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A Versatile Tension Distribution Algorithm for

n-DOF Parallel Robots Driven by n + 2 Cables
Marc Gouttefarde, Johann Lamaury, Christopher Reichert, and Tobias Bruckmann

Abstract—Redundancy resolution of redundantly actuated
cable-driven parallel robots (CDPRs) requires the computation
of feasible and continuous cable tension distributions along a
trajectory. This paper focuses on n-DOF CDPRs driven by n+2
cables since, for n = 6, these redundantly actuated CDPRs are
relevant in many applications. The set of feasible cable tensions
of n-DOF n+2-cable CDPRs is a two-dimensional convex polygon.
An algorithm that determines the vertices of this polygon in a
clockwise or counterclockwise order is first introduced. This algo-
rithm is efficient and can deal with infeasibility. It is then pointed
out that straightforward modifications of this algorithm allow the
determination of various (optimal) cable tension distributions.
A self-contained and versatile tension distribution algorithm is
thereby obtained. Moreover, the worst-case maximum number
of iterations of this algorithm is established. Based on this
result, its computational cost is analyzed in detail, showing that
the algorithm is efficient and real-time compatible even in the
worst case. Finally, experiments on two 6-DOF 8-cable CDPR
prototypes are reported.

I. INTRODUCTION

C
ABLE-DRIVEN parallel robots (CDPRs) consist essen-

tially of a mobile platform (the end-effector) driven by

cables in a parallel topology, the cable lengths being controlled

by means of winches. They possess several advantages such

as a potentially very large workspace. Some previous works

focused on crane-like applications, e.g. [1]–[3], haptic inter-

faces [4], [5], rehabilitation [6]–[8], and giant radio telescopes

[9], [10].

The context of this paper is the real-time control of redun-

dantly actuated CDPRs intended for industrial applications.

Experiments on two redundantly actuated 6 degree-of-freedom

(DOF) 8-cable CDPR prototypes, CABLAR [11] (Fig. 1) and

COGIRO [12], [13] (Fig. 2), will be presented. On the one

hand, CABLAR is an example where actuation redundancy

is required because using more cables than DOFs is a well-

known necessary condition to fully constrain a CDPR mo-

bile platform (wrench-closure), e.g. see [14], [15]. On the

other hand, for CDPRs in a crane-like configuration [1]–[3]
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Fig. 1. CABLAR CDPR prototype. Source and Copyright c©: Lehrstuhl für
Rechnereinsatz in der Konstruktion, University Duisburg-Essen.

Fig. 2. LIRMM/TECNALIA COGIRO suspended CDPR prototype.

(suspended CDPRs), actuation redundancy is not required but

it can be advantageous, e.g., it allows COGIRO to have a

large workspace-to-footprint ratio. This paper is dedicated to

redundantly actuated CDPRs driven by n + 2 cables where

n denotes the number of mobile platform DOF. Most existing

redundantly actuated CDPRs are driven by n+1 or n+2 cables

[11], [13], [14], [16]–[22], probably because it represents a

trade-off between the benefits of actuation redundancy and

the CDPR complexity and cost. For 6-DOF CDPRs, driving

the platform with n+2 = 8 cables rather than with n+1 = 7
cables leads generally to a larger and more homogeneous

workspace. It also makes the integration into a workshop or

a warehouse easier since symmetric cable arrangements in a

cuboid supporting frame can be used. Hence, 6-DOF CDPRs

driven by eight cables are relevant in many applications. This

paper focuses on redundantly actuated CDPRs but, in some
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applications, CDPR driven by less than n cables, e.g. [23],

may also be relevant.

The cable tension vector t ∈ R
m, m being the number of

cables, is said feasible if it satisfies 0 ≤ tmin ≤ t ≤ tmax.

The tensions have to be non-negative since the cables cannot

push on the mobile platform. The maximum values tmax are

generally set by the breaking loads of mechanical parts or by

the maximum actuator torques while positive values in tmin

should avoid slack cables. In the case of redundantly actuated

CDPRs, infinitely many feasible cable tension distributions

exist when the platform pose (position and orientation) lies

inside the wrench-feasible workspace (WFW) [24], [25]. For

control purposes, the resulting redundancy resolution problem

must be solved in real time and the computed cable tensions

must be continuous along the prescribed mobile platform

trajectory.

In several previous works, optimal tension distributions are

computed. The objective function can be the 1-norm [2], [18],

[19], [26] or ∞-norm [27] of t but these choices are prone

to cable tension discontinuities along a trajectory [26], [28].

Hence, the p-norm should rather be used with 1 < p <∞ [29].

In particular, the 2-norm has often been selected, e.g. [30]–

[34]. To compute such optimal tension distributions, iterative

optimization algorithms can be used. Since the platform pose

evolves continuously along a trajectory, warm start is possible

which generally results in a reduced number of iterations

before convergence, and thus in fast computations. Never-

theless, these iterative algorithms usually have an unknown,

unbounded or very large worst-case computation time which

is an issue for safe real-time implementations. This issue

is solved in [34], [35] where the 2-norm and barycenter

tension distributions are calculated with a relatively high but

bounded worst-case complexity. Besides, the methods in [36]–

[39] make simple, fast and predictable computations suitable

for degrees of redundancy larger than two or three. However,

these methods are not proved to work in the whole WFW

[38] and they may not be effective for suspended CDPRs. To

enlarge the part of the WFW in which they work, some cable

tensions are set at their maximum or minimum admissible

values, which may be contrary to the desired behavior and

degrade the smoothness of the tension time evolutions (see

the example in [39]). Furthermore, a general issue is the exact

nature of the computed solution which cannot be chosen, e.g.,

no optimality criterion can be assigned to it.

Depending on the CDPR type (suspended or fully con-

strained) and on the required characteristics (e.g. high stiffness,

low power consumption), the desired cable tension distribution

is not always the same. For example, the minimization of

energy consumption leads naturally to the 1-norm or 2-

norm optimal tension distributions [2], [18], [19], [30]–[32]

whereas the methods presented in [22], [26], [35] can be

used to increase stiffness since they avoid low cable tensions.

Therefore, a versatile method which can compute several types

of cable tension distributions is of great interest. Moreover,

the method should be mostly based on a single algorithm

as independent as possible from specialized computational

libraries (e.g. optimization algorithms) in order to avoid im-

plementing or linking several different algorithms in a real-

time control software environment. Additionally, a “safe”

and reliable implementation requires a proved and real-time

compatible worst-case computation time.

In most of the previously cited works, one type of tension

distribution is computed. Exceptions are [22], [26] where

parameters can be used to steer the cable tensions toward lower

or higher values. However, such parameters may have a little

effect as reported in [26] and the selection of their values

may be an issue. Notably, they cannot be used to compute a

prescribed tension distribution type (e.g. the 2-norm optimal

distribution). Moreover, the method presented in [26] relies

on a LP formulation so that discontinuities may occur and

its worst-case complexity has not been established. In [22],

the management of infeasibility is an issue and the use of

an iterative optimization algorithm precludes a worst case

complexity analysis. In [19], several tension distributions are

computed but only low cable tension values are of interest, the

computations mostly rely on optimization routines, and only

planar CDPRs are considered. The method introduced in [39]

could lead to versatile tension distribution computations but it

has the drawbacks already pointed out above.

The present paper introduces a versatile tension distribution

algorithm dedicated to n-DOF CDPRs driven by n+2 cables.

