Approximability and exact resolution of the Multidimensional Binary Vector Assignment problem

LIRMM, Université Montpellier 2, France {marin.bougeret,guillerme.duvillie,rodolphe.giroudeau}@lirmm.fr Abstract. In this paper we consider the multidimensional binary vector assignment problem. An input of this problem is dened by m disjoint sets V1 , V 2 , . . . , V m , each composed of n binary vectors of size p. An output is a set of n disjoint m-tuples of vectors, where each m-tuple is obtained by picking one vector from each set V i . To each m-tuple we associate a p dimensional vector by applying the bit-wise AND operation on the m vectors of the tuple. The objective is to minimize the total number of zeros in these n vectors. We denote this problem by min 0, and the restriction of this problem where every vector has at most c zeros by (min 0) #0≤c . (min 0) #0≤2 was only known to be APX-complete, even for m = 3 [START_REF] Dokka | Multi-dimensional vector assignment problems[END_REF]. We show that, assuming the unique games conjecture, it is NP-hard to (n -ε)-approximate (min 0) #0≤1 for any xed n and ε. This result is tight as any solution is a n-approximation. We also prove without assuming UGC that (min 0) #0≤1 is APX-complete even for n = 2, and we provide an example of n -f (n, m)-approximation algorithm for min 0. Finally, we show that (min 0) #0≤1 is polynomialtime solvable for xed m (which cannot be extended to (min 0) #0≤2 according to [START_REF] Dokka | Multi-dimensional vector assignment problems[END_REF]).

Introduction 1.Problem denition

In this paper we consider the multidimensional binary vector assignment problem denoted by min 0. An input of this problem (see Figure 1) is described by m disjoint sets V 1 , . . . , V m , each set V i containing n binary p-dimensional vectors. For any j ∈ [n] 1 , and any i ∈ [m], the j th vector of set V i is denoted v i j , and for any k ∈ [p], the k th coordinate of v i j is denoted v i j [k]. The output of the problem consists in a set S of n disjoint stacks. A stack s = (v s 1 , . . . , v s m) is an m -tuple of vectors such that v s i ∈ V i , for any i ∈ [m]. Two stacks s 1 and s 2 are disjoint if and only if no vector belongs to s 1 and s 2 .

We now introduce the operator ∧ which assigns to a pair of vectors (u, v) the vector given by u ∧ v = (u [START_REF] Alimonti | Some APX-completeness results for cubic graphs[END_REF] ∧ v [START_REF] Alimonti | Some APX-completeness results for cubic graphs[END_REF], u [START_REF] Ausiello | Reductions, completeness and the hardness of approximability[END_REF] ∧ v [START_REF] Ausiello | Reductions, completeness and the hardness of approximability[END_REF], . . . , u[p] ∧ v[p]). We associate to each stack s a unique vector given by v s = i∈[m] v s i .

The cost of a vector v is dened as the number of zeros in it. More formally

if v is p-dimensional, c(v) = p -k∈[p] v[k].
We extend this denition to a set of stacks S = {s 1 , . . . , s n } as follows : c(S) = s∈S c(v s).

The objective is then to nd a set S of n disjoint stacks minimizing the total number of zeros. This leads us to the following denition of the problem:

Optimization Problem 1 min 0

Input

m sets of n p-dimensional binary vectors.

Output A set S of n disjoint stacks minimizing c(S).

Throughout this paper, we denote (min 0) #0≤c the restriction of min 0 where the number of zeros per vector is upper bounded by c.

Related work

The dual version of the problem called max 1 (where the objective is to maximize the total number of 1 in the created stacks) has been introduced by Reda et al. in [START_REF] Reda | Maximizing the functional yield of wafer-towafer 3-d integration[END_REF] as the yield maximization problem in Wafer-to-Wafer 3-D Integration technology. They prove the NP-completeness of max 1 and provide heuristics without approximation guarantee. In [START_REF] Duvillié | On the complexity of wafer-to-wafer integration[END_REF] we proved that, even for n = 2, for any ε > 0, max 1 is O(m 1-ε) and O(p 1-ε) inapproximable unless P = NP.

We also provide an ILP formulation proving that max 1 (and thus min 0) is FPT2 when parameterized by p.

