
HAL Id: lirmm-01310648
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01310648v1

Submitted on 2 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike 4.0 International
License

Approximability and exact resolution of the
Multidimensional Binary Vector Assignment problem

Marin Bougeret, Guillerme Duvillié, Rodolphe Giroudeau

To cite this version:
Marin Bougeret, Guillerme Duvillié, Rodolphe Giroudeau. Approximability and exact resolution of
the Multidimensional Binary Vector Assignment problem. [Research Report] Lirmm; Montpellier II.
2016. �lirmm-01310648�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01310648v1
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://hal.archives-ouvertes.fr

Approximability and exact resolution of the

Multidimensional Binary Vector Assignment

problem

M. Bougeret1, G. Duvillié1, R. Giroudeau1

LIRMM, Université Montpellier 2, France
{marin.bougeret,guillerme.duvillie,rodolphe.giroudeau}@lirmm.fr

Abstract. In this paper we consider the multidimensional binary vector
assignment problem. An input of this problem is de�ned by m disjoint
sets V 1, V 2, . . . , V m, each composed of n binary vectors of size p. An
output is a set of n disjoint m-tuples of vectors, where each m-tuple is
obtained by picking one vector from each set V i. To each m-tuple we
associate a p dimensional vector by applying the bit-wise AND opera-
tion on the m vectors of the tuple. The objective is to minimize the total
number of zeros in these n vectors. We denote this problem by min

∑
0,

and the restriction of this problem where every vector has at most c zeros
by (min

∑
0)#0≤c. (min

∑
0)#0≤2 was only known to beAPX-complete,

even form = 3 [5]. We show that, assuming the unique games conjecture,
it is NP-hard to (n− ε)-approximate (min

∑
0)#0≤1 for any �xed n and

ε. This result is tight as any solution is a n-approximation. We also prove
without assuming UGC that (min

∑
0)#0≤1 is APX-complete even for

n = 2, and we provide an example of n − f(n,m)-approximation algo-
rithm for min

∑
0. Finally, we show that (min

∑
0)#0≤1 is polynomial-

time solvable for �xed m (which cannot be extended to (min
∑

0)#0≤2

according to [5]).

1 Introduction

1.1 Problem de�nition

In this paper we consider the multidimensional binary vector assignment problem
denoted by min

∑
0. An input of this problem (see Figure 1) is described by m

disjoint sets V 1, . . . , V m, each set V i containing n binary p-dimensional vectors.
For any j ∈ [n]1, and any i ∈ [m], the jth vector of set V i is denoted vij , and for

any k ∈ [p], the kth coordinate of vij is denoted v
i
j [k].

The output of the problem consists in a set S of n disjoint stacks. A stack
s = (vs1, . . . , v

s
m) is an m − tuple of vectors such that vsi ∈ V i, for any i ∈ [m].

Two stacks s1 and s2 are disjoint if and only if no vector belongs to s1 and s2.
We now introduce the operator ∧ which assigns to a pair of vectors (u, v) the

vector given by u ∧ v = (u[1] ∧ v [1], u[2] ∧ v [2], . . . , u[p] ∧ v [p]). We associate to
each stack s a unique vector given by vs =

∧
i∈[m] v

s
i .

1 Note that [n] stands for {1, 2, . . . , n}.

2

The cost of a vector v is de�ned as the number of zeros in it. More formally
if v is p-dimensional, c(v) = p −

∑
k∈[p] v [k]. We extend this de�nition to a set

of stacks S = {s1, . . . , sn} as follows : c(S) =
∑
s∈S c(vs).

The objective is then to �nd a set S of n disjoint stacks minimizing the total
number of zeros. This leads us to the following de�nition of the problem:

Optimization Problem 1 min
∑

0

Input m sets of n p-dimensional binary vectors.

Output A set S of n disjoint stacks minimizing c(S).

Throughout this paper, we denote (min
∑

0)#0≤c the restriction of min
∑

0
where the number of zeros per vector is upper bounded by c.

V 1 V 2 V 3 S

001101

110111

011101

111101

110010

010101

110011

010101

110110

010110

010011

001111

110010

000000

010001

000101

vs1

vs2

vs3

vs4

c(vs1) = 3

c(vs2) = 6

c(vs3) = 4

c(vs4) = 4

s1

s2

s3

s4

Fig. 1: Example of min
∑

0 instance with m = 3, n = 4, p = 6 and of a feasible solution
S of cost c(S) = 17.

1.2 Related work

The dual version of the problem called max
∑

1 (where the objective is to maxi-
mize the total number of 1 in the created stacks) has been introduced by Reda et
al. in [8] as the �yield maximization problem in Wafer-to-Wafer 3-D Integration
technology�. They prove the NP-completeness of max

∑
1 and provide heuris-

tics without approximation guarantee. In [6] we proved that, even for n = 2, for
any ε > 0, max

∑
1 is O(m1−ε) and O(p1−ε) inapproximable unless P = NP.