For a given pose of the mobile platform of these CDPRs, the

set of feasible cable tensions is known to be a convex polygon

(Section II). The main contribution is an efficient geometric

algorithm which either determines in order the vertices of this

polygon or prove that it is empty (Section III). Moreover,

the algorithm starting point is not required to correspond to

a feasible cable tension vector. Another contribution is to

point out that various (optimal) cable tension distributions

can be obtained by straightforward uses or modifications of

this algorithm (Section IV). Specifically, the determinations

of the optimal 1-norm and 2-norm as well as the centroid and

weighted barycenter tension distributions are explained. The

worst-case maximum number of iterations of the algorithm

is then established and its computational cost is analyzed

(Section V). It is thereby proved to be efficient and well

suited to real-time implementations. Its computational effi-

ciency is also briefly compared to some previous methods.

Finally, experimental results obtained on two 6-DOF 8-cable

prototypes, the fully-constrained CDPR CABLAR and the

suspended CDPR COGIRO, are presented (Section VI).

In the preliminary versions [13], [40] of the method intro-

duced in this paper, the algorithm was not capable of dealing

with infeasibility, its computational cost was not established,

only the centroid cable tension distribution was computed, and

experiments were conducted only on the COGIRO CDPR.

II. FEASIBLE CABLE TENSION POLYGON

The n×m wrench matrix W maps the cable tension vector

t ∈ R
m to the wrench f ∈ R

n applied by the cables onto the

mobile platform, e.g. [14], [15]

Wt = f (1)

where m and n denote the number of cables and of mobile

platform DOF, respectively. Let r = m− n be the degree of
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Fig. 3. The COGIRO suspended CDPR in static equilibrium at pose
[1 3 2.5 15 35 25]T (units: meters and degrees, XYZ Euler angle convention)
with a 300 kg platform mass, tmin = 100N and tmax = 5000N.

actuation redundancy (DOR). This paper is dedicated to the

case r = 2 DOR. When W has full rank, Eq. (1) is equivalent

to the following well-known equation

t = W+f + Nλ (2)

where W+ is the Moore-Penrose pseudoinverse of the wrench

matrix, N = null(W) is a full rank m × 2 matrix and

λ = [λ1 λ2]
T

is an arbitrary 2-dimensional vector. The two

columns of N form an orthonormal basis of the 2-dimensional

nullspace of W, i.e., NT N = I2. tp = W+f is the minimum-

norm solution of (1) satisfying tTp N = 0 and Nλ is the

homogeneous solution where N maps λ into the nullspace

of W. Let Σ ⊂ R
m be the 2-dimensional affine space of the

solutions to (1) and Ω ⊂ R
m the m-dimensional hypercube

of feasible cable tensions, i.e.,

Σ = {t | Wt = f}

Ω = {t | ti ∈ [tmin, tmax] , 1 ≤ i ≤ m}.
(3)

The intersection Λ = Ω∩Σ is a 2-dimensional convex polytope

representing the set of feasible cable tension distributions,

e.g. [15], [28], [33]. Under the affine map A = (N, tp), the

preimage of Λ is also a 2-dimensional convex polytope, i.e.,

a convex polygon, defined as

A−1(Λ) = {λ ∈ R
2 | tmin ≤ tp + Nλ ≤ tmax}. (4)

In the sequel, A−1(Λ) is refer to as the feasible polygon. For

example, Fig. 3 shows the feasible polygon corresponding to a

particular platform pose of a 6-DOF 8-cable suspended CDPR.

In fact, the feasible polygon A−1(Λ) is defined by the

following set of 2m linear inequalities

tmin − tp ≤ Nλ ≤ tmax − tp (5)

where each inequality defines a half-plane bounded by a line

corresponding to values of λ for which one cable tension is

equal to tmin or tmax. The intersection of the 2m half-planes

in (5) forms the feasible polygon A−1(Λ).
The feasible polygon A−1(Λ) has been considered only in

a few previous works [19], [35]. It lies in the 2-dimensional

space of vectors λ as opposed to Λ which is embedded into

the m-dimensional space of cable tensions (in this paper,

m = 8 for n = 6 DOF). Hence, the consideration of

A−1(Λ) allows to work in a 2-dimensional space where simple

geometric reasoning can be made. In fact, Section III shows

how polygon edges can be followed to reach a feasible point (if

it exists) and then to compute all the feasible polygon vertices

in order. The knowledge of the vertices (in a clockwise or

counterclockwise order) completely determines the polygon

geometry and thus allows a direct determination of various

tension distributions (Section IV). The idea of following the

polygon edges to compute its vertices is simple but, to the

best of our knowledge, has never been used—at least in the

context of CDPR cable tension distribution computation.

Note that, as pointed out in [19], [35], the vertices of

A−1(Λ) can be merely computed by solving all the 2 × 2
linear systems obtained by setting two of the inequalities in

(5) to equalities. Each such system provides one vector λ

which is an actual vertex of the polygon A−1(Λ) if it verifies

all the inequalities in (5). There are 2m inequalities in (5)

and, when inequalities are set to equalities, each row of (5)

defines two parallel straight lines. Hence, the total number

of 2 × 2 linear systems to be solved is C2m
2 − m = 4Cm

2

[26] (112 in the case m = 8). This brute-force determination

is simple but time-consuming. Moreover, the geometry of

A−1(Λ) is not fully revealed until the vertices are arranged in a

clockwise or counterclockwise order. Hence, this brute-force

determination must generally be followed by a convex hull

and/or a triangulation algorithm [35] which further increases

its computational cost. Section III will show that the vertices

of A−1(Λ) can be more efficiently computed in the case

m = n+ 2.

III. EFFICIENT DETERMINATION OF THE FEASIBLE

POLYGON VERTICES

This section introduces the main contribution of this paper:

An efficient algorithm which either determines the vertices

of the feasible polygon or proves that the system of linear

inequalities (5) is unfeasible. The algorithm can start at any

intersection point (feasible or not) between two lines bounding

half-planes defined by inequalities of (5). Moreover, the ver-

tices are determined in a clockwise or counterclockwise order

which allows a direct determination of various cable tension

distributions (as discussed in Section IV).

A. Notations

Prior to the detailed description of the proposed algorithm,

this section first introduces some notations.

The system of linear inequalities (5) is composed of m
rows. Its row i ∈ {1, . . . ,m} consists of two inequalities:

tmin − tpi
≤ niλ and niλ ≤ tmax − tpi

, where the two-

dimensional row vector ni denotes the row i of N. Each of

these 2m inequalities defines a half-plane. In the sequel, the

straight line bounding this half-plane is called an inequality

line and the point of intersection between two of these

inequality lines is referred to as an intersection point. Note

that the two lines bounding the two half-planes defined by

one row of (5) are parallel.

A row of (5) is said to be satisfied at a point λ if the

two inequalities of this row are satisfied. A point is said to
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be feasible if all the rows of (5) are satisfied at this point,

otherwise it is unfeasible. The feasible index set at a given

point λ is the set consisting of the indices of the rows of

(5) satisfied at λ, e.g., if rows 2, 4, 5 and 7 are satisfied, the

corresponding feasible index set is I = {2, 4, 5, 7}. Moreover,

the feasible polygon PI associated to a given feasible index set

I is the set of points λ at which all the rows of (5) with indices

in I are satisfied. PI is the intersection of the half-planes

defined by the inequalities of these rows of (5). The edges and

vertices of PI are segments of inequality lines and intersection

points, respectively. For I = {1, . . . ,m}, the feasible polygon

associated to I is P{1,...,m} = A−1(Λ). The feasible index set

associated to a feasible point is I = {1, . . . ,m}.

B. Algorithm General Description

The main idea is to move along the inequality lines stopping

at each intersection point encountered along the way. Each

move from one intersection point to the next one must either

keep the current feasible index set unchanged or, as often as

possible, add one or several rows of (5) to this set. In other

words, I being the feasible index set at some intersection point

v, a move along an inequality line to another intersection point

v′ is made only if the feasible index set I ′ at v′ is such that I ⊆
I ′. The number of rows of (5) which are satisfied at the current

intersection point is thus equal to or greater than the number of

rows satisfied at all the previously visited intersection points.

In this way, the algorithm aims at reaching the feasible polygon

A−1(Λ), if it exists, and then at turning around it. In order

not to retrace its steps, if the current intersection point v has

been reached by following the inequality line Li, the other

inequality line intersecting Li at v is followed in order to

move to the next intersection point v′.

Since there is a finite number of intersection points—a

maximum of 4Cm
2 , see Section II,— the algorithm eventually

reaches an intersection point which has already been visited

before. Let vf denote this intersection point, If be the feasible

index set at vf and PIf
the feasible polygon associated to If .

The intersection point vf is a vertex of PIf
and the algorithm

is terminated at vf . Indeed, as demonstrated in Section III-D,

a full turn around PIf
has been made to go back to vf ,

i.e., all the vertices of PIf
were visited in a clockwise or

counterclockwise order. If the algorithm were not stopped, the

same full turn around PIf
would be made again and again.

Furthermore, only two cases are possible when the algo-

rithm terminates at vf .

• Case 1: vf is feasible, i.e., all the inequalities of (5)

are satisfied at this point, If = {1, . . . ,m} and PIf
=

A−1(Λ). In this first case, all the vertices of A−1(Λ)
have been visited and thus determined in a clockwise or

counterclockwise order since the algorithm made a full

turn around A−1(Λ).
• Case 2: vf is not feasible, If 6= {1, . . . ,m} and PIf

6=
A−1(Λ). In this second case, the inequality system (5) is

proved to be unfeasible, i.e., A−1(Λ) = ∅. Otherwise, as

demonstrated in Section III-D, the algorithm would have

reached a vertex of A−1(Λ).

Last but not least, because feasibility is not required to start

the algorithm, the initial point vinit where the algorithm begins

moving along the inequality lines can be the intersection point

between any two inequality lines of (5).

C. Next Intersection Point

The determination of the next intersection point to be

reached is the main part of the algorithm. It is repeatedly

executed until the algorithm terminates.

Let us consider that the algorithm already reached point vij
which is the intersection between the two inequality lines Li

and Lj . Index i (resp. j) designates the row of (5) containing

the inequality which defines the halfplane bounded by Li

(resp. Lj). vij is not necessarily feasible and the feasible

index set at vij is denoted Iij . Let us also consider that the

algorithm reached vij by moving along Lj . Hence, line Li

must be followed in order to move to the next intersection

point. The latter will be the first intersection point encountered

along Li while moving from vij in the direction which keeps

the inequality corresponding to Lj satisfied. This inequality

must be kept satisfied because index j is not authorized to

leave the current feasible index set Iij .

First, let us determine the appropriate “direction of motion”.

Line Li is to be followed and the row ni of N is a vector

orthogonal to Li. Therefore, the appropriate direction of

motion is a vector orthogonal to ni. Let this vector be the

row vector ni⊥ : nin
T
i⊥

= 0. The points λ belonging to Li are

given by

λ = vij + αnT
i⊥

(6)

where α is a scalar. Let us choose α ≥ 0 as the appropriate

direction of motion along Li. With the notation ni = [a b],
ni⊥ can be equal to one of the following two vectors:

ni⊥1
= [b − a] or ni⊥2

= [−b a]. Between ni⊥1
and ni⊥2

, the

appropriate choice for ni⊥ is the one such that the inequality

corresponding to Lj remains satisfied for points λ given by

(6). Then, njλ = bj − tpj
being the equation of Lj , it is not

difficult to prove that [40]:

• If bj = tmin, among ni⊥1
and ni⊥2

, the appropriate

choice for ni⊥ is the one such that njnT
i⊥

≥ 0.

• If bj = tmax, the appropriate choice for ni⊥ is the one

such that njnT
i⊥

≤ 0.

The appropriate direction of motion ni⊥ being known, the

length of the move along Li, i.e. the value of α in (6),

which allows the algorithm to reach the next intersection

point vli must now be determined. This next intersection point

corresponds to the smallest α ≥ 0 such that one of the

inequalities of (5), apart from the two inequalities of row i,
becomes an equality. Therefore, let us consider row k of (5)

tmin − tpk
≤ nkλ ≤ tmax − tpk

, k ∈ {1, . . . ,m}\{i} (7)

where λ is given by (6). Let Lk,min and Lk,max be the

inequality lines corresponding to the left-hand side and right-

hand side inequalities of (7), respectively. The following cases

have to be distinguished.

1. nknT
i⊥

= 0: The two inequality lines Lk,min and Lk,max

are parallel to Li and no intersection point between Li and

these two lines can be found.

2. nknT
i⊥
> 0:
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a. If nkvij ≤ tmin − tpk
, the intersection point between Li

and Lk,min is obtained for α = αk = (tmin − tpk
−

nkvij)/(nknT
i⊥
) ≥ 0. Li also intersects Lk,max but for

a larger value of α.

b. If tmin − tpk
< nkvij ≤ tmax − tpk

, the intersection point

between Li and Lk,max is obtained for αk = (tmax −
tpk

−nkvij)/(nknT
i⊥
) ≥ 0. Li also intersects Lk,min but

for a negative value of α.

c. If tmax− tpk
< nkvij , there is no intersection λ between

Li and Lk,min or Lk,max such that α ≥ 0 in (6).

3. nknT
i⊥
< 0:

a. If nkvij < tmin − tpk
, there is no intersection point

between Li and Lk,min or Lk,max such that α ≥ 0.

b. If tmin − tpk
≤ nkvij < tmax − tpk

, αk = (tmin − tpk
−

nkvij)/(nknT
i⊥
) is the nonnegative value of α such that

Li intersects Lk,min. Li also intersects Lk,max but for

a negative value of α.

c. If tmax − tpk
≤ nkvij , the intersection point between

Li and Lk,max is obtained for αk = (tmax − tpk
−

nkvij)/(nknT
i⊥
) ≥ 0. It is smaller than the value of α

for which Li intersects Lk,min.

At most m−1 nonnegative scalars αk are thereby computed.

The smallest one

αl = min
k
αk (8)

determines the next intersection point vli where l =
argmink(αk). The inequality line Ll which intersects Li at

vli is either Ll,min or Ll,max depending on the sign of nln
T
i⊥

and on the value of nlvij as detailed above.

The feasible index set Ili at vli is such that Ili ⊇ Iij .

In fact, two cases should be distinguished. First, if l 6∈ Iij ,

Ili = Iij ∪ {l} since row l of (5) is now satisfied (cases 2.a

and 3.c) while all the rows of (5) with indices in Iij remain

satisfied because αl has been chosen as the smallest αk. A

new feasible polygon PIli
has been reached and vli is its first

visited vertex. Second, if l ∈ Iij , we have Ili = Iij (cases

2.b and 3.b above). The algorithm kept on turning around the

current feasible polygon PIij
= PIli

and:

• If vli is not the first visited vertex of PIij
, the algorithm

will keep on turning around this feasible polygon by

looking for the next intersection point.

• Otherwise, the algorithm is back at the first visited vertex

of the current feasible polygon PIij
= PIli

. A full turn

around this polygon has been made and the algorithm is

terminated. If Ili = {1, . . . ,m}, the inequality system (5)

is feasible, the current feasible polygon is A−1(Λ) and all

the vertices of A−1(Λ) have been determined. Otherwise,

Ili ⊂ {1, . . . ,m} (strict inclusion) and the inequality

system (5) is proved to be unfeasible (A−1(Λ) = ∅).

The flowchart of Fig. 4 summarizes the main steps of the

algorithm introduced in this section.

D. Termination and Proofs

The algorithm presented in Sections III-B and III-C always

goes back to an already visited intersection point, denoted vf ,

because there is a finite total number of intersection points (a

maximum of 4Cm
2 ). The proof below shows that, on the way

End

Start

Yes

Yes

No

No

Yes

No

Compute N and tp

vf = vli

Ili = Iij ∪ {l}

j = i, i = l

Compute αk for all k ∈ {1, . . . , m}\{i}

A−1(Λ) = ∅
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All vertices of A−1(Λ)
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and the next intersection point vli
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l ∈ Iij ?

Iij = {1, . . . , m} ?

Ili = Iij

Fig. 4. Flowchart of the algorithm of Section III.

back to vf , all the vertices of the feasible polygon PIf
are

visited, where If denotes the feasible index set at vf .

Proof 1. When the algorithm first reaches vf , it begins to turn

around the convex polygon PIf
, visiting the vertices of PIf

in a clockwise or counterclockwise order. Hence, assuming

that one vertex of PIf
is not visited amounts to assume that

a move from some vertex of PIf
led the algorithm to visit

an intersection point v which is not a vertex of PIf
. By

construction of the algorithm (Section III-C), the feasible index

set I at v satisfies If ⊆ I since vf was visited before v.

In fact, since v is not a vertex of PIf
, we have If ⊂ I,

i.e., If is a proper (strict) subset of I. However, after having

visited v, the algorithm goes back to vf so that, according to

Section III-C, I ⊆ If . This is a contradiction since we have

If ⊂ I and I ⊆ If . Hence, v cannot be visited which proves

that all the vertices of PIf
are necessarily visited since the

algorithm cannot take another path on its way back to vf .

This proof also demonstrates that if the algorithm were

not stopped at vf , the same full turn around PIf
would

be made repeatedly. Therefore, the algorithm is stopped at

vf and two cases are possible. First, if If = {1, . . . ,m},

PIf
= A−1(Λ), the inequality system (5) is feasible and all

the vertices of A−1(Λ) have been determined in order. Second,

if If 6= {1, . . . ,m}, i.e. If ⊂ {1, . . . ,m}, let us prove that

the inequality system (5) is unfeasible, i.e., A−1(Λ) = ∅.

Proof 2. Assume, to the contrary, that A−1(Λ) is not the

empty set. Since A−1(Λ) = P{1,...,m} and If ⊂ {1, . . . ,m},

A−1(Λ) is included into PIf
. Since If is a proper subset
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of {1, . . . ,m} (If ⊂ {1, . . . ,m}), there is k ∈ {1, . . . ,m}
such that k 6∈ If . One of the two inequality lines associated

to row k of (5), denoted Lk, is thus supporting an edge of

A−1(Λ) while cutting PIf
in two parts. Consequently, Lk

intersects two edges of PIf
and the feasible index set at

the two corresponding intersection points is If ∪ {k}. Since

If ∪ {k} is larger than If , the algorithm necessarily stops at

one of these two intersection points while turning around PIf
.

From this point on, it leaves the boundary of PIf
by following

Lk to the interior of PIf
. It means that an intersection point

v which is not a vertex of PIf
will be visited which is

impossible according to Proof 1 above. Necessarily, we have

A−1(Λ) = ∅.

E. Degenerate Cases

Degeneracy may happen when inequality lines correspond-

ing to different rows of (5) are parallel or when three or more

of these lines have a common intersection point.

The first degenerate case corresponds to Case 1. of Sec-

tion III-C (nknT
i⊥

= 0) and is not difficult to handle. The

second one, three or more inequality lines intersecting at a

given point, corresponds to the particular case αl = 0 in (8).

Equivalently, with the notations of Section III-C, there exists

k ∈ {1, . . . ,m}\{i} such that αk = 0. It means that the

three lines Li, Lj and Lk (where Lk is Lk,min or Lk,max)

are crossing at vij . However, together with Lj (which was

followed to reach vij), only one of Li or Lk is supporting the

current feasible polygon PIij
along one of its edges. This

supporting line is to be followed to reach the next vertex

of the current feasible polygon. It can be determined by

straightforward geometric reasoning on the vectors ni, nj and

nk [40]. The other line intersecting at vij supports the polygon

at a vertex only. Removing its index from consideration in (8)

yields a strictly positive value of αl, i.e., it leads to the next

polygon vertex.

F. Example

The determination of the vertices of A−1(Λ) in the case

of Fig. 3 is taken as an example. As shown in Fig. 5,

the problem is feasible and the vertices v7, v8, v9, v10,

and v11 of A−1(Λ) are determined in a clockwise order.

The initial intersection point vinit has been selected as the

intersection between the inequality lines L3,min and L6,max.

This initial point is not feasible since its feasible index set

is Iinit = {1, 2, 3, 5, 6}. The feasible index set at v2 is

I2 = {1, 2, 3, 4, 5, 6} whereas the feasible index set at v3,

v4, v5, and v6 is I3 = {1, 2, 3, 4, 5, 6, 8}. By construction of

the algorithm, we have Iinit ⊂ I2 ⊂ I3 ⊂ {1, . . . , 8}.

IV. OPTIMAL TENSION DISTRIBUTIONS

This section shows that various cable tension distributions

can be obtained by a straightforward use or modification of

the algorithm introduced in Section III. The determinations of

the optimal 2-norm and 1-norm as well as the centroid and

weighted barycenter tension distributions are explained. In the

sequel, the feasible polygon A−1(Λ) is assumed to be non-

empty since, otherwise, no feasible tension distribution exists.
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v3

v11

v5

v8

v4

v7 = vf

L3,max

L5,min

L6,min

L2,minL4,min

L6,max

vinit

L1,min

L5,m
ax

L7,min

L8,min

n3⊥

n3

=v1
v2

L1,max

L2,max

L3,min

v9

v6

v10 A−1(Λ)

Fig. 5. Algorithm of Section III applied to the case of Fig. 3. From the initial
intersection point vinit, as indicated by the arrows, the algorithm reaches in
order the intersection points v2, . . . , v11 . It finally terminates at v7 = vf
since this point was already visited before.

A. 2-norm Optimal Solution

The 2-norm optimal tension distribution is the solution of

the quadratic program (QP)

min
t

‖t‖2

s.t. Wt = f, tmin ≤ t ≤ tmax.
(9)

Using Eq. (2), the objective function can be written as ‖t‖2 =
‖tp‖

2
+ ‖Nλ‖2 + 2tTp Nλ, i.e., ‖t‖2 = ‖tp‖

2
+ ‖λ‖2 since

NT N = I2 and tTp N = 0.

For a given pose of the mobile platform, tp is a constant. The

problem can thus be reformulated in the following equivalent

form
min
λ

‖λ‖2

s.t. tmin − tp ≤ Nλ ≤ tmax − tp.
(10)

This strictly convex QP has a unique global solution. When

0 ∈ A−1(Λ), λ = 0 is the solution of (10) and tp = W+f is

then the optimal solution of (9). When 0 6∈ A−1(Λ), the opti-

mal solution of (10) lies on an edge or at a vertex of A−1(Λ)
as illustrated in Fig. 6. The following straightforward modifi-

cation of the algorithm introduced in Section III allows the

determination of this solution. While turning around A−1(Λ),
the current vertex vij and the edge that will be followed to

reach the next vertex vli are tested for optimality. If this vertex

or a point on this edge is found to be the optimal solution λ∗
2 of

(10), the desired 2-norm optimal tension distribution (solution

of (9)) is computed as t∗2 = tp + Nλ∗
2.

