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Approximability and exact resolution of the

Multidimensional Binary Vector Assignment

problem

M. Bougeret1, G. Duvillié1, R. Giroudeau1

LIRMM, Université Montpellier 2, France
{marin.bougeret,guillerme.duvillie,rodolphe.giroudeau}@lirmm.fr

Abstract. In this paper we consider the multidimensional binary vector
assignment problem. An input of this problem is de�ned by m disjoint
sets V 1, V 2, . . . , V m, each composed of n binary vectors of size p. An
output is a set of n disjoint m-tuples of vectors, where each m-tuple is
obtained by picking one vector from each set V i. To each m-tuple we
associate a p dimensional vector by applying the bit-wise AND opera-
tion on the m vectors of the tuple. The objective is to minimize the total
number of zeros in these n vectors. We denote this problem by min

∑
0,

and the restriction of this problem where every vector has at most c zeros
by (min

∑
0)#0≤c. (min

∑
0)#0≤2 was only known to beAPX-complete,

even form = 3 [5]. We show that, assuming the unique games conjecture,
it is NP-hard to (n− ε)-approximate (min

∑
0)#0≤1 for any �xed n and

ε. This result is tight as any solution is a n-approximation. We also prove
without assuming UGC that (min

∑
0)#0≤1 is APX-complete even for

n = 2, and we provide an example of n − f(n,m)-approximation algo-
rithm for min

∑
0. Finally, we show that (min

∑
0)#0≤1 is polynomial-

time solvable for �xed m (which cannot be extended to (min
∑

0)#0≤2

according to [5]).

1 Introduction

1.1 Problem de�nition

In this paper we consider the multidimensional binary vector assignment problem
denoted by min

∑
0. An input of this problem (see Figure 1) is described by m

disjoint sets V 1, . . . , V m, each set V i containing n binary p-dimensional vectors.
For any j ∈ [n]1, and any i ∈ [m], the jth vector of set V i is denoted vij , and for

any k ∈ [p], the kth coordinate of vij is denoted v
i
j [k].

The output of the problem consists in a set S of n disjoint stacks. A stack
s = (vs1, . . . , v

s
m) is an m − tuple of vectors such that vsi ∈ V i, for any i ∈ [m].

Two stacks s1 and s2 are disjoint if and only if no vector belongs to s1 and s2.
We now introduce the operator ∧ which assigns to a pair of vectors (u, v) the

vector given by u ∧ v = (u[1] ∧ v [1], u[2] ∧ v [2], . . . , u[p] ∧ v [p]). We associate to
each stack s a unique vector given by vs =

∧
i∈[m] v

s
i .

1 Note that [n] stands for {1, 2, . . . , n}.
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The cost of a vector v is de�ned as the number of zeros in it. More formally
if v is p-dimensional, c(v) = p −

∑
k∈[p] v [k]. We extend this de�nition to a set

of stacks S = {s1, . . . , sn} as follows : c(S) =
∑
s∈S c(vs).

The objective is then to �nd a set S of n disjoint stacks minimizing the total
number of zeros. This leads us to the following de�nition of the problem:

Optimization Problem 1 min
∑

0

Input m sets of n p-dimensional binary vectors.

Output A set S of n disjoint stacks minimizing c(S).

Throughout this paper, we denote (min
∑

0)#0≤c the restriction of min
∑

0
where the number of zeros per vector is upper bounded by c.

V 1 V 2 V 3 S

001101

110111

011101

111101

110010

010101

110011

010101

110110

010110

010011

001111

110010

000000

010001

000101

vs1

vs2

vs3

vs4

c(vs1) = 3

c(vs2) = 6

c(vs3) = 4

c(vs4) = 4

s1

s2

s3

s4

Fig. 1: Example of min
∑

0 instance with m = 3, n = 4, p = 6 and of a feasible solution
S of cost c(S) = 17.