We introduced min 0 in [START_REF] Dokka | Approximation algorithms for the wafer to wafer integration problem[END_REF] where we provide in particular 4

3 -approximation algorithm for m = 3. In [START_REF] Dokka | Multi-dimensional vector assignment problems[END_REF], authors focus on a generalization of min 0, called Multi Dimensional Vector Assignment, where vectors are not necessary binary vectors. They extend the approximation algorithm of [START_REF] Dokka | Approximation algorithms for the wafer to wafer integration problem[END_REF] to get a f (m)-approximation algorithm for arbitrary m. They also prove the APXcompleteness of the (min 0) #0≤2 for m = 3. This result was the only known inapproximability result for min 0.

Contribution

In section 2 we study the approximability of min 0. Our main result in this section is to prove that assuming UGC, it is NP-hard to (n -ε)-approximate (min 0) #0≤1 (and thus min 0) for any xed n ≥ 2, ∀ε > 0. This result is tight as any solution is a n-approximation.

Notice that this improves the only existing negative result for min 0, which was the APX-hardness of [START_REF] Dokka | Multi-dimensional vector assignment problems[END_REF] (implying only no-PTAS).

We also show how this reduction can be used to obtain the APX-hardness for (min 0) #0≤1 for n = 2 unless P = NP, which is weaker negative result, but does not require UGC. We then give an example n -f (n, m) approximation algorithm for the general problem min 0.

In section 3, we consider the exact resolution of min 0 (and max 1). We only focus on what we will call sparse instances, i.e. instances of (min 0) #0≤1 .

Indeed, recall that authors of [START_REF] Dokka | Multi-dimensional vector assignment problems[END_REF] show that (min 0) #0≤2 is APX-complete even for m = 3, implying that (min 0) #0≤2 cannot be polynomial-time solvable for xed m unless P = NP.

(g(x, S))| ≤ β|Opt(f (x))- m 2 (S)| then (f, g) is an L-reduction. In following, Π 1 L-reduces to Π 2 is noted Π 1 < L Π 2 .
Gap reduction We briey recall the denition of such a reduction, as presented in [START_REF] Ausiello | Reductions, completeness and the hardness of approximability[END_REF] by Ausiello et al.

Denition 2. Let Π dec be a decision problem and Π opt a minimization problem. Let f be a polynomial-time computable function that given any instance x of Π dec associates an instance f (x) of Π opt . If there exists two function a and r such that:

1. x is a YES-instance ⇒ Opt(f (x)) ≤ a(x) 2. x is a NO-instance ⇒ Opt(f (x)) ≥ r(x)a(x)
then f is a r(x)-Gap reduction.

2.2 Inapproximability results for (min 0) #0≤1

From now we suppose that ∀k ∈ [p], ∃i, ∃j such that v i j [k] = 0. In other words, for any solution S and ∀k, there exists a stack s such that v s [k] = 0. Otherwise, we simply remove such a coordinate from every vector of every set, and decrease p by one. Since this coordinate would be set to 1 in all the stacks of all solutions, such a preprocessing preserves approximation ratios and exact results.

In a rst time, we dene the following polynomial-time computable function f which associates an instance of (min 0) #0≤1 to any k-uniform hypergraph, i.e. an hypergraph G = (U, E) such that every hyperedges of E contains exactly k distinct elements of U .

Denition of f

We consider a k-uniform hypergraph G = (U, E). We call f the polynomial-time computable function that creates an instance of (min 0) #0≤1 from a G as follows.

1. We set m = |E|, n = k and p = |U |. 2. For each hyperedge e = {u 1 , u 2 , . . . , u k } ∈ E, we create the set V e containing k vectors {v e j , j ∈ [k]}, where for all j ∈ [k], v e j [u j] = 0 and v e j [l] = 1 for l = u j . We say that a vector v represents u ∈ U i v[u] = 0 and v[l = u] = 1
(and thus vector v e j represents u j).

An example of this construction is given in Figure 2.

a b c d V a V b V c V d 1

Output

Distinguish between the following cases:

YES Case there exist k disjoint subsets U 1 , U 2 , . . . , U k ⊆ U , satisfying |U i | ≥ 1-ε k |U |
and such that every hyperedge contains at most one vertex from each U i . NO Case every vertex cover has size at least

(1 -δ)|U |.
It is shown in [START_REF] Bansal | Inapproximability of hypergraph vertex cover and applications to scheduling problems[END_REF] that, assuming UGC, this problem is NP-complete.