We also provide an ILP formulation proving that max
∑

1 (and thus min
∑

0)
is FPT2 when parameterized by p.

We introducedmin
∑

0 in [4] where we provide in particular 4
3 -approximation

algorithm for m = 3. In [5], authors focus on a generalization of min
∑

0,
called Multi Dimensional Vector Assignment, where vectors are not nec-
essary binary vectors. They extend the approximation algorithm of [4] to get
a f(m)-approximation algorithm for arbitrary m. They also prove the APX-
completeness of the (min

∑
0)#0≤2 for m = 3. This result was the only known

inapproximability result for min
∑

0.

1.3 Contribution

In section 2 we study the approximability of min
∑

0. Our main result in this
section is to prove that assuming UGC, it is NP-hard to (n − ε)-approximate

2 i.e. admits an algorithm in f(p)poly(|I|) for an arbitrary function f .

3

(min
∑

0)#0≤1 (and thus min
∑

0) for any �xed n ≥ 2, ∀ε > 0. This result is
tight as any solution is a n-approximation.

Notice that this improves the only existing negative result for min
∑

0, which
was the APX-hardness of [5] (implying only no-PTAS).

We also show how this reduction can be used to obtain the APX-hardness
for (min

∑
0)#0≤1 for n = 2 unless P = NP, which is weaker negative result,

but does not require UGC. We then give an example n− f(n,m) approximation
algorithm for the general problem min

∑
0.

In section 3, we consider the exact resolution of min
∑

0 (and max
∑

1). We
only focus on what we will call sparse instances, i.e. instances of (min

∑
0)#0≤1.

Indeed, recall that authors of [5] show that (min
∑

0)#0≤2 is APX-complete
even for m = 3, implying that (min

∑
0)#0≤2 cannot be polynomial-time solv-

able for �xedm unlessP = NP. Thus, it was natural to ask if (min
∑

0)#0≤1 was
polynomial-time solvable for �xed m. Section 3 is devoted to answer positively
to this question. Notice that the question of determining if (min

∑
0)#0≤1 is

FPT when parameterized by m remains open. Due to space constraints, results
marked with a ? are proved in the appendix.

2 Approximability of min
∑

0

Let us �rst recall de�nitions of reductions we use in this paper.

2.1 De�nitions

L-reduction The L-reduction has been introduced by Papadimitriou et al. in
[7] as follows:

De�nition 1. Let Π1 and Π2 be two optimization problems with objective func-
tions m1 and m2. Let f be a polynomial-time computable function that given any
instance x of Π1 associates an instance f(x) of Π2. Let g be another polynomial-
time computable function that given any instance x of Π1, and feasible solution
S of f(x), associates a feasible solution g(x, S) of Π1. If f and g verify the two
following conditions:

1. ∃α such that Opt(f(x)) ≤ αOpt(x)
2. ∃β such that for each solution S of Π2, |Opt(x)−m1(g(x, S))| ≤ β|Opt(f(x))−

m2(S)|

then (f, g) is an L-reduction.
In following, Π1 L-reduces to Π2 is noted Π1 <L Π2.

Gap reduction We brie�y recall the de�nition of such a reduction, as presented
in [2] by Ausiello et al.

De�nition 2. Let Πdec be a decision problem and Πopt a minimization problem.
Let f be a polynomial-time computable function that given any instance x of Πdec

associates an instance f(x) of Πopt. If there exists two function a and r such
that:

4

1. x is a YES-instance ⇒ Opt(f(x)) ≤ a(x)
2. x is a NO-instance ⇒ Opt(f(x)) ≥ r(x)a(x)

then f is a r(x)-Gap reduction.

2.2 Inapproximability results for (min
∑

0)#0≤1

From now we suppose that ∀k ∈ [p], ∃i, ∃j such that vij [k] = 0. In other words,
for any solution S and ∀k, there exists a stack s such that vs[k] = 0. Otherwise,
we simply remove such a coordinate from every vector of every set, and decrease
p by one. Since this coordinate would be set to 1 in all the stacks of all solutions,
such a preprocessing preserves approximation ratios and exact results.

In a �rst time, we de�ne the following polynomial-time computable function
f which associates an instance of (min

∑
0)#0≤1 to any k-uniform hypergraph,

i.e. an hypergraph G = (U,E) such that every hyperedges of E contains exactly
k distinct elements of U .

De�nition of f We consider a k-uniform hypergraph G = (U,E). We call f the
polynomial-time computable function that creates an instance of (min

∑
0)#0≤1

from a G as follows.

1. We set m = |E|, n = k and p = |U |.
2. For each hyperedge e = {u1, u2, . . . , uk} ∈ E, we create the set V e containing
k vectors {vej , j ∈ [k]}, where for all j ∈ [k], vej [uj] = 0 and vej [l] = 1 for
l 6= uj . We say that a vector v represents u ∈ U i� v[u] = 0 and v[l 6= u] = 1
(and thus vector vej represents uj).