1.2 Related work

The dual version of the problem called max
∑

1 (where the objective is to maxi-
mize the total number of 1 in the created stacks) has been introduced by Reda et
al. in [8] as the �yield maximization problem in Wafer-to-Wafer 3-D Integration
technology�. They prove the NP-completeness of max

∑
1 and provide heuris-

tics without approximation guarantee. In [6] we proved that, even for n = 2, for
any ε > 0, max

∑
1 is O(m1−ε) and O(p1−ε) inapproximable unless P = NP.

We also provide an ILP formulation proving that max
∑

1 (and thus min
∑

0)
is FPT2 when parameterized by p.

We introducedmin
∑

0 in [4] where we provide in particular 4
3 -approximation

algorithm for m = 3. In [5], authors focus on a generalization of min
∑

0,
called Multi Dimensional Vector Assignment, where vectors are not nec-
essary binary vectors. They extend the approximation algorithm of [4] to get
a f(m)-approximation algorithm for arbitrary m. They also prove the APX-
completeness of the (min

∑
0)#0≤2 for m = 3. This result was the only known

inapproximability result for min
∑

0.

1.3 Contribution

In section 2 we study the approximability of min
∑

0. Our main result in this
section is to prove that assuming UGC, it is NP-hard to (n − ε)-approximate

2 i.e. admits an algorithm in f(p)poly(|I|) for an arbitrary function f .
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(min
∑

0)#0≤1 (and thus min
∑

0) for any �xed n ≥ 2, ∀ε > 0. This result is
tight as any solution is a n-approximation.

Notice that this improves the only existing negative result for min
∑

0, which
was the APX-hardness of [5] (implying only no-PTAS).

We also show how this reduction can be used to obtain the APX-hardness
for (min

∑
0)#0≤1 for n = 2 unless P = NP, which is weaker negative result,

but does not require UGC. We then give an example n− f(n,m) approximation
algorithm for the general problem min

∑
0.

In section 3, we consider the exact resolution of min
∑

0 (and max
∑

1). We
only focus on what we will call sparse instances, i.e. instances of (min

∑
0)#0≤1.

Indeed, recall that authors of [5] show that (min
∑

0)#0≤2 is APX-complete
even for m = 3, implying that (min

∑
0)#0≤2 cannot be polynomial-time solv-

able for �xedm unlessP = NP. Thus, it was natural to ask if (min
∑

0)#0≤1 was
polynomial-time solvable for �xed m. Section 3 is devoted to answer positively
to this question. Notice that the question of determining if (min

∑
0)#0≤1 is

FPT when parameterized by m remains open. Due to space constraints, results
marked with a ? are proved in the appendix.

2 Approximability of min
∑

0

Let us �rst recall de�nitions of reductions we use in this paper.

2.1 De�nitions

L-reduction The L-reduction has been introduced by Papadimitriou et al. in
[7] as follows:

De�nition 1. Let Π1 and Π2 be two optimization problems with objective func-
tions m1 and m2. Let f be a polynomial-time computable function that given any
instance x of Π1 associates an instance f(x) of Π2. Let g be another polynomial-
time computable function that given any instance x of Π1, and feasible solution
S of f(x), associates a feasible solution g(x, S) of Π1. If f and g verify the two
following conditions:

1. ∃α such that Opt(f(x)) ≤ αOpt(x)
2. ∃β such that for each solution S of Π2, |Opt(x)−m1(g(x, S))| ≤ β|Opt(f(x))−

m2(S)|

then (f, g) is an L-reduction.
In following, Π1 L-reduces to Π2 is noted Π1 <L Π2.

Gap reduction We brie�y recall the de�nition of such a reduction, as presented
in [2] by Ausiello et al.

De�nition 2. Let Πdec be a decision problem and Πopt a minimization problem.
Let f be a polynomial-time computable function that given any instance x of Πdec

associates an instance f(x) of Πopt. If there exists two function a and r such
that:
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1. x is a YES-instance ⇒ Opt(f(x)) ≤ a(x)
2. x is a NO-instance ⇒ Opt(f(x)) ≥ r(x)a(x)

then f is a r(x)-Gap reduction.

2.2 Inapproximability results for (min
∑

0)#0≤1

From now we suppose that ∀k ∈ [p], ∃i, