3) comparisons. For each
element e we recompute n times the number of elements less than e instead of building an array
once and use it. In a parallel processor, such recomputations are faster than storing and loading a
data structure.

The second for loop in main launches 11 threads, among which 8 compute one or two elements
at their position in the sorted set.

The parallel threads are ordered when they are dynamically created, which sets the prints order.
Each computed element in the output only uses the initial values, given by calls to my random.
Element computations are all fully independent. Each is computed from a tree of threads having
only depth dependences, thanks to the for reductions avoiding recurrences in the loop bodies.

To summarize, sorting a set of scalars computes in parallel all the elements of the sorted output.
The duplicated elements at ranks i to j (i ≤ j) are the ones in the input set which have i lower and
j lower or equal elements. The sorting function does not use any array, any storage to permute. The
complexity is O((log n)3), i.e. all the threads are deployed after (log n)3 steps (to be compared to
the O(n ∗ log n) complexity of a sequential sorting algorithm).

4. COMPARING OS PARALLELIZATION TO HARDWARE PARALLELIZATION

Figure 19 shows a pthread implementation of the sum reduction. This code is compared to the one on
figure 3. A first difference is that the pthread version explicits the parallelization through the calls
to pthread create, the synchronization through the calls to pthread join and the communications
through the arguments transmission at thread creation and the result transmission at thread exit and
join. These explicit calls obscure the code: the pthread version is four times longer than the figure 3
version parallelized by our proposed hardware.

typedef struct { i n t ∗v ; i n t n ;} ST;
void ∗sum( void ∗ s t ){
ST s1 , s2 ; long ∗s ,∗ s l ,∗ sr ; p th read t t1 , t2 ;
s =mal loc ( sizeof ( long ) ) ;
s l =mal loc ( sizeof ( long ) ) ; s r=mal loc ( sizeof ( long ) ) ;
i f ( ( ( ST ∗ ) s t )−>n>2){
s1 . v = ( (ST ∗ ) s t )−>v ; s1 . n = ( (ST ∗ ) s t )−>n / 2 ;
p th read crea te (& t1 ,NULL, sum , ( void ∗)&s1 ) ;
s2 . v = ( (ST ∗ ) s t )−>v + ( ( ST ∗ ) s t )−>n / 2 ;
s2 . n = ( (ST ∗ ) s t )−>n − ( ( ST ∗ ) s t )−>n / 2 ;
p th read crea te (& t2 ,NULL, sum , ( void ∗)&s2 ) ;
p t h r e a d j o i n ( t1 , ( void ∗∗)& s l ) ;
p t h r e a d j o i n ( t2 , ( void ∗∗)& sr ) ;
}
else i f ( ( ( ST ∗ ) s t )−>n==1){∗ s l = ( (ST ∗ ) s t )−>v [ 0 ] ; ∗ sr =0;}
else {∗ s l = ( (ST ∗ ) s t )−>v [ 0 ] ; ∗ sr = ( (ST ∗ ) s t )−>v [ 1 ] ; }
∗s=∗ s l +∗ sr ; f r ee ( s l ) ; f r ee ( s r ) ;
p t h r e a d e x i t ( ( void ∗ ) s ) ;
}

#define SIZE 10
i n t v [ SIZE ]=
{0 ,1 ,2 ,3 ,4
,5 ,6 ,7 ,8 ,9} ;

main ( ) {
ST s t ;
i n t ∗psum ;
p th read t t i d ;
s t . v=v ; s t . n=SIZE ;
p th read crea te (
&t i d , NULL, sum,
( void ∗)& s t ) ;

p t h r e a d j o i n ( t i d ,
( void ∗∗)&psum ) ;

p r i n t f ( ”sum=%d\n ” ,
∗psum ) ;

f r ee (psum ) ;
}

Figure 19. A pthread parallelization of the sum reduction

The pthread run creates 12 threads, as does the hardware parallelization (Figure 5 shows 11
threads for the parallelization of sum, to which one printing thread is added).
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x86 instructions run by create join exit
pthread parallelization 727-736 136-755 10821-10987
hardware parallelization 3-5 0 0

Table I. Number of x86 instructions run to create, join and exit threads

4.1. The compared architectural cost of parallelization

A second difference is that in the pthread run, the calls to pthread create, pthread join and
pthread exit add a high overhead. The number of x86 instructions run by these calls can be
measured using pin [10]. Table I shows the overhead in the run of the sum code in figure 19.
The measure was done on a Intel Core i7-4900MQ operated by Ubuntu 14.04. The pthread code is
compiled with gcc 4.8.4-2 (−O3 and −static options) and libpthread-stubs0-dev0.3-4.