Theorem 1. For any xed n ≥ 2, for any constants ε, δ > 0, there exists a n-nδ 1+nε -Gap reduction from Almost Ek Vertex Cover to (min 0) #0≤1 . Consequently, under UGC, for any xed n (min 0) #0≤1 is NP-hard to approximate within a factor (n -ε) for any ε > 0.

Proof. We consider an instance I of Almost Ek Vertex Cover dened by two positive constants δ and , an integer k and a k-regular hypergraph G = (U, E).

We use the function f previously dened to construct an instance f (I) of min 0. Let us now prove that if I is a positive instance, f (I) admits a solution S of cost c(S) < (1 + nε)|U |, and otherwise any solution

S of f (I) has cost c (S) ≥ n(1 -δ)|U |.
NO Case Let S be a solution of f (I). Let us rst remark that for any stack s ∈ S, the set {k : v s [k] = 0} denes a vertex cover in G. Indeed, s contains exactly one vector per set, and thus by construction s selects one vertex per hyperedge in G. Remark also that the cost of s is equal to the size of the corresponding vertex cover. Now, suppose that I is a negative instance. Hence each vertex cover has a size at least equal to (1 -δ)|U |, and any solution S of f (I), composed of exactly n stacks, veries c(S)

≥ n(1 -δ)|U |. YES Case If I is a positive instance, there exists k disjoint sets U 1 , U 2 , . . . , U k ⊆ U such that ∀i = 1, . . . , k, |U i | ≥ 1-ε
k |U | and such that every hyperedge contains at most one vertex from each U i . We introduce the subset

X = U \ k i=1 U i . By denition {U 1 , U 2 , . . . , U k , X} is a partition of U and X ≤ ε|U |. Furthermore, U i ∪ X is a vertex cover ∀i = 1, . . . , k.
Indeed, each hyperedge e ∈ E that contains no vertex of U i , contains at least one vertex of X since e contains k vertices. We now construct a solution S of f (I). Our objective is to construct stacks {s i } such that for any i, the zeros of s i are included in U i ∪ X (i.e. {l :

v si [l] = 0} ⊆ U i ∪ X).
For each e = {u 1 , . . . , u k } ∈ E, we show how to assign exactly one vector of V e to each stack s 1 , . . . , s k . For all i ∈ [k], if v e j represents a vertex u with u ∈ U i , then we assign v e j to s i . W.l.o.g., let

S e = {s 1 , . . . , s k } (for k ≤ k) be the set of stacks that received a vertex during this process. Notice that as every hyperedge contains at most one vertex from each U i , we only assigned one vector to each stack of S e . After this, every unassigned vector v ∈ V e represents a vertex of X (otherwise, such a vector v would belong to a set U i , i ∈ k , a contradiction). We assign arbitrarily these vectors to the remaining stacks that are not in S e . As by construction ∀i ∈ [k], v s i contains only vectors representing vertices from

U i ∪ X, we get c(s i) ≤ |U i | + |X|.
Thus, we obtain a feasible solution S of cost c(S)

= k i=1 c(s i) ≤ k|X| + k i=1 |U i |.
As by denition we have |X| +

k i=1 |U i | = |U |, it follows that c(S) ≤ |U | + (k -1)ε|U | and since k = n, c(S) < |U |(1 + nε). If we dene a(n) = (1 + nε)|U | and r(n) = n(1-δ) (1+nε)
, the previous reduction is a r(n)-Gap reduction. Furthermore, lim δ,ε→0 r(n) = n, thus it is NP-hard to approximate (min 0) #0≤1 within a ratio (n -ε) for any ε > 0.

Notice that, as a function of n, this inapproximability result is optimal. Indeed, we observe that any feasible solution S is an n-approximation as, for any instance I of min 03 , Opt(I) ≥ p and for any solution S, c(S) ≤ pn.

Negative results without assuming UGC Let us now study the negative results we can get when only assuming P = NP. Our objective is to prove that (min 0) #0≤1 is APX-hard, even for n = 2. To do so, we present a reduction from Odd Cycle Transversal, which is dened as follows. Given an input graph G = (U, E), the objective is to nd an odd cycle transversal of minimum size, i.e. a subset T ⊆ U of minimum size such that G[U \ T] is bipartite. Lemma 1. For any constant γ ≥ 2, there exists an L-reduction from OCT Gγ to (min 0) #0≤1 with n = 2.