By means of the Karush-Kuhn-Tucker (KKT) conditions

[41], a vertex vij of A−1(Λ) can be proved to be the solution

of (10) if and only if the two components of the vector

µ = [ai, aj ]
−1vij (11)

are non-negative. Vertex vij is the intersection between the two

inequality lines Li and Lj whose equations are niλ = bi− tpi
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Fig. 6. A case where the solution of (10) lies on an edge of A−1(Λ).
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(b) Feasible polygon A−1(Λ) and various
optimal points in the plane (λ1, λ2)

Fig. 7. The CABLAR fully constrained CDPR in static equilibrium at
pose [0−2.5 2 3 5 0]T (units: meters and degrees, XYZ Euler angle
convention) with a 45 kg platform mass, tmin = 100N and tmax = 600N.
The markers indicate polygon vertices and different optimal solutions to the
tension distribution problem.

and njλ = bj − tpj
, respectively. In (11), ai = sin

T
i where

si = 1 if bi = tmin and si = −1 if bi = tmax, and aj = sjnT
j

where sj = 1 if bj = tmin and sj = −1 if bj = tmax.

Let us now consider an edge of A−1(Λ) supported by the

inequality line niλ = bi − tpi
. The KKT conditions can be

used to prove that the solution of (10) lies on this edge if

and only if: 1. µi = si(bi − tpi
)/aTi ai ≥ 0, and 2. λ = µiai

verifies all the inequalities in (5), where si and ai are defined

as above. If these two conditions are true, the point λ = µiai

lies on the edge of A−1(Λ) and is the optimal solution of

(10): λ∗
2 = µiai. Geometrically, this point is the orthogonal

projection of the origin λ = 0 onto the line supporting the

edge.

Fig. 7 illustrates different optimal solutions obtained for

the CABLAR fully constrained CDPR. The square marker

represents λ∗
2 which lies on a edge of A−1(Λ).

B. 1-norm Optimal Solution

The 1-norm optimal tension distribution is the solution of

the linear program

min
t

1T t

s.t. Wt = f, tmin ≤ t ≤ tmax

(12)

where 1 is the vector of Rm whose components are all equal

to 1. Eq. (2) allows (12) to be written in the equivalent form

min
λ

1T Nλ

s.t. tmin − tp ≤ Nλ ≤ tmax − tp.
(13)

since 1T t = 1T tp+1T Nλ. The solution of (13) lies at a vertex

of A−1(Λ). However, some orientations of A−1(Λ) make the

1-norm minimized over an entire edge [41] and the solution

is then non-unique. The use of the 1-norm optimal tension

distribution is thus an issue because it may be discontinuous

along a platform trajectory [26], [28], which might yield

vibrations and lead to control issues.

Nevertheless, if the solution of (13) is to be computed, the

algorithm introduced in Section III can be directly used since

it suffices to test each visited vertex of A−1(Λ) for optimality.

Let vij be a vertex of A−1(Λ) lying at the intersection between

Li and Lj whose equations are niλ = bi − tpi
and njλ =

bj − tpj
, respectively. The KKT conditions imply that vij is

the optimal solution of (13) if and only if the vector

µ = [ai, aj ]
−1NT 1 (14)

has non-negative components. In (14), ai and aj are defined

as in Section IV-A. If vij is found be the solution of (13),

the 1-norm optimal tension distribution (solution of (12))

is calculated as t∗1 = tp + Nvij . In Fig. 7b, the 1-norm

minimum tension distribution is indicated by the triangular

marker which, as expected, is located at a vertex of A−1(Λ).

C. Centroid

The determination of the centroid λ∗
c of A−1(Λ) can be

relevant for suspended CDPRs since the corresponding tension

distribution is far from the boundaries of Λ. In fact, according

to [42], [43], the centroid is as far as possible from the polygon

boundaries and is the unique point of A−1(Λ) that solves

max
p

log
∏

di (15)

where di is the Euclidean distance from point p to the ith
inequality line. Eq. (15) shows that the centroid depends

smoothly on the problem constraints so that the corresponding

tension distribution is continuous along a platform trajectory.

Let vi = [vi1 vi2 ]
T , i ∈ {1, . . . , q}, be the q vertices of

A−1(Λ) computed by means of the algorithm of Section III.

Since these vertices have been determined in a clockwise

or counter-clockwise order, the centroid λ∗
c = [λc1 λc2 ]

T

of A−1(Λ) is directly given by the following well-known

formulas















λc1 = 1
6A

q−1
∑

i=1

(vi1 + v(i+1)1)(vi1v(i+1)2 − v(i+1)1vi2)

λc2 = 1
6A

q−1
∑

i=1

(vi2 + v(i+1)2)(vi1v(i+1)2 − v(i+1)1vi2)

(16)

where A is the area of the polygon, given by

A =
1

2

q−1
∑

i=1

(vi1v(i+1)2 − v(i+1)1vi2 ). (17)

In Fig. 7b, the red dot marker shows λ
∗
c . The desired tension

distribution is the centroid of Λ given by t∗c = tp + Nλ∗
c .
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D. Weighted Barycenter

All the vertices of A−1(Λ) being determined by the al-

gorithm of Section III, the weighted barycenter is another

tension distribution that can be directly computed. In order

to avoid discontinuities that may be created when the same

weight value is used for all vertices [44], each vertex vi can

be weighted by

wi =





2
∑

j=1

‖vi − vij‖



 /‖vi‖ (18)

where vi1 and vi2 are the two neighbor vertices of vi. The

weighted barycenter of A−1(Λ) is then computed as

λw =

(

q
∑

i=1

wivi

)/

q
∑

i=1

wi (19)

and the desired tension distribution is tw = tp + Nλw. This

solution is shown in Fig. 7b by the diamond marker.

V. COMPUTATIONAL EFFICIENCY

In this section, the maximum number of moves (iterations)

made by the algorithm of Section III is determined. Based on

this result, a detailed analysis of the number of operations

required by the proposed tension distribution algorithm is

presented together with brief comparisons to some previously

proposed methods.

A. Number of Feasible Polygon Vertices

By geometric reasoning, let us prove that the number of

vertices nv of a feasible polygon PI satisfies nv ≤ 2|I|, where

|I| is the number of elements of I. This result will be used

in Section V-B.

In the case |I| = 2, two pairs of parallel inequality lines are

intersecting as shown in Fig. 8a. Without loss of generality,

let the first pair be L1,min, L1,max (row 1 of (5)) and the

second pair be L2,min, L2,max (row 2 of (5)). The resulting

feasible polygon PI=2 is a parallelogram so that nv = 4 when

|I| = 2. In the case |I| = 3, a third pair of parallel inequality

lines L3,min and L3,max (row 3 of (5)) is added as shown

in Fig. 8b. The corresponding feasible polygon PI=3 has the

maximum possible number of vertices when both L3,min and

L3,max cut one and only one vertex out of PI=2. Indeed, as

illustrated in Fig. 8b, an additional inequality line creates new

vertices by cutting some vertices out of the current polygon.

The polygon being convex, at most two vertices can be created

and at least one vertex is cut out in the process, i.e., at most one

vertex is added. L3,min and L3,max add thus at most 2 vertices

to the previous 4-vertex polygon PI=2 so that nv ≤ 6 holds

for |I| = 3. By induction on the number of pairs of inequality

lines defining PI , the same reasoning leads to nv ≤ 2|I|.

B. Maximum Total Number of Moves

Let vinit be the intersection point where the algorithm

introduced in Section III starts. The feasible index set at vinit

is denoted Iinit. On its way to the last intersection point vf ,

the algorithm considers a sequence of feasible index sets I(i).
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Fig. 8. Feasible polygons PI with |I| = 2 (left) and |I| = 3 (right).

Without loss of generality (reordering if necessary), let the first

index set be Iinit = I(1) = {1, . . . , p} where p is the number

of rows of (5) satisfied at vinit (p ≤ m). If (5) is feasible, the

(last) feasible index set at vf is If = {1, . . . ,m}, otherwise it

is If ⊂ {1, . . . ,m}. The maximum number of feasible index

sets in the sequence is thus obtained when (5) is feasible

in which case If = I(m − p + 1) = {1, . . . ,m}. The ith
index set in the sequence is I(i) = {1, . . . , p, . . . , p+ i− 1},

1 ≤ i ≤ m−p+1. The number of vertices of the corresponding

feasible polygon PI(i) is denoted nv(i). When I(i) is the

current feasible index set, the algorithm “moves” along the

edges of PI(i) from one vertex to the next one. Let nm(i) be

defined as the number of moves along the edges of PI(i) such

that I(i) is the feasible index set of the vertices from where

the moves are made (1 ≤ nm(i) ≤ nv(i)).

The maximum total number of moves (iterations) made by

the algorithm of Section III is equal to

nmt =

m−p+1
∑

i=1

nm(i). (20)

An upper bound on nmt, depending only on p and m, can be

established by analyzing the relationship between the number

of vertices nv(i+1) of PI(i+1), the number of vertices nv(i)
of PI(i), and the number of moves nm(i) along the edges

of PI(i). First, since I(i + 1) = I(i) ∪ {p + i}, PI(i+1)

is obtained from PI(i) by cutting it with the two inequality

lines Lp+i,min and Lp+i,max which correspond to the row

p + i of (5), as illustrated in the example shown in Fig. 9.

Second, by definition of nm(i), the algorithm of Section III

stops at nm(i) vertices of PI(i) before meeting one of the two

inequality lines Lp+i,min or Lp+i,max, i.e., before reaching a

vertex of PI(i+1). Therefore, the inequality line Lp+i,min or

Lp+i,max on which this vertex lies (Lp+i,max in Fig. 9) cuts at

least nm(i) vertices of PI(i) while creating two new vertices.

The other inequality line (Lp+i,min in Fig. 9) cuts at least one

vertex of PI(i) while creating two new vertices. Hence, the

number of vertices of PI(i) which are also vertices of PI(i+1)

is at most equal to nv(i)−nm(i)−1 and the number of vertices

created by Lp+i,min and Lp+i,max is at most equal to four.

The number of vertices nv(i+ 1) of PI(i+1) is thus bounded

as follows

nv(i+ 1) ≤ nv(i)− nm(i) + 3 . (21)
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Fig. 9. The edges of PI(i) are shown in thick black lines. The feasible
polygon PI(i+1) differs from PI(i) in that the two inequality lines shown
in blue, Lp+i,min and Lp+i,max, are bounding it. The vertices of PI(i+1)
are indicated by black dots. The vertex marked with the triangle is the one
from where the algorithm begins to follow the edges of PI(i) . In this example,
the algorithm makes three moves (indicated by the arrows) before reaching
a vertex of PI(i+1) . The latter vertex lies on Lp+i,max and is shown by
the square. Lp+i,max creates two vertices and cuts four vertices of PI(i)
whereas Lp+i,min creates two vertices and cuts one vertex of PI(i) (the
one shown by the diamond).

By induction on i, (21) leads directly to

nv(i+ 1) ≤ nv(1) + 3i−
i
∑

j=1

nm(j) (22)

and, since nm(i + 1) ≤ nv(i + 1), (22) implies that

i+1
∑

j=1

nm(j) ≤ nv(1) + 3i . (23)

According to Section V-A, nv(1) ≤ 2p (since |I(1)| = p) so

that, with i = m − p in (23), the following upper bound on

the total number of moves is obtained

nmt ≤ 2p+ 3(m− p) = 3m− p (24)

where, in this paper, m = n+ 2. When the number of DOFs

is n = 6 , the number of cables is m = 8 and nmt ≤ 24− p
where p is the number of rows of (5) satisfied at vinit (p ≥ 2),

i.e., nmt ≤ 22.

When p = m, vinit is a vertex of A−1(Λ) and nmt ≤ 2m,

which corresponds to the case where the algorithm of Sec-

tion III starts at a vertex of A−1(Λ) and then makes a full

turn around it. This case is consistent with Section V-A where

the number of vertices of A−1(Λ) is proved to be less than

or equal to 2|If | = 2m. When p 6= m, the intersection point

vinit where the algorithm starts is unfeasible and the upper

bound established in (24) shows that, in the worst case, the

total number of moves remains fairly small.

C. Maximum Number of Operations

The maximum number of moves of the algorithm introduced

in Section III being determined, the maximum number of

floating point operations (FLOPs) can be established. Here,

a FLOP is an addition, subtraction, multiplication, division or

square root.

The proposed tension distribution algorithm consists of the

following main steps.

1. Initialization: Computations of tp = W+f, of the nullspace

matrix N, and of the first intersection point vinit.

2. Algorithm of Section III.

3. Computation of the desired tension distribution: One of the

solutions presented in Section IV.

In this paper, the computation of tp and N in step 1 is

based on the QR decomposition of WT obtained by means of

Householder triangularizations [45]. Including the computa-

tion of vinit and being given that m = n+2, the corresponding

number of FLOPs is equal to 8
3n

3+ 33
2 n

2+ 167
6 n which gives

1337 FLOPs for n = 6 DOF CDPRs.

A detailed analysis of Section III-C shows that the max-

imum number of FLOPs required for each move from one

intersection point to the next one is equal to 10n+17. Hence,

neglecting the small overhead occasionally required to handle

degenerated cases (Section III-E), the number of FLOPs in step

2 is equal to nmt(10n+ 17). According to Section V-B, the

worst-case scenario is nmt = 22 which leads to a maximum

of 1694 FLOPs for n = 6. In practice, according to our

experience on CABLAR and COGIRO and using a warm start

(see Section V-D), the average maximum number of moves is

nmt = 6 which corresponds to 462 FLOPs.

In Section IV-C, the computation of the centroid tension

distribution requires 10q + 4n FLOPs where q denotes the

number of vertices of A−1(Λ). In the worst case, q = 2m =
2n+4 so that the maximum number of FLOPs in Section IV-C

is 24n+ 40 (184 for n = 6). In Section IV-D, the number of

FLOPs involved in the computation of the weighted barycenter

tension distribution is equal to 23q+4n+8 FLOPs which, in

the worst case q = 2n + 4, leads to 50n + 100 FLOPs (400
for n = 6). In the case of the 2-norm and 1-norm optimal

tension distributions, if (5) is found to be feasible, most of

step 3 is actually done together with step 2 since optimality

of a vertex of A−1(Λ) (or a point on an edge in case of

the 2-norm) is tested by means of the KKT conditions while

turning around A−1(Λ). However, the maximum number of

operations is reached when this optimal point is located at the

last vertex of A−1(Λ) (or on its last edge in case of the 2-

norm) visited by the algorithm of Section III. Therefore, the

maximum number of operations is reached when the KKT

conditions need to be tested at all the vertices of A−1(Λ)
and, in case of the 2-norm, for all its edges. Accordingly,

the computation of the 1-norm optimal tension distribution in

Section IV-B requires a maximum of 11q + 6n + 10 which,

in the worst case q = 2n+ 4, leads to 28n+ 54 FLOPs (222
for n = 6). Moreover, the computation of the 2-norm optimal

tension distribution in Section IV-A requires a maximum of

4nq+22q+4n+8 which, in the worst case q = 2n+4, leads

to 8n2 + 64n+ 96 FLOPs (768 for n = 6).

For n = 6 DOF CDPRs driven by m = 8 cables, in

the worst case and according to the above analysis, the

maximum total number of FLOPs required by the proposed

tension distribution algorithm is equal to 3799, 3253, 3215,

and 3431 in case of the 2-norm, 1-norm, centroid and weighted

barycenter solutions, respectively. These numbers of FLOPs

are strict upper bounds almost never attained in practice but

they are very useful to check whether or not a real-time

computation time constraint can be satisfied.
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D. Warm Start

At a given pose along a discretized trajectory followed by

the CDPR mobile platform, a possible warm start method

consists in choosing vinit at the intersection point between the

two inequality lines which intersected at vf at the previous

pose along the trajectory. It is worth noting that the cases in

which this vinit is unfeasible are not an issue since the proposed

algorithm can start at such an unfeasible point.