An example of this construction is given in Figure 2.

a

b

c

d

V a V b

V c V d1

2

3

4 5

6

7

0111111

1011111

1111110

0111111

1101111

1110111

1011111

1110111

1111011

1111011

1111101

1111110

Fig. 2: Illustration of the reduction from an hypergraph G = (U = {1, 2, 3, 4, 5, 6, 7},
E = {{1, 2, 7} , {1, 3, 4} , {2, 4, 5} , {5, 6, 7}}) to an instance (min

∑
0)#0≤1

Negative results assuming UGC We consider the following problem. Notice
that what we call a vertex cover in a k-regular hypergraph G = (U,E) is a set
U ′ ⊆ U such that for any hyperedge e ∈ E, U ′ ∩ e 6= ∅.

5

Decision Problem 1 Almost Ek Vertex Cover

Input We are given an integer k ≥ 2, two arbitrary positive constants
ε and δ and a k-uniform hypergraph G = (U,E).

Output Distinguish between the following cases:

YES Case there exist k disjoint subsets U1, U2, . . . , Uk ⊆ U ,
satisfying |U i| ≥ 1−ε

k |U | and such that every hyperedge con-
tains at most one vertex from each U i.

NO Case every vertex cover has size at least (1− δ)|U |.

It is shown in [3] that, assuming UGC, this problem is NP-complete.

Theorem 1. For any �xed n ≥ 2, for any constants ε, δ > 0, there exists a
n−nδ
1+nε -Gap reduction from Almost Ek Vertex Cover to (min

∑
0)#0≤1. Con-

sequently, under UGC, for any �xed n (min
∑

0)#0≤1 isNP-hard to approximate
within a factor (n− ε′) for any ε′ > 0.

Proof. We consider an instance I of Almost Ek Vertex Cover de�ned by two
positive constants δ and ε, an integer k and a k-regular hypergraph G = (U,E).

We use the function f previously de�ned to construct an instance f(I) of
min

∑
0. Let us now prove that if I is a positive instance, f(I) admits a solution

S of cost c(S) < (1 + nε)|U |, and otherwise any solution S of f(I) has cost
c (S) ≥ n(1− δ)|U |.

NO Case Let S be a solution of f(I). Let us �rst remark that for any stack
s ∈ S, the set {k : vs[k] = 0} de�nes a vertex cover in G. Indeed, s contains
exactly one vector per set, and thus by construction s selects one vertex per
hyperedge in G. Remark also that the cost of s is equal to the size of the
corresponding vertex cover.
Now, suppose that I is a negative instance. Hence each vertex cover has a
size at least equal to (1 − δ)|U |, and any solution S of f(I), composed of
exactly n stacks, veri�es c(S) ≥ n(1− δ)|U |.

YES Case If I is a positive instance, there exists k disjoint sets U1, U2, . . . , Uk ⊆
U such that ∀i = 1, . . . , k, |U i| ≥ 1−ε

k |U | and such that every hyperedge con-
tains at most one vertex from each U i.
We introduce the subset X = U\

⋃k
i=1 U

i. By de�nition {U1, U2, . . . , Uk, X}
is a partition of U and X ≤ ε|U |. Furthermore, U i ∪ X is a vertex cover
∀i = 1, . . . , k. Indeed, each hyperedge e ∈ E that contains no vertex of U i,
contains at least one vertex of X since e contains k vertices.
We now construct a solution S of f(I). Our objective is to construct stacks
{si} such that for any i, the zeros of si are included in Ui ∪ X (i.e. {l :
vsi [l] = 0} ⊆ Ui ∪ X). For each e = {u1, . . . , uk} ∈ E, we show how to
assign exactly one vector of V e to each stack s1, . . . , sk. For all i ∈ [k], if
vej represents a vertex u with u ∈ U i, then we assign vej to si. W.l.o.g., let

6

S′e = {s1, . . . , sk′} (for k′ ≤ k) be the set of stacks that received a vertex
during this process. Notice that as every hyperedge contains at most one
vertex from each U i, we only assigned one vector to each stack of S′e. After
this, every unassigned vector v ∈ V e represents a vertex of X (otherwise,
such a vector v would belong to a set U i, i ∈ k′, a contradiction). We assign
arbitrarily these vectors to the remaining stacks that are not in S′e. As by
construction ∀i ∈ [k], vsi contains only vectors representing vertices from
U i ∪X, we get c(si) ≤ |U i|+ |X|.
Thus, we obtain a feasible solution S of cost c(S) =

∑k
i=1 c(si) ≤ k|X| +∑k

i=1 |U i|. As by de�nition we have |X| +
∑k
i=1 |U i| = |U |, it follows that

c(S) ≤ |U |+ (k − 1)ε|U | and since k = n, c(S) < |U |(1 + nε).