Proof. Let us consider an integer γ, an instance I of OCT Gγ , dened by a graph G = (V, E) such that G ∈ G γ . W.l.o.g., we can consider that G contains no isolated vertex.

Remark that any graph can be seen as a 2-uniform hypergraph. Thus, we use the function f previously dened to construct an instance f (I) of (min 0

) #0≤1 such that n = 2. Since, G contains no isolated vertex, f (I) contains no position k such that ∀i ∈ [m], ∀j ∈ [n], v i j [k] = 1.
Let us now prove that I admits an odd cycle transversal of size t if and only if f (I) admits a solution of cost p + t.

⇐ We consider an instance f (I) of (min 0) #0≤1 with n = 2 admitting a solution S = {s A , s B } with cost c(S) = p + t. Let us specify a function g which produces from S a solution T = g(I, S) of OCT Gγ , i.e. a set of vertices of U such that G[U \T] is bipartite.

We dene T = u ∈ U :

v s A [u] = v s B [u] = 0
, the set of coordinates equal to zero in both s A and s B . We also dene A = u ∈ V :

v s A [u] = 0 and v s B [u] = 1 (resp. B = u ∈ V : v s B [u] = 0 and v s A [u] = 1
), the set of coordinates set to zero only in s A (resp. s B). Notice that {T, A, B} is a partition of U .

Remark that A and B are independent sets. Indeed, suppose that ∃{u, v} ∈ E such that u, v ∈ A. As {u, v} ∈ E there exists a set V (u,v) containing a vector that represents u and another vector that represents v, and thus these vectors are assigned to dierent stacks. This leads to a contradiction. It follows that G[U \T] is bipartite and T is an odd cycle transversal.

Since c(S)

= |A| + |B| + 2|T | = p + |T | = p + t, we get |T | = t.
⇒ We consider an instance I of OCT Gγ and a solution T of size t. We now construct a solution S = {s A , s B } of f (I) from T .

By denition, G[U \T] is a bipartite graph, thus the vertices in U \T may be split into two disjoint independent sets A and B. For each edge e ∈ E, the following cases can occur: if ∃u ∈ e such that u ∈ A, then the vector corresponding to u is assigned to s A , and the vector corresponding to e \ {u} is assigned to s B (and the same rule holds by exchanging A and B) otherwise, u and v ∈ T , and we assign arbitrarily v e u to s A and the other to s B .

We claim that the stacks s A and s B describe a feasible solution S of cost at most p + t.

Since, for each set, only one vector is assigned to s A and the other to s B , the two stacks s A and s B are disjoint and contain exactly m vectors. S is therefore a feasible solution.

Remark that v s

A (resp. v s B) contains only vectors v such that v[k] = 0 =⇒ k ∈ A ∪ T (resp. k ∈ B ∪ T), and thus c(v A) ≤ |A| + |T | (resp. c(v B) ≤ |B| + |T |). Hence c(S) ≤ |A| + |B| + 2|T | = p + t.
Let us now prove that this reduction is an L-reduction. Therefore, we get an L-reduction for α = γ + 1 and β = 1.

Lemma 2. There exist a constant γ and G ⊂ G γ such that OCT G is APX-hard.

Proof. We present an L-reduction from VC-3, the vertex cover problem in graph with maximum degree 3, to OCT G VC for an appropriate G VC . VC-3 is known to be APX-complete [START_REF] Alimonti | Some APX-completeness results for cubic graphs[END_REF].

Given an instance G = (U, E) of VC-3, we construct an instance f (G) = (U , E) as follows:

1. For each (u, v) ∈ E, create a vertex z u,v . These z-vertices form the set Z.

2. U = U ∪ Z. 3. E = E ∪{(u, z u,v), (v, z u,v) : (u, v) ∈ E}. In other words, for each (u, v) ∈ E,
we create the triangle {u, v, z u,v }.

Let us prove that G = (U, E) admits a solution V C of size |V C| = t if and only if f (G) admits a solution T of size |T | = t.