E. Comparison to Other Methods

As detailed at the end of Section II, the vertices of A−1(Λ)
can be simply computed by solving a number of 2× 2 linear

systems and testing the feasibility of their solutions [19], [35].

For m = n + 2, the corresponding number of FLOPs can

be established to be 6n3 + 52n2 + 116n + 72. This leads

to 3936 FLOPs for n = 6 DOF CDPRs. Note that this

number does not include the possible additional computations

needed to order the vertices. The algorithm introduced in

Section III-C involves 1694 FLOPs in the worst case. Hence,

the simple determination of the vertices pointed out in [19],

[35] requires at least more than twice as many FLOPs as the

algorithm introduced in Section III. In practice, according to

our experiments, it generally needs eight to twelve times as

many FLOPs as the algorithm of Section III.

In [34], a method to compute the 2-norm optimal tension

distribution is proposed. An upper bound (equal to 256 for

m = 8) on the number of iterations is established when only

the lower tension limit tmin is taken into account. When both

tmin and tmax are considered, this upper bound on the number

of iterations is given by
∑2m

s=0 C
m
s which, for m = 8, is

equal to 65536. At each iteration, a m × m or larger linear

system must be solved so that, in the worst case, the number

of required FLOPs is much larger than the worst case 3799
FLOPs needed by the algorithm proposed in the present paper

to compute the 2-norm tension distribution.

Finally, the fast closed-form method proposed in [37] re-

quires − 2
3n

3 +2mn2 − 1
2n

2 +8mn+3m+ 25
6 n FLOPs, i.e.,

847 FLOPs for m = n + 2 = 8, when implemented with a

QR decomposition based on Householder triangularizations.

However, for this method to work in a large part of the WFW,

in the case m = n+2, it may have to be called three times with

one (resp. two) cable tension fixed to tmin or tmax during the

second (resp. third) call [38]. Hence, the worst case number

of FLOPs can be established to be 4n3 + 49
2 n

2 + 273
6 n + 7

FLOPs, i.e., 2026 FLOPs for n = 6 which is not significantly

smaller than the worst-case number of FLOPs needed by the

algorithm proposed in this paper.

VI. EXPERIMENTAL RESULTS

A. CDPR prototypes

1) CABLAR (Cable Based robot for Logistic Applications

and Research): This prototype, shown in Fig. 1, is a high-rack

storage and retrieval machine which consists of a 6-DOF 8-

cable fully constrained CDPR (2 DOR) with a mobile platform

embedding a push-and-pull mechanism with a total mass of

45 kg. The push-and-pull mechanism allows the machine to

Fig. 10. Dual-space feedforward controller

automatically load and unload goods. The overall dimensions

are 2m×12m×6m (l×L×h). The real-time control system is

based on Beckhoff TwinCAT3 R© and runs at a 1 kHz sampling

frequency. The CPU of the real-time computer is a Intel R©
CoreTM2 Duo Processor T9400 @2.53 GHz.

2) COGIRO: This prototype, shown in Fig. 2, is a 6-DOF

8-cable suspended CDPR (2 DOR) having a large workspace

of overall dimensions 15m × 11m × 6m (L × l × h). In the

experiments reported in this paper, COGIRO performs pick-

and-place tasks, its mobile platform being equipped with a

crane fork for a total mass of 93 kg. The control system is

based on B&R Automation Studio R© running at a 1 kHz sam-

pling frequency with a CPU Intel R© CoreTM2 Duo Processor

L7400 @1.5 GHz.

The paper is accompanied by a video. It first shows the

CABLAR prototype moving along predefined trajectories. The

COGIRO prototype performing a pick-and-place task is then

shown. Both CABLAR and COGIRO are controlled by means

of the the dual-space feedforward controller of Section VI-B.

B. Dual-space feedforward controller

The dual-space feedforward control scheme shown in

Fig. 10 is very similar to the one in [13]. The difference is

the use of a joint space instead of an operational space PID
controller, the tuning of the former being much simpler in

practice.

In Fig. 10, as detailed in [13], the “Inverse dynamics”

block compensates for the loaded mobile platform dynamics

by means of an operational space feedforward wrench fff
whereas the actuator dry and viscous frictions Fs and Fv are

compensated for by a joint space feedforward torque τ ff .

The term tanh(µq̇d) is used to model dry friction in order to

avoid discontinuities which may appear with the sign function.

Moreover, τm is the actuator input torque vector and τTD is

the torque vector given by the tension distribution algorithm.

Let us note that τTD = RtTD , where tTD is one of the

tension distribution solutions of Section IV and R is a diagonal

matrix whose nonzero components account for the mechanical

transmission ratios and the winch drum radii. The input to

the tension distribution block is fc which is the sum of the

feedforward wrench fff and a wrench generated by the PID

controller [13].

The control scheme of Fig. 10 includes the tension distribu-

tion algorithm in the main control loop. If the latter algorithm

finds a feasible tension distribution (i.e. (5) is feasible), the

corresponding torque τ TD is computed. Hence, care must

be taken to correctly tune the parameters used to calculate
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Fig. 11. Cable tensions measured on the CABLAR prototype, obtained by
means of four different tension distributions

the feedforward terms fff and τ ff . Indeed, a bad tuning

leads the PID controller to overwork making the input fc
to the tension distribution block impossible to balance with

feasible cable tensions. Such a situation leads to a failure of

the tension distribution algorithm (i.e. Λ = ∅), even if the

current trajectory fully lies in the wrench-feasible workspace.

C. CABLAR real-time results

The control scheme of Fig. 10 is applied to the fully

constrained CDPR CABLAR with tmin = 150N and tmax =
1200N. The mobile platform motion is controlled along a path

in the (y, z) plane (i.e. x = 0) with a constant null orientation.

The y and z coordinates of the waypoints of the path are given

in Tab. I. This path is representative of typical intralogistic

applications.

TABLE I
CABLAR: WAYPOINTS OF THE DESIRED TRAJECTORY

units: m 0 1 2 3 4

[y z] [0 2] [−2.5, 1] [−2.5, 2.5] [2.5, 2.5] [2.5, 1]

The algorithm of Section III has been implemented and

used to compute the four tension distributions presented

in Section IV. Fig. 11 shows the measured cable tensions

obtained with each method. The corresponding Root Mean

Square (RMS) cable tension values are given in Tab. II. As

expected, the 1-norm and 2-norm solutions result in lower

cable tension values and their RMS tension values are very

similar since, along the considered trajectory, λ
∗
1 and λ

∗
2 are

always located at the same vertex or at nearby vertices of

the polygon A−1(Λ). The centroid results in the higher RMS

cable tension. As shown in Fig. 11, the weighted barycenter

provides an interesting alternative which gives a relatively low

RMS tension value compared to the centroid while keeping the

cable tensions relatively far from the boundaries of the feasible

cable tension set Λ.

TABLE II
ROOT MEAN SQUARE CABLE TENSION VALUES OF THE FOUR

CONSIDERED TENSION DISTRIBUTIONS

centroid weighted
barycenter

1-norm
solution

2-norm
solution

CABLAR 700.9N 569.6N 356.5N 354.7N

COGIRO 479.7N 477.2N ∅ 477.0N

Tab. III shows the Task Execution Time (TET) of the four

considered tension distributions, i.e., for each distribution, the

total time needed for the computations of the three steps

detailed in Section V-C. For comparison purposes, the TET

of an efficient active set method (with warm start) that solves

the QP (9) is also given. Tab. III illustrates that the proposed

algorithm is efficient since the TETs are slightly larger but

comparable to the TET of the active set method. Moreover,

contrary to the latter which can only compute the 2-norm

solution, the proposed algorithm is versatile since the four

tension distributions in Tab. III were computed with the same

computer code. To ensure real-time compatibility, the worst-

case computation time should be determined. Let us assume

that the TET is proportional to the number of FLOPs and

let α denote the ratio of time divided by number of FLOPs.