If we de�ne a(n) = (1 + nε)|U | and r(n) = n(1−δ)
(1+nε) , the previous reduction

is a r(n)-Gap reduction. Furthermore, limδ,ε→0 r(n) = n, thus it is NP-hard to
approximate (min

∑
0)#0≤1 within a ratio (n− ε′) for any ε′ > 0.

ut

Notice that, as a function of n, this inapproximability result is optimal. In-
deed, we observe that any feasible solution S is an n-approximation as, for any
instance I of min

∑
03, Opt(I) ≥ p and for any solution S, c(S) ≤ pn.

Negative results without assuming UGC Let us now study the negative
results we can get when only assuming P 6= NP. Our objective is to prove that
(min

∑
0)#0≤1 is APX-hard, even for n = 2. To do so, we present a reduction

from Odd Cycle Transversal, which is de�ned as follows. Given an input
graph G = (U,E), the objective is to �nd an odd cycle transversal of minimum
size, i.e. a subset T ⊆ U of minimum size such that G[U \ T] is bipartite.

For any integer γ ≥ 2, we denote Gγ the class of graphs G = (U,E) such

that any optimal odd cycle transversal T has size |T | ≥ |U |γ . Given G a class of
graphs, we denote OCTG the Odd Cycle Transversal problem restricted to
G.

Lemma 1. For any constant γ ≥ 2, there exists an L-reduction from OCTGγ
to (min

∑
0)#0≤1 with n = 2.

Proof. Let us consider an integer γ, an instance I of OCTGγ , de�ned by a graph
G = (V,E) such that G ∈ Gγ . W.l.o.g., we can consider that G contains no
isolated vertex.

Remark that any graph can be seen as a 2-uniform hypergraph. Thus, we use
the function f previously de�ned to construct an instance f(I) of (min

∑
0)#0≤1

such that n = 2. Since, G contains no isolated vertex, f(I) contains no position
k such that ∀i ∈ [m], ∀j ∈ [n], vij [k] = 1.

Let us now prove that I admits an odd cycle transversal of size t if and only
if f(I) admits a solution of cost p+ t.

3 Recall that we assume ∀k ∈ [p], ∃i,∃j such that vij [k] = 0

7

⇐ We consider an instance f(I) of (min
∑

0)#0≤1 with n = 2 admitting a
solution S = {sA, sB} with cost c(S) = p+ t. Let us specify a function g which
produces from S a solution T = g(I, S) of OCTGγ , i.e. a set of vertices of U such
that G[U\T] is bipartite.

We de�ne T =
{
u ∈ U : vsA [u] = vsB [u] = 0

}
, the set of coordinates equal to

zero in both sA and sB . We also de�ne A =
{
u ∈ V : vsA [u] = 0 and vsB [u] = 1

}
(resp. B =

{
u ∈ V : vsB [u] = 0 and vsA [u] = 1

}
), the set of coordinates set to

zero only in sA (resp. sB). Notice that {T,A,B} is a partition of U .
Remark that A and B are independent sets. Indeed, suppose that ∃{u, v} ∈ E

such that u, v ∈ A. As {u, v} ∈ E there exists a set V (u,v) containing a vector
that represents u and another vector that represents v, and thus these vectors
are assigned to di�erent stacks. This leads to a contradiction. It follows that
G[U\T] is bipartite and T is an odd cycle transversal.

Since c(S) = |A|+ |B|+ 2|T | = p+ |T | = p+ t, we get |T | = t.
⇒ We consider an instance I of OCTGγ and a solution T of size t. We now

construct a solution S = {sA, sB} of f(I) from T .
By de�nition, G[U\T] is a bipartite graph, thus the vertices in U\T may

be split into two disjoint independent sets A and B. For each edge e ∈ E, the
following cases can occur:

� if ∃u ∈ e such that u ∈ A, then the vector corresponding to u is assigned to
sA, and the vector corresponding to e \ {u} is assigned to sB (and the same
rule holds by exchanging A and B)

� otherwise, u and v ∈ T , and we assign arbitrarily veu to sA and the other to
sB .

We claim that the stacks sA and sB describe a feasible solution S of cost at
most p+ t.

Since, for each set, only one vector is assigned to sA and the other to sB , the
two stacks sA and sB are disjoint and contain exactly m vectors. S is therefore
a feasible solution.

Remark that vsA (resp. vsB) contains only vectors v such that v [k] = 0 =⇒
k ∈ A∪T (resp. k ∈ B∪T), and thus c(vA) ≤ |A|+ |T | (resp. c(vB) ≤ |B|+ |T |).
Hence c(S) ≤ |A|+ |B|+ 2|T | = p+ t.

Let us now prove that this reduction is an L-reduction.

1. By de�nition, any instance I of OCTGγ veri�es |Opt(I)| ≥ |U |/γ. Thus,

Opt(f(I)) ≤ |U |+Opt(I) ≤ (γ + 1)Opt(I)

2. We consider an arbitrary instance I of OCTGγ , f(I) the corresponding in-
stance of (min

∑
0)#0≤1, S a solution of f(I) and T = g(I), S the corre-

sponding solution of I.
We proved |T |−Opt(I) = c(S)−|U |− (Opt(f(I))−|U |) = c(S)−Opt(f(I)).