⇒ Consider a vertex cover V C of size |V C| = t, for each u ∈ V C,
T of f (G), computes a solution V C = g(G, T) of G.
Notice rst that we can suppose that T contains no z-vertex. Otherwise every triangle {u, v, z u,v } covered by a z u,v ∈ T , can instead be covered by either u or v without increasing the size of T . Thus, we set V C = T . By denition of an odd cycle transversal, T covers all the odd cycles of f (G) and especially the created triangles. Thus, the triangle {u, v, z u,v } corresponding to any edge {u,

v} ∈ E is covered by V C. As V C ∩ Z = ∅, V C is a vertex cover of G.
The previous reduction is an L-reduction for α = β = 1. Let us call G V C the class of graph generated in this reduction. The previous reduction shows that

OCT G V C is APX-hard. It remains to check that G V C ⊆ G γ for a constant γ.
Remark that VC-3 is only dened on 3-regular graphs, it implies that for

any instance G = (U, E) of VC-3, Opt(G) ≥ |U | 3 . As |U | = |U | + |E| ≤ 5|U | 2 , it follows that Opt(f (G)) = Opt(G) ≥ |U | 3 ≥ 2|U | 15 . Hence, G V C ⊂ G γ with γ = 15 2 .
The following result is now immediate.

Theorem 2. (min 0) #0≤1 is APX-hard, even for n = 2.

Approximation algorithm for min 0

Let us now show an example of algorithm achieving a n -f (n, m) ratio. Notice that the (n -) inapproximability result holds for xed n and #0 = 1, while the following algorithm is polynomial-time computable when n is part of the input and #0 is arbitrary.

Proposition 1. There is a polynomial-time n -n-1 nρ(n,m) approximation algorithm for min 0, where ρ(n, m) > 1 is the approximation ratio for independent set in graphs that are the union of m complete n-partite graphs.

Proof. Let I be an instance of min 0. Let us now consider an optimal solution

S * = {s * 1 , . . . , s * n } of I. For any i ∈ [n], let Z * i = {l ∈ [p] : v s * i [l] = 0 and v s * t [l] = 1, ∀t = i} be
{Z * i }, implying |Z * 1 | ≥ ∆ n .
Given a subset Z ⊂ [p], we will construct a solution S = {s 1 , . . . , s n } such that for any l ∈ Z, v s1 [l] = 0, and for any i = 1, v si [l] = 1. Informally, the zero at coordinates Z will appear only in s 1 , which behaves as a "trash" stack. The cost of such a solution is c(S) ≤ c(s 1) + Let us now dene how we compute Z.

n i=2 c(s i) ≤ p + (n -1)(p -|Z|).
Let P = {l ∈ [p] : ∀i ∈ [m], |{j : v i j [l] = 0}| ≤ 1}
be the subset of coordinates that are never nullied in two dierent vectors of the same set. We will construct a simple undirected graph G = (P, E), and thus it remains to dene E. For vector v i j , let Z i j = Z(v i j) ∩ P , where Z(v) ⊆ [p] denotes the set of null coordinates of vector v. For any i ∈ [m], we add to G the edges of the complete n-partite

graph G i = ({Z i 1 × • • • × Z i n }) (i.e. for any j 1 , j 2 , v 1 ∈ Z i j1 , v 2 ∈ Z i j2 , we add edge {v 1 , v 2 } to G).
This concludes the description of G, which can be seen as the union of m complete n-partite graphs.

Let us now see the link between independent set in G and our problem. Let us rst see why Z * 1 is a independent set in G. Recall that by denition of Z * 1 , for

any l ∈ Z * 1 , v s * 1 [k] = 0, but v s * j [k] = 1, j ≥ 2.
Thus, it is immediate that Z * 1 ⊆ P . Moreover, assume by contradiction that there exists an edge in G between to vertices l 1 and l 2 of Z * 1 . This implies that there exists i ∈ [m], j 1 and

j 2 = j 1 such that v i j1 [l 1] = 0 and v i j2 [l 2] = 0. As by denition of Z * 1 we must have v s * j [k 1] = 1 and v s * j [k 2] = 1 for j ≥ 2, this implies that s * 1 must contains both v i j1 and v i j2 ,
a contradiction. Thus, we get OP T (G) ≥ |Z * 1 |, where OP T (G) is the size of a maximum independent set in G.