The centroid maximum TET given in Tab. III was obtained

for nmt = q = 5 which, according to Section V, corresponds

to 1337 + 77nmt + 10q + 24 = 1796 FLOPs whereas

the centroid average TET was in most cases obtained for

nmt = q = 4 which corresponds to 1709 FLOPs. The

corresponding values of the ratio α are 0.0127 and 0.0119.

The same analysis for the barycenter, 1-norm and 2-norm cases

corroborate these values of α. In the remainder of this section,

we thus choose α = 0.013. Hence, the worst-case TET can be

estimated from the maximum number of FLOPs given at the

end of Section V-C by multiplying these number of FLOPs

by α = 0.013. The results are worst-case TETs of 49.4 µs,

42.3 µs, 41.8 µs, and 44.6 µs for the 2-norm, 1-norm, centroid

and weighted barycenter solutions, respectively. This analysis

proves that the proposed algorithm easily satisfies the real-

time constraint which requires the TET to be smaller than

1ms (1 kHz sampling frequency). No such worst-case bound

is established for the active set algorithm whose TETs are

shown in Tab. III. In case of the simple method [19], [35]

analyzed at the beginning of Section V-E, an incompressible

number of 1337+ 3936 FLOPs, which corresponds to 68.5 µs

for α = 0.013, is required in order to compute tp, N and

the vertices of A−1(Λ). Adding the computations needed to

calculate the desired tension distributions, the worst-case TET

lies in the interval 72−80µs, i.e., four times as much as the

TETs shown in Tab. III and twice as much as the worst-case

TETs indicated above.
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TABLE III
CABLAR: TASK EXECUTION TIME OF THE TENSION DISTRIBUTIONS

average TET min TET max TET

centroid 20.3 µs 18.6 µs 22.8 µs

barycenter 21.3 µs 19.1 µs 24.3 µs

1-norm 17.7 µs 16.9 µs 19.1 µs

2-norm 17.7 µs 16.9 µs 18.9 µs

active set 14.1 µs 13.4 µs 15.8 µs
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Fig. 12. Motor torques (converted in tensions) of the COGIRO prototype
obtained with the centroid tension distribution

D. COGIRO real-time results

The COGIRO suspended CDPR prototype is now consid-

ered with tmin = 100N and tmax = 5000N. The dual-space

feedforward controller of Fig. 10 is used to control the motion

of the mobile platform along a trajectory described in Tab. IV,

where x = [x y z φ θ ψ]
T

(XYZ Euler angle convention)

defines the pose of the mobile platform.

TABLE IV
COGIRO: WAYPOINTS OF THE MOBILE PLATFORM DESIRED TRAJECTORY

xT [m][o] 0 [0 0 1 0 0 0] 1 [−3.8 1.2 1 0 0−45]

xT [m][o] 2 [−3.8 1.2 0.07 0 0−45] 3 [−3 2 0.07 0 0 − 45]

xT [m][o] 4 [−3 2 1 0 0 45] 5 [4−1 0.5 0 0 11]

xT [m][o] 6 [4−1 0.07 0 0 11] 7 [4.3−2 0.07 0 0 11]

xT [m][o] 8 [0 0 0.5 0 0 0] 9 [0 0 0 0 0 0]

Nearby the center of the workspace of COGIRO, an edge

of the polygon A−1(Λ) turns out to be almost aligned with

the contours of the 1-norm objective function (Section IV-B).

Consequently, the 1-norm tension distribution is not suitable

because the optimal point switches very frequently from one

vertex of A−1(Λ) to another. This results in discontinuities in

the tension distribution evolutions along the trajectory which

generate significant platform and cable vibrations.

For the suspended CDPR COGIRO, along the typical tra-

jectory given in Tab. IV, the polygon A−1(Λ) is small so that

the three solutions λ∗
2, λ∗

c and λw are almost identical along

the trajectory. Hence, Fig. 12 only shows the motor torques—

in terms of cable tensions—in case of the centroid tension

distribution (λ∗
c ). The corresponding RMS cable tension values

are given in Tab. II. From a general point of view, the centroid

may be considered to be the best tension distribution for

suspended CDPRs since λ∗
c is far from the boundaries of

TABLE V
COGIRO: TASK EXECUTION TIME OF THE TENSION DISTRIBUTIONS

average TET min TET max TET

centroid 24.9 µs 22.1 µs 28.3 µs

barycenter 25.8 µs 23.5 µs 29.5 µs

1-norm 21.1 µs 19.7 µs 20.2 µs

2-norm 18.2 µs 17.8 µs 18.3 µs

centroid [35] 74.9 µs 75.6 µs 76.8 µs

A−1(Λ), i.e., slack cables should be avoided. However, in the

present case of COGIRO moving along the trajectory given

in Tab. IV, selecting the pseudo-inverse solution tp of Eq. (1)

as the desired cable tension distribution is sufficient since the

other tension distribution solutions considered in this paper

leads to almost the same cable tensions as those in tp.

Tab. V shows the Task Execution Time (TET), i.e., for each

of the four considered tension distributions, the total time

needed for the computations of the three steps detailed in

Section V-C. Let us assume again that the computation time

is proportional to the number of FLOPs. The computation

of tp and N (step 1 in Section V-C) takes approximately

18 µs. Hence, the constant ratio α of time divided by number

of FLOPs is considered to be equal to 0.0135. Accordingly,

the worst-case TETs are 51.7 µs, 43.9 µs, 43.4 µs, and 46.3 µs

for the 2-norm, 1-norm, centroid and weighted barycenter

solutions, respectively. These computation time upper bounds

satisfy the real-time constraint at 1 kHz. Finally, the last line

of Tab. V shows the TET of the centroid tension distribution

computation described in [35]. We did our best to implement

it as efficiently as possible in the case m = n+ 2 = 8, using

notably a simple 2D triangulation method [46] (p. 18). These

TETs are consistent with the computational cost analysis of

this method given at the beginning of Section V-E.

VII. CONCLUSION

This paper introduced a tension distribution algorithm dedi-

cated to n-DOF CDPRs redundantly actuated by n+2 cables.

The proposed algorithm first computes the vertices of the

convex polygon of feasible cable tension distributions by fol-

lowing the polygon edges in a clockwise or counterclockwise

order, or it proves that this polygon is empty. Along the way

or once all the polygon vertices are determined, it was then

pointed out that the optimal 2-norm and 1-norm as well as

the centroid and weighted barycenter tension distributions can

be directly determined. This results in a versatile algorithm

capable of determining various cable tension distributions.

Moreover, the proposed algorithm can start at an unfeasible

point which eases its use and, importantly, allowed its worst-

case computational cost to be assessed. Indeed, the maximum

total number of iterations of the algorithm was established

and proved to be fairly small. Based on this result, a detailed

analysis of the maximum number of floating point operations

of the algorithm was provided and compared to some previous

methods. This analysis proved the efficiency of the proposed

algorithm. This efficiency was also verified by experimenta-

tions on the two 6-DOF 8-cable CDPR prototypes CABLAR

and COGIRO.
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The proposed algorithm is relevant for real-time implemen-

tations since it is at the same time versatile, self-contained,

and efficient even in the worst-case. However, this algorithm

is dedicated to the case of n-DOF CDPRs driven by n + 2
cables. While this class of CDPRs is highly relevant in many

applications, it does not encompass all possible CDPR designs.

Hence, it may be worth extending the proposed algorithm

to n + 3 or more cables, even if this extension is not

straightforward because the results obtained in this paper were

mainly based on 2D geometric reasoning.
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