Therefore, we get an L-reduction for α = γ + 1 and β = 1. ut

8

Lemma 2. There exist a constant γ and G ⊂ Gγ such that OCTG is APX-hard.

Proof. We present an L-reduction from VC-3, the vertex cover problem in graph
with maximum degree 3, to OCTGVC for an appropriate GVC . VC-3 is known to
be APX-complete [1].

Given an instance G = (U,E) of VC-3, we construct an instance f(G) =
(U ′, E′) as follows:

1. For each (u, v) ∈ E, create a vertex zu,v. These z-vertices form the set Z.

2. U ′ = U ∪ Z.
3. E′ = E∪{(u, zu,v), (v, zu,v) : (u, v) ∈ E}. In other words, for each (u, v) ∈ E,

we create the triangle {u, v, zu,v}.

Let us prove that G = (U,E) admits a solution V C of size |V C| = t if and
only if f(G) admits a solution T of size |T | = t.

⇒ Consider a vertex cover V C of size |V C| = t, for each u ∈ V C, we add
the vertex u′ to T . By de�nition, V C covers all the edges of G and then
all its (odd) cycles. Furthermore, it also covers all the created triangles in
f(G) since each of these cycles contains exactly one edge in common with
f(G)[U ′\Z]. Thus T is an odd cycle transversal and |T | = |V C|.

⇐ Let us construct a function g that, given any solution T of f(G), computes a
solution V C = g(G,T) ofG. Notice �rst that we can suppose that T contains
no z-vertex. Otherwise every triangle {u, v, zu,v} covered by a zu,v ∈ T , can
instead be covered by either u or v without increasing the size of T . Thus,
we set V C = T .

By de�nition of an odd cycle transversal, T covers all the odd cycles of
f(G) and especially the created triangles. Thus, the triangle {u, v, zu,v} cor-
responding to any edge {u, v} ∈ E is covered by V C. As V C ∩ Z = ∅, V C
is a vertex cover of G.

The previous reduction is an L-reduction for α = β = 1. Let us call GV C the
class of graph generated in this reduction. The previous reduction shows that
OCTGV C is APX-hard. It remains to check that GV C ⊆ Gγ for a constant γ.

Remark that VC-3 is only de�ned on 3-regular graphs, it implies that for

any instance G = (U,E) of VC-3, Opt(G) ≥ |U |3 . As |U ′| = |U |+ |E| ≤ 5|U |
2 , it

follows that Opt(f(G)) = Opt(G) ≥ |U |3 ≥
2|U ′|
15 . Hence, GV C ⊂ Gγ with γ = 15

2 .
ut

The following result is now immediate.

Theorem 2. (min
∑

0)#0≤1 is APX-hard, even for n = 2.

9

2.3 Approximation algorithm for min
∑

0

Let us now show an example of algorithm achieving a n− f(n,m) ratio. Notice
that the (n− ε) inapproximability result holds for �xed n and #0 = 1, while the
following algorithm is polynomial-time computable when n is part of the input
and #0 is arbitrary.

Proposition 1. There is a polynomial-time n − n−1
nρ(n,m) approximation algo-

rithm for min
∑

0, where ρ(n,m) > 1 is the approximation ratio for independent
set in graphs that are the union of m complete n-partite graphs.

Proof. Let I be an instance of min
∑

0. Let us now consider an optimal solution
S∗ = {s∗1, . . . , s∗n} of I. For any i ∈ [n], let Z∗i = {l ∈ [p] : vs∗i [l] = 0 and vs∗t [l] =
1,∀t 6= i} be the set of coordinates equal to zero only in stack s∗i . Let ∆ =∑n
i=1 |Z∗i |. Notice that we have c(S∗) ≥ ∆ + 2(p −∆), as for any coordinate l

outside
⋃
i Z
∗
i , there are at least two stacks with a zero at coordinate l. W.l.o.g.,

let us suppose that Z∗1 is the largest set among {Z∗i }, implying |Z∗1 | ≥ ∆
n .

Given a subset Z ⊂ [p], we will construct a solution S = {s1, . . . , sn} such
that for any l ∈ Z, vs1 [l] = 0, and for any i 6= 1, vsi [l] = 1. Informally, the zero
at coordinates Z will appear only in s1, which behaves as a "trash" stack. The
cost of such a solution is c(S) ≤ c(s1) +

∑n
i=2 c(si) ≤ p+ (n− 1)(p− |Z|). Our

objective is now to compute such a set Z, and to lower bound |Z| according to
|Z∗1 |.