Now, let us check that for any independent set Z ⊆ P in G, we can construct a solution S = {s 1 , . . . , s n } such that for any l ∈ Z, v s1 [l] = 0, and for any i = 1, v si [l] = 1. To construct such a solution, we have to prove that we can add in s 1 all the vectors v such that ∃l ∈ Z such that v[l] = 0. However, this last statement is clearly true as for any i ∈ [m], there is at most one vector v i j with Z(v i j) ⊆ Z. Remark 1. We can get, for example, ρ(n, m) = mn m-1 using the following algorithm. For any i ∈ [m], let G i = (A i 1 , . . . , A i n) be the i-th complete n-partite graph. W.l.o.g., suppose that A 1 1 is the largest set among {A i j }. Notice that |A 1 1 | ≥ OP T m . The algorithm starts by setting S 1 = A 1 1 (S 1 may not be an indepen- dent set). Then, for any i from 2 to m, the algorithm set S i = S i-1 \ (∪ j =j0 A i j), where j 0 = arg max j {|S i-1 ∩ A i j |}. Thus, for any i we have |S i | ≥ |Si-1| n , and S i is an independent set when considering only edges from ∪ i l=1 G l . Finally, we get an independent set of

G of size |S m | ≥ S1 n m-1 ≥ OP T mn m-1 .
3 Exact resolution of sparse instances

The section is devoted to the exact resolution of min 0 for sparse instances where each vector has at most one zero (#0 ≤ 1). As we have seen in Section 2, (min 0) #0≤1 remains NP-hard (even for n = 2). Thus it is natural to ask if (min 0) #0≤1 is polynomial-time solvable for xed m (for general n). This section is devoted to answer positively to this question. Notice that we cannot extend this result to a more general notion of sparsity as (min 0) #0≤2 is APX-complete for m = 3 [START_REF] Dokka | Multi-dimensional vector assignment problems[END_REF]. However, the question if (min 0) #0≤1 is xed parameter tractable when parameterized by m is left open.

We rst need some denitions, and refer the reader to Figure 3 where an example is depicted.

Denition 3.

For any l ∈ [p], i ∈ [m], we dene B (l,i) = {v i j : v i j [l] = 0} to be the set of vectors of set i that have their (unique) zero at position l. For the sake of homogeneous notation, we dene B (p+1,i) = {v i j : v i j is a 1 vector}. Notice that the B (l,i) form a partition of all the vectors of the input, and thus an input of (min 0) #0≤1 is completely characterized by the B (l,i) .

For any

l ∈ [p + 1], the block B l = i∈[m] B (l,i) .
Informally, the idea to solve (min 0) #0≤1 in polynomial time for xed m is to parse the input block after block using a dynamic programming algorithm.

When arriving at block B l we only need to remember for each c ⊆ [m] the number x c of partial stacks that have only one vector for each V i , i ∈ c. Indeed, we do not need to remember what is inside these partial stacks as all the remaining vectors from B l , l ≥ l cannot match (i.e. have their zero in the same position) the vectors in these partial stacks.

prole P = x {∅} = 2, x {1} = 1, x {2} = 1, x {3} = 1, x {1,2} = 1, x {1,3} = 1, x {2,3} = 1,
x {1,2,3} = 1 encoding a set S of partial stacks of I containing two empty stacks. The support of s7 is sup(s7) = {1, 3} and has cost c(s7) = 1. In the following, a prole will be used to encode a set S of n partial stacks by keeping a record of their support. In other words, x c , c ⊆ [m] will denote the number of partial stacks in S of support c. This leads us to introduce the notion of reachable prole as follows: Denition 6. Given two proles P = {x c : c ⊆ [m]} and P = {x c : c ⊆ [m]} and a set S = {s 1 , . . . , s n } of n partial stacks, P is said reachable from P through S i there exist n couples (s 1 , c 1), (s 2 , c 2), . . . , (s n , c n) such that:

Denition 4.

A partial stack

s = {v s i1 , . . . , v s i k } of I is such that {i x ∈ [m], x ∈ [k]} are pairwise disjoints, and for any x ∈ [k], v s ix ∈ V ix
For each couple (s, c), sup(s) ∩ c = ∅. For each c ⊆ [m], | {(s j , c j) : c j = c, j = 1, . . . , n} | = x c . Intuitively, the conguration c appears in exactly x c couples.

For each c ⊆ [m], | {(s j , c j) : sup(s j) ∪ c j = c , j = 1, . . . , n} | = x c . Intu- itively, there exist exactly x c couples that, when associated, create a partial of prole c . Given two proles P and P , P is said reachable from P , if there exists a set S of n partial stacks such that P is reachable from P through S.