The pthread create primitive ran 727 (call in main) or 736 (calls in sum) x86 instructions.
The pthread join primitive ran 755 (call in main), from 143 to 736 (first call in sum) and from
136 to 755 (second call in sum) instructions. The pthread exit primitive ran from 10821 to 10987
instructions (it is not clear what pin exactly measures in pthread exit: 10K instructions run seems a
lot; the measures for pthread create and pthread join have been confirmed in a second experience
using gdb, which was not possible for pthread exit).

The last line of the table gives in contrast the very low number of x86 instructions run when the
parallelization is done by hardware.

The hardware parallelization creates threads and sends registers initializations messages. In the
sum run (see figure 4), the first sum call runs 5 instructions to fork, copy registers rdi, rsi and
rbx and call. The second call runs 3 instructions to fork, copy register rcx and call. The cost to
synchronize threads is null because they are ordered and hardware register renaming offers a free
natural synchronization between any reader and its unique writer.

The OS overhead condamns OS-based parallelization to coarse grain. To amortize 1.5K
instruction run (or 12K if the pthread exit cost is included), each thread should at least sum up
a thousand values (resp. 12K). Parallelizing hardware makes fine grain parallelization possible: one
thread per pair of values.

4.2. The compared microarchitectural cost of parallelization

L1

L2

L3

core 0 core 1 core 2 core 3

_start

ELF file
0,1,2,3,4
5,6,7,8,9

.data.text

a) load request

L1

L2

L3

_start

ELF file
0,1,2,3,4
5,6,7,8,9

.data.text

0,1,2,3,4
5,6,7,8,9

0,1,2,3,4
5,6,7,8,9

0,1,2,3,4,5,6,7,8,9

b) cache line fill

core 0 core 1 core 2 core 3

Figure 20. Data initializations for the sum execution
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16 COMPUTING ON MANY CORES

The number of instructions run is one part of the cost of parallelization. A second part is the data
movement from source input to result output, i.e. a microarchitectural cost.

In the pthread program, the input vector is initialized from the ELF file by the OS start function
(which later calls main). The data are centralized in the L1 data cache of the core running the start
function. This is illustrated on figure 20. The left figure is the start function architectural load
request and the right figure is the memory hierarchy microarchitectural fill request.

Each leaf sum thread reads one or two elements of summed vector v. These accesses trigger
communications between the v elements central location and each requesting core, as illustrated on
figure 21. This is hardware driven by copying cache lines from L3 to L1. Bus contention may
serialize the requests, i.e. the threads. Each copy caches a full 64 bytes line when one or two
elements only are useful, uselessly transfering from 56 to 60 bytes in each communication.

0,1,2,3,4
5,6,7,8,9

0,1,2,3,4
5,6,7,8,9

sum(0,2) sum(2,1) sum(3,2)

0,1,2,3,4,5,6,7,8,9

a) simultaneous load requests

0,1,2,3,4
5,6,7,8,9

0,1,2,3,4
5,6,7,8,9

sum(0,2) sum(2,1) sum(3,2)

0,1,2,3,4
5,6,7,8,9

0,1,2,3,4
5,6,7,8,9

0,1,2,3,4
5,6,7,8,9

0,1,2,3,4
5,6,7,8,9

0,1,2,3,4 0,1,2,3,4
5,6,7,8,9 5,6,7,8,9

0,1 3,42

0,1,2,3,4,5,6,7,8,9

b) one or two elements load

Figure 21. Data movements during the sum execution parallelized by pthread

Caches are not adequate devices for parallel executions. The principle of spatial locality enforces
caches to keep large lines of data, i.e. centralizing them. This is in conflict with data distribution. The
principle of temporal locality enforces caches to keep data for multiple successive local accesses.
This is in conflict with data recomputation which avoids storing.

L2

ELF file
if (n==1) return i;
if (n==2) return 2*i+1;

sum(0,2) sum(2,1) sum(3,2)

core 0 core 1 core 2 core 3

iL1

a) fetch code to compute f(i) or f(i)+f(i+1)

sum(0,2) sum(2,1) sum(3,2)

core 0 core 1 core 2 core 3

2*i+1 i 2*i+1

2*i+1 2*i+1
=1 =7

i
=2

iL1

ELF file
if (n==1) return i;
if (n==2) return 2*i+1;

L22*i+1 i

b) iL1 fill and partial sum computation

Figure 22. Data movements during the sum execution parallelized by hardware

Figure 22 shows the data movements when running the code in figure 4 in parallel on a
parallelizing hardware. Each leaf sum thread computes its partial sum from values encoded in the
fetched instructions. The computing code is read from instruction cache iL1 whereas in the pthread
run, data are read from data cache dL1 which holds vector v. The communications are reduced to
the minimum, i.e. the values needed by the computation migrate from the code file to the cores.
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4.3. Comparing a data structure based parallelization to a function based one

Figure 23 shows a pthread version of quicksort. It is compared to figures 17 and 18 sort program.