Let us now de�ne how we compute Z. Let P = {l ∈ [p] : ∀i ∈ [m], |{j :
vij [l] = 0}| ≤ 1} be the subset of coordinates that are never nulli�ed in two
di�erent vectors of the same set. We will construct a simple undirected graph
G = (P,E), and thus it remains to de�ne E. For vector vij , let Z

i
j = Z(vij) ∩ P ,

where Z(v) ⊆ [p] denotes the set of null coordinates of vector v. For any i ∈ [m],
we add to G the edges of the complete n-partite graph Gi = ({Zi1 × · · · × Zin})
(i.e. for any j1, j2, v1 ∈ Zij1 , v2 ∈ Z

i
j2
, we add edge {v1, v2} to G). This concludes

the description of G, which can be seen as the union of m complete n-partite
graphs.

Let us now see the link between independent set in G and our problem. Let
us �rst see why Z∗1 is a independent set in G. Recall that by de�nition of Z∗1 , for
any l ∈ Z∗1 , vs∗1 [k] = 0, but vs∗j [k] = 1, j ≥ 2. Thus, it is immediate that Z∗1 ⊆ P .
Moreover, assume by contradiction that there exists an edge in G between to
vertices l1 and l2 of Z

∗
1 . This implies that there exists i ∈ [m], j1 and j2 6= j1 such

that vij1 [l1] = 0 and vij2 [l2] = 0. As by de�nition of Z∗1 we must have vs∗j [k1] = 1

and vs∗j [k2] = 1 for j ≥ 2, this implies that s∗1 must contains both vij1 and vij2 ,

a contradiction. Thus, we get OPT (G) ≥ |Z∗1 |, where OPT (G) is the size of a
maximum independent set in G.

Now, let us check that for any independent set Z ⊆ P in G, we can construct
a solution S = {s1, . . . , sn} such that for any l ∈ Z, vs1 [l] = 0, and for any
i 6= 1, vsi [l] = 1. To construct such a solution, we have to prove that we can add
in s1 all the vectors v such that ∃l ∈ Z such that v[l] = 0. However, this last

10

statement is clearly true as for any i ∈ [m], there is at most one vector vij with

Z(vij) ⊆ Z.
Thus, any ρ(n,m) approximation algorithm gives us a set Z with |Z| ≥

|Z∗1 |
ρ(n,m) ≥

∆
nρ(n,m) , and we get a ratio of

p+(n−1)(p− ∆
nρ(n,m)

)

2p−∆ ≤ n − n−1
nρ(n,m) for

∆ = p.
ut

Remark 1. We can get, for example, ρ(n,m) = mnm−1 using the following al-
gorithm. For any i ∈ [m], let Gi = (Ai1, . . . , A

i
n) be the i-th complete n-partite

graph. W.l.o.g., suppose that A1
1 is the largest set among {Aij}. Notice that

|A1
1| ≥ OPT

m . The algorithm starts by setting S1 = A1
1 (S1 may not be an indepen-

dent set). Then, for any i from 2 to m, the algorithm set Si = Si−1 \ (∪j 6=j0Aij),
where j0 = argmaxj{|Si−1 ∩Aij |}. Thus, for any i we have |Si| ≥

|Si−1|
n , and Si

is an independent set when considering only edges from ∪il=1G
l. Finally, we get

an independent set of G of size |Sm| ≥ S1

nm−1 ≥ OPT
mnm−1 .

3 Exact resolution of sparse instances

The section is devoted to the exact resolution of min
∑

0 for sparse instances
where each vector has at most one zero (#0 ≤ 1). As we have seen in Section 2,
(min

∑
0)#0≤1 remains NP-hard (even for n = 2). Thus it is natural to ask

if (min
∑

0)#0≤1 is polynomial-time solvable for �xed m (for general n). This
section is devoted to answer positively to this question. Notice that we can-
not extend this result to a more general notion of sparsity as (min

∑
0)#0≤2 is

APX-complete for m = 3 [5]. However, the question if (min
∑

0)#0≤1 is �xed
parameter tractable when parameterized by m is left open.

We �rst need some de�nitions, and refer the reader to Figure 3 where an
example is depicted.

De�nition 3.

� For any l ∈ [p], i ∈ [m], we de�ne B(l,i) = {vij : vij [l] = 0} to be the set of
vectors of set i that have their (unique) zero at position l. For the sake of
homogeneous notation, we de�ne B(p+1,i) = {vij : vij is a 1 vector}. Notice
that the B(l,i) form a partition of all the vectors of the input, and thus an
input of (min

∑
0)#0≤1 is completely characterized by the B(l,i).

� For any l ∈ [p+ 1], the block Bl =
⋃
i∈[m]B

(l,i).

Informally, the idea to solve (min
∑

0)#0≤1 in polynomial time for �xed m
is to parse the input block after block using a dynamic programming algorithm.
When arriving at blockBl we only need to remember for each c ⊆ [m] the number
xc of �partial stacks� that have only one vector for each V i, i ∈ c. Indeed, we do
not need to remember what is �inside� these partial stacks as all the remaining
vectors from Bl

′
, l′ ≥ l cannot �match� (i.e. have their zero in the same position)

the vectors in these partial stacks.