Intuitively, a prole P is reachable from P through S if every partial stack of the set encoded by P can be assigned to a unique partial stack from S to obtain a set of new partial stacks encoded by P .

Remark that, given a set of partial stacks S only their prole is used to determine whether a prole is reachable or not. An example of a reachable prole is given on Figure 4. We introduce now the following problem Π. We then show that this problem can be used to solve (min 0) #0≤1 problem, and we present a dynamic programming algorithm that solves Π in polynomial time when m is xed.

Optimization Problem 2 Π Input (l, P) with l ∈ [p + 1], P a prole. Remark that an instance I of (min 0) #0≤1 can be solved optimally by solving optimally the instance I = (1, P = {x ∅ = n, x c = 0, ∀c = ∅}) of Π. The optimal solution of I is indeed a set of n partial disjoint stacks of support [m] of minimum cost.

We are now ready to dene the following dynamic programming algorithm that solves any instance (l, P) of Π by parsing the instance block after block and branching for each of these blocks on every reachable prole.

Fig. 1 :

 1 Fig. 1: Example of min 0 instance with m = 3, n = 4, p = 6 and of a feasible solution S of cost c(S) = 17.

Fig. 2 :

 2 Fig. 2: Illustration of the reduction from an hypergraph G = (U = {1, 2, 3, 4, 5, 6, 7}, E = {{1, 2, 7} , {1, 3, 4} , {2, 4, 5} , {5, 6, 7}}) to an instance (min 0) #0≤1

For any integer γ ≥ 2 ,

 2 we denote G γ the class of graphs G = (U, E) such that any optimal odd cycle transversal T has size |T | ≥ |U | γ . Given G a class of graphs, we denote OCT G the Odd Cycle Transversal problem restricted to G.

1 . 2 .

 12 By denition, any instance I of OCT Gγ veries |Opt(I)| ≥ |U |/γ. Thus, Opt(f (I)) ≤ |U | + Opt(I) ≤ (γ + 1)Opt(I) We consider an arbitrary instance I of OCT Gγ , f (I) the corresponding instance of (min 0) #0≤1 , S a solution of f (I) and T = g(I), S the corresponding solution of I. We proved |T | -Opt(I) = c(S) -|U | -(Opt(f (I)) -|U |) = c(S) -Opt(f (I)).

 we add the vertex u to T . By denition, V C covers all the edges of G and then all its (odd) cycles. Furthermore, it also covers all the created triangles in f (G) since each of these cycles contains exactly one edge in common with f (G)[U \Z]. Thus T is an odd cycle transversal and |T | = |V C|. ⇐ Let us construct a function g that, given any solution

 Our objective is now to compute such a set Z, and to lower bound |Z| according to |Z * 1 |.

 Thus, any ρ(n, m) approximation algorithm gives us a set Z with |Z| ≥ |Z * 1 | ρ(n,m) ≥ ∆ nρ(n,m) , and we get a ratio of p+(n-1)(p-∆ nρ(n,m)) 2p-∆ ≤ n -n-1 nρ(n,m) for ∆ = p.

Fig. 3 :

 3 Fig.3: Left: instance I of (min 0) #0≤1 partitionned into blocks. Right:A prole P = x {∅} = 2, x {1} = 1, x {2} = 1, x {3} = 1, x {1,2} = 1, x {1,3} = 1, x {2,3} = 1,x {1,2,3} = 1 encoding a set S of partial stacks of I containing two empty stacks. The support of s7 is sup(s7) = {1, 3} and has cost c(s7) = 1.

 . The support of a partial stack s is sup(s) = {i x , x ∈ [k]}. Notice that a stack s (i.e. non partial) has sup(s) = [m]. The cost is extended in the natural way: the cost of a partial stack c(s) = c(x∈[k] v s ix) is the number of zeros of the bitwise AND of the vectors of s. We dene the notion of prole as follows: Denition 5. A prole P = {x c , c ⊆ [m]} is a set of 2 m positive integers such that c⊆[m] x c = n.

c 5 =Fig. 4 :

 54 Fig. 4: Example of a proleP = x {1,2} = 1, x {2,4} = 1, x {1,2,4} = 2, x {1,2,3,4} = 1 that is reachable from P = x {∅} = 1, x1 = 2, x {2,4} = 1, x {3,4} = 1 reachable through S = {s1 : sup(s1) = {1, 2, 4} , s2 : sup(s2) = {∅} , s3 : sup(s3) = {1, 2} , s4 : sup(s4) = {2} , s5 : sup(s5) = {2, 4}}.