void ∗ q u i c k so r t ( void ∗sa ){
p th read t t i d1 , t i d 2 ; s u b a r r a y t sal , sar ;
i n t ip , p , t , i1 , i2 , f , l ;
f = ( ( s u b a r r a y t ∗ ) sa)−> f ;
l = ( ( s u b a r r a y t ∗ ) sa)−> l ;
i f ( f < l ){
i p = f ; i 1 = f ; i 2 = l ; p=a [ i p ] ;
while ( 1 ){

while ( i1< l && a [ i 1 ] <= p ) i 1 ++;
while ( a [ i 2 ] > p ) i2−−;
i f ( i1<i 2 ){ t =a [ i 1 ] ; a [ i 1 ]=a [ i 2 ] ; a [ i 2 ]= t ;}
else break ;
}
a [ i p ]=a [ i 2 ] ; a [ i 2 ]=p ; sa l . f = f ; sa l . l = i2 −1;
p th read crea te (& t i d1 ,NULL,

qu icksor t , ( void ∗)& sa l ) ;
sar . f = i 2 +1; sar . l = l ;
p th read crea te (& t i d2 ,NULL,

qu icksor t , ( void ∗)& sar ) ;
p t h r e a d j o i n ( t i d1 , NULL ) ;
p t h r e a d j o i n ( t i d2 , NULL ) ;
}
}

#define SIZE 10
typedef struct

s t r { i n t f ; i n t l ;}
s u b a r r a y t ;

i n t a [ SIZE ]={3 ,0 ,1 ,5 ,9 ,
7 ,6 ,3 ,4 ,1} ;

void main ( ) {
i n t i ;
s u b a r r a y t sa ;
p th read t t i d ;
for ( i =0; i<SIZE ; i ++)

p r i n t f ( ”%d ” ,a [ i ] ) ;
p r i n t f ( ” \n ” ) ;
sa . f =0;
sa . l =SIZE−1;
p th read crea te (& t i d ,NULL,

qu icksor t , ( void ∗)&sa ) ;
p t h r e a d j o i n ( t i d ,NULL ) ;
for ( i =0; i<SIZE ; i ++)

p r i n t f ( ”%d ” ,a [ i ] ) ;
p r i n t f ( ” \n ” ) ;
}

Figure 23. A pthread parallelization of quicksort

Figure 24, 25 and 26 show how the data travel in the caches when the pthread quicksort function
is run. The start function copies the initialized vector from the ELF file into the core 0 memory
hierarchy. The loop to print the initial vector belongs to the same thread as the start function. It is
run on core 0 and it accesses to the vector elements in cache L1.

The main thread creates a first quicksort thread run on core 1. It gets the vector from L3 in its L1
to partition it (figure 24 left part: cache miss propagates; figure 24 right part: cache hierarchy load).

The partitioning while(1) loop updates the vector copy in the core 1 L1 cache (figure 25 left part).
The quicksort thread creates two new quicksort threads, each to sort a half vector. The left half
sorting thread is run on core 2 and the right half sorting thread is run on core 3. Both threads read
their vector half from the core 1 L1, which has the only updated copy of the vector (figure 25 right
part). Both requests have to be serialized.

On the left part of figure 26, we assume core 2 gets access first. The right part is core 3 access.

L1

L2

L3

core 0 core 1 core 2 core 3

_start

3,0,1,5,9,7,6,3,4,1

3,0,1,5,9
7,6,3,4,1

3,0,1,5,9
7,6,3,4,1

printf
quicksort

core 0 core 1 core 2 core 3

_start

3,0,1,5,9,7,6,3,4,1

3,0,1,5,9
7,6,3,4,1

3,0,1,5,9
7,6,3,4,1

7,6,3,4,1

3,0,1,5,9
7,6,3,4,1

3,0,1,5,9

printf
quicksort

Figure 24. Data movements during the quicksort execution parallelized by pthread
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core 0 core 1 core 2 core 3

L1
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L3

_start

3,0,1,5,9,7,6,3,4,1

3,0,1,5,9
7,6,3,4,1

3,0,1,5,9
7,6,3,4,1

printf
quicksort

3,0,1,5,9
7,6,3,4,1

3,0,1,1,3
7,6,9,4,5

core 0 core 1 core 2 core 3

_start

3,0,1,5,9,7,6,3,4,1

3,0,1,5,9
7,6,3,4,1

3,0,1,5,9
7,6,3,4,1

quicksort
printf

quicksortquicksort

3,0,1,5,9
7,6,3,4,1

3,0,1,1,3
7,6,9,4,5

Figure 25. Data movements during the quicksort execution parallelized by pthread
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3,0,1,5,9

quicksort

7,6,9,4,5
3,0,1,1,3 3,0,1,1,3

3,0,1,1,33,0,1,1,3
7,6,9,4,5

Figure 26. Data movements during the quicksort execution parallelized by pthread

my_rnd
(0)

my_rnd my_rnd
(4) (0)

core 0 core 1 core 2 core 3

iL1

L2

ELF file
case 0: return 3;
case 4: return 9;

my_rnd
(0)

my_rnd my_rnd
(4) (0)

core 0 core 1 core 2 core 3

ELF file
case 0: return 3;
case 4: return 9;

return 3;
case 0:

case 4: return 9;

3

case 0: return 3;

Figure 27. Data movements during the sort execution parallelized by hardware

The data travel from the partitioning core to the partitions sorting ones. Each level of the
quicksort binary tree moves the full vector. There are n ∗ log n data movements from L1 to L1
through L2 and L3, with no locality benefit. All these movements are avoided in the sort program
on figures 17 and 18. As the values to be sorted are held in the code, i.e. encoded in the machine
instructions translating function my random, the only data movements come from the instruction
memory hierarchy. Each core reads the data it needs from the closest instruction cache holding it.
On figure 27, three threads run function my random on three cores (abbreviated as my rnd). The
three threads request the same portion of code from their L1 instruction cache (figure 27, left part).
The three requests to L2 are serialized and it is assumed core 0 is served first. The requested code is
loaded in the shared L2 (figure 27, right part).
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(0)
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(4) (0)

core 0 core 1 core 2 core 3

iL1
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case 0: return 3;

return 3;
case 0:

case 4: return 9;

case 4:
return 9;

9

my_rnd
(0)
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(4) (0)

core 0 core 1 core 2 core 3

case 0: return 3;
case 4: return 9;

case 4:
return 9;

case 0:
return 3;

3

Figure 28. Data movements during the sort execution parallelized by hardware

The next core to be served is core 1 (figure 28, left part). The memory hierarchy plays a role and
L2 hits. Core 2 is the last to be served, directly from L2 (figure 28, right part).

5. RELATED WORKS AND CONCLUSION

Parallel programming concerns automatic parallelization (i.e. by the compiler) and ”hand-
made” parallelization using APIs (Pthreads, MPI, OpenMP for CPUs and CUDA, OpenCL for
CPUs+GPUs). In 2012 a survey was published of parallel programming models and tools for
multicore and manycore processors [11].

Automatic parallelization parallelizes loops with techniques based on the polyhedral model
[12]. If some addresses in a loop are dynamic (e.g. pointer-based), the compiler cannot optimally
parallelize. It is also the case if the loop control is complex or if the iteration body contains statically
unknown control (e.g. involving special exits via return or break instructions). In [13], some
transformation techniques are added to the polyhedral model to remove some of these irregularities.

The model we propose assumes that part of the parallelization is hand-made, i.e. structuring the
program with template functions replacing all the for and while loops with their functional divide-
and-conquer equivalents. Anything else is taken in charge by the hardware without any compiler,
library or OS primitive intervention.

Parallelization based on OS threads [14] [15] suffers from the overhead of OS primitives,
the opacity of the code which must exhibit the synchronizations and communications and its
dependency on the number of cores through the explicit creation of threads. A major drawback
of OS threads is their non deterministic behaviour, as pointed out by Lee [16].

The parallelizing hardware we propose has low architectural overcost (a few machine instructions
run at thread creation, compared to thousands of instructions run in the pthread API).

The existing contributions on a hardware approach to automatize parallelization [17][18][19][20]
are penalized by the low basic Instruction Level Parallelism (ILP) measured in programs [21]. The
hardware based parallelization in [22] overcomes this limitation in 3 ways: (i) very distant ILP is
caught when fetch is parallelized, (ii) all false dependences are removed through full renaming and
(iii) many true dependences are removed by copying values. The remaining dependences in a run
are true ones related to algorithmic sequentialities that the program implements. In such conditions,
the authors in [23] have reached a high ILP (thousands), increasing with the data size, on the parallel
benchmarks of the PBBS suite [24].

In the hardware design we propose, fetch is parallelized and there is no data memory, i.e.
no memory dependences. In such conditions high ILP can be captured in a program run when
the program implements a parallel algorithm. The microarchitectural cost of parallelization is
reduced because there are less communications, involving only neighbour cores. The proposed
programming style avoids data storing which simplifies the hardware, makes parallel computations
more independent and uses well-known functional programming paradigm as in parallel Haskell
[25]. Instead of computing a data structure globally, we compute its elements individually and in
parallel. The efficiency does not rely on the cache locality principle, which applies poorly to a
parallel run. Instead, it relies on parallel locality, as defined in [26].
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20 COMPUTING ON MANY CORES

The number of transistors on a chip allows the integration of thousands of simple cores such
as the design proposed in this paper. Parallelization should be done fastly and reliably, leading to
reproducible computations as the programming model proposed in this paper.
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