11

110

110

110

B3,1

110

110

110

110

B3,2

110

110

110

B3,3

101

101

101

B2,1 101

101

101

B2,2

101

101
B2,3

011

011

011

B1,1 011

011
B1,2

011

011

011

011

B1,3

B3

B2

B1

110

110

110

110

110

110

110

110

110

110

101

101

101

101

101

101

101

101

011

011

011

011

011

011

011

011

011

s1

s2

s3

s4

s5

s6

s7

Fig. 3: Left: instance I of (min
∑

0)#0≤1 partitionned into blocks. Right: A pro�le P ={
x{∅} = 2, x{1} = 1, x{2} = 1, x{3} = 1, x{1,2} = 1, x{1,3} = 1, x{2,3} = 1, x{1,2,3} = 1

}
encoding a set S of partial stacks of I containing two empty stacks. The support of s7
is sup(s7) = {1, 3} and has cost c(s7) = 1.

De�nition 4.

� A partial stack s = {vsi1 , . . . , v
s
ik
} of I is such that {ix ∈ [m], x ∈ [k]} are

pairwise disjoints, and for any x ∈ [k], vsix ∈ V
ix . The support of a partial

stack s is sup(s) = {ix, x ∈ [k]}. Notice that a stack s (i.e. non partial) has
sup(s) = [m].

� The cost is extended in the natural way: the cost of a partial stack c(s) =
c(
∧
x∈[k] v

s
ix
) is the number of zeros of the bitwise AND of the vectors of s.

We de�ne the notion of pro�le as follows:

De�nition 5. A pro�le P = {xc, c ⊆ [m]} is a set of 2m positive integers such
that

∑
c⊆[m] xc = n.

In the following, a pro�le will be used to encode a set S of n partial stacks
by keeping a record of their support. In other words, xc, c ⊆ [m] will denote the
number of partial stacks in S of support c. This leads us to introduce the notion
of reachable pro�le as follows:

De�nition 6. Given two pro�les P = {xc : c ⊆ [m]} and P ′ = {x′c′ : c′ ⊆ [m]}
and a set S = {s1, . . . , sn} of n partial stacks, P ′ is said reachable from P
through S i� there exist n couples (s1, c1), (s2, c2), . . . , (sn, cn) such that:

� For each couple (s, c), sup(s) ∩ c = ∅.
� For each c ⊆ [m], | {(sj , cj) : cj = c, j = 1, . . . , n} | = xc. Intuitively, the con-
�guration c appears in exactly xc couples.

12

� For each c′ ⊆ [m], | {(sj , cj) : sup(sj) ∪ cj = c′, j = 1, . . . , n} | = x′c′ . Intu-
itively, there exist exactly x′c′ couples that, when associated, create a partial
of pro�le c′.

Given two pro�les P and P ′, P is said reachable from P ′, if there exists a
set S of n partial stacks such that P ′ is reachable from P through S.

Intuitively, a pro�le P ′ is reachable from P through S if every partial stack
of the set encoded by P can be assigned to a unique partial stack from S to
obtain a set of new partial stacks encoded by P ′.

Remark that, given a set of partial stacks S only their pro�le is used to
determine whether a pro�le is reachable or not. An example of a reachable pro�le
is given on Figure 4.

c5 = {1}

c4 = {1}

c3 = {3, 4}

c2 = {2, 4}

c1 = {∅}

s5 : sup(s5) = {2, 4}

s4 : sup(s4) = {2}

s3 : sup(s3) = {1, 2}

s2 : sup(s2) = {∅}

s1 : sup(s1) = {1, 2, 4}

c′5 = {1, 2, 3, 4}

c′4 = {1, 2, 4}

c′3 = {1, 2, 4}

c′2 = {2, 4}

c′1 = {1, 2}

P

x{∅} = 1

x{2,4} = 1

x{3,4} = 1

x{1} = 2

P ′

x{1,2} = 1

x{2,4} = 1

x{1,2,4} = 2

x{1,2,3,4} = 1

(c1, s1)

(c2, s2)

(c3, s3)

(c4, s4)

(c5, s5)

Fig. 4: Example of a pro�le P ′ =
{
x{1,2} = 1, x{2,4} = 1, x{1,2,4} = 2, x{1,2,3,4} = 1

}
that is reachable from P =

{
x{∅} = 1, x1 = 2, x{2,4} = 1, x{3,4} = 1

}
reachable through

S = {s1 : sup(s1) = {1, 2, 4} , s2 : sup(s2) = {∅} , s3 : sup(s3) = {1, 2} , s4 : sup(s4) = {2} ,
s5 : sup(s5) = {2, 4}}.

We introduce now the following problem Π. We then show that this prob-
lem can be used to solve (min

∑
0)#0≤1 problem, and we present a dynamic

programming algorithm that solves Π in polynomial time when m is �xed.

Optimization Problem 2 Π

Input (l, P) with l ∈ [p+ 1], P a pro�le.

Output A set of n partial stacks S = {s1, s2, . . . , sn} such that S is a
partition of B =

⋃
l′≥lB

l′ and for every c ⊆ [m], |{s ∈ S|sup(s) =
[m] \ c}| = xc and such that c(S) =

∑n
j=1 c(sj) is minimum.