 Output A set of n partial stacks S = {s 1 , s 2 , . . . , s n } such that S is a partition of B = l ≥l B l and for every c ⊆ [m], |{s ∈ S|sup(s) = [m] \ c}| = x c and such that c(S) = n j=1 c(s j) is minimum.

 Let Π 1 and Π 2 be two optimization problems with objective functions m 1 and m 2 . Let f be a polynomial-time computable function that given any instance x of Π 1 associates an instance f (x) of Π 2 . Let g be another polynomialtime computable function that given any instance x of Π 1 , and feasible solution S of f (x), associates a feasible solution g(x, S) of Π 1 . If f and g verify the two following conditions: 1. ∃α such that Opt(f (x)) ≤ αOpt(x) 2. ∃β such that for each solution S of Π 2 , |Opt(x)-m 1

		Thus, it was natural to ask if (min 0) #0≤1 was
	polynomial-time solvable for xed m. Section 3 is devoted to answer positively
	to this question. Notice that the question of determining if (min 0) #0≤1 is
	FPT when parameterized by m remains open. Due to space constraints, results
	marked with a	are proved in the appendix.
	2 Approximability of min 0
	Let us rst recall denitions of reductions we use in this paper.
	2.1 Denitions
	L-reduction The L-reduction has been introduced by Papadimitriou et al. in
	[7] as follows:	
	Denition 1.	

 the set of coordinates equal to zero only in stack s * i . Let ∆ = * i , there are at least two stacks with a zero at coordinate l. W.l.o.g., let us suppose that Z * 1 is the largest set among

n i=1 |Z * i |. Notice that we have c(S *) ≥ ∆ + 2(p -∆), as for any coordinate l outside i Z

Note that [n] stands for {1,

2, . . . , n}.

i.e. admits an algorithm in f (p)poly(|I|) for an arbitrary function f .

Recall that we assume ∀k ∈ [p], ∃i, ∃j such that v i j [k] = 0

Function MinSumZeroDP(l, P) if k == p + 1 then return 0; return min(c(S)+MinSumZeroDP(l + 1, P)), with P reachable from P through S , where S partition of B l ;

Note that this dynamic programming assumes the existence of a procedure that enumerates eciently all the proles P that are reachable from P . The existence of such a procedure will be shown thereafter.

Lemma 3. For any instance of Π (l, P), MinSumZeroDP(l, P) = Opt(l, P).

Proof. Lemma 3 is true as in a given block l, the algorithm tries every reachable prole, and the zeros of vectors in blocks B = l <l B l cannot be matched with those of vectors in block B = l ≥l B l . This is the reason why the support of the already created partial stacks (stored in prole P) is sucient to keep a record of what have been done (the positions of the zeros in the partial stacks corresponding to P is not relevant).

Let us focus now on the procedure in charge of the enumeration of the reachable prole. A rst and intuitive way to perform this operation is by guessing, for all c, c ⊆ [m], y c,c the number of partial stacks in conguration c that will be turned into conguration c with vectors of current block B l . For each such guess it is possible to greedily verify that each y c,c can be satised with the vectors of the current block. As each of the y c,c can take values from 0 to n and c and c can be both enumerated in O * (n 2 m), the previous algorithm runs in O * (n 2 2m).

This complexity can be improved as follows. The idea is to enumerate every possible prole P and to verify using another dynamic programming algorithm if such a P is reachable from P . We dene Aux P (P, X), that veries if P is reachable from P by using all vectors of X. If X = ∅, then the algorithm returns whether P is equal to P or not. Otherwise, we consider the rst vector v of X (we x any arbitrary order) for which a branching is done on every possible assignment of v. More formally, the algorithm returns

Using Aux in MinSumZeroDP, we get the following theorem.

Theorem 3. (min 0) #0≤1 can be solved in O * (n 2 m+2).

We compute the overall complexity as follows: for each of the pn 2 m possible values of the parameters of MinSumZeroDP, the algorithm tries the n 2 m proles P , and run for each one Aux P in O * (n 2 m nm) (the rst parameter of Aux can take n 2 m values, and the second nm as we just encode how many vectors left in X).