Remark that an instance I of (min
∑

0)#0≤1 can be solved optimally by
solving optimally the instance I ′ = (1, P = {x∅ = n, xc = 0,∀c 6= ∅}) of Π. The
optimal solution of I ′ is indeed a set of n partial disjoint stacks of support [m]
of minimum cost.

We are now ready to de�ne the following dynamic programming algorithm
that solves any instance (l, P) of Π by parsing the instance block after block
and branching for each of these blocks on every reachable pro�le.

13

Function MinSumZeroDP(l, P)

if k == p+ 1 then

return 0;
return min(c(S′)+MinSumZeroDP(l + 1, P ′)), with P ′ reachable from P
through S′, where S′ partition of Bl;

Note that this dynamic programming assumes the existence of a procedure
that enumerates e�ciently all the pro�les P ′ that are reachable from P . The
existence of such a procedure will be shown thereafter.

Lemma 3. For any instance of Π (l, P), MinSumZeroDP(l, P) = Opt(l, P).

Proof. Lemma 3 is true as in a given block l, the algorithm tries every reachable
pro�le, and the zeros of vectors in blocks B =

⋃
l′<lB

l′ cannot be matched with

those of vectors in block B′ =
⋃
l′≥lB

l′ . This is the reason why the support
of the already created partial stacks (stored in pro�le P) is su�cient to keep a
record of what have been done (the positions of the zeros in the partial stacks
corresponding to P is not relevant). ut

Let us focus now on the procedure in charge of the enumeration of the reach-
able pro�le. A �rst and intuitive way to perform this operation is by guessing,
for all c, c′ ⊆ [m], yc,c′ the number of partial stacks in con�guration c that will
be turned into con�guration c′ with vectors of current block Bl. For each such
guess it is possible to greedily verify that each yc,c′ can be satis�ed with the
vectors of the current block. As each of the yc,c′ can take values from 0 to n
and c and c′ can be both enumerated in O∗(n2m), the previous algorithm runs

in O∗(n22m).
This complexity can be improved as follows. The idea is to enumerate ev-

ery possible pro�le P ′ and to verify using another dynamic programming al-
gorithm if such a P ′ is reachable from P . We de�ne AuxP ′(P,X), that veri-
�es if P ′ is reachable from P by using all vectors of X. If X = ∅, then the
algorithm returns whether P is equal to P ′ or not. Otherwise, we consider
the �rst vector v of X (we �x any arbitrary order) for which a branching is
done on every possible assignment of v. More formally, the algorithm returns∨
c⊆[m],xc>0,c∩sup(v)=∅AuxP ′(P2 = {x′l}, X \ {v}), where x′l = xl − 1 if l = c,

x′l = xl + 1 if l = c ∪ sup(v), and x′l = xl otherwise.
Using Aux in MinSumZeroDP, we get the following theorem.

Theorem 3. (min
∑

0)#0≤1 can be solved in O∗(n2m+2

).

We compute the overall complexity as follows: for each of the pn2
m

possible
values of the parameters of MinSumZeroDP, the algorithm tries the n2

m

pro�les
P ′, and run for each one AuxP ′ in O∗(n2

m

nm) (the �rst parameter of Aux can
take n2

m

values, and the second nm as we just encode how many vectors left in
X).

14

References

1. P. Alimonti and V. Kann. Some APX-completeness results for cubic graphs. Theo-
ritical Computer Science, 237(1-2):123�134, 2000.

2. G. Ausiello and V. T. Paschos. Reductions, completeness and the hardness of
approximability. European Journal of Operational Research, 172(3):719�739, 2006.

3. N. Bansal and S. Khot. Inapproximability of hypergraph vertex cover and applica-
tions to scheduling problems. In International Colloquium on Automata, Languages
and Programming (ICALP), pages 250�261, 2010.

4. T. Dokka, M. Bougeret, V. Boudet, R. Giroudeau, and F. C. Spieksma. Approx-
imation algorithms for the wafer to wafer integration problem. In Approximation
and Online Algorithms (WAOA), pages 286�297. Springer, 2013.

5. T. Dokka, Y. Crama, and F. C. Spieksma. Multi-dimensional vector assignment
problems. Discrete Optimization, 14:111�125, 2014.

6. G. Duvillié, M. Bougeret, V. Boudet, T. Dokka, and R. Giroudeau. On the com-
plexity of wafer-to-wafer integration. In International Conference on Algorithms
and Complexity (CIAC), pages 208�220, 2015.

7. C. Papadimitriou and M. Yannakakis. Optimization, approximation, and complex-
ity classes. In Proceedings of the twentieth annual ACM symposium on Theory of
computing, pages 229�234. ACM, 1988.

8. S. Reda, G. Smith, and L. Smith. Maximizing the functional yield of wafer-to-
wafer 3-d integration. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 17(9):1357�1362, 2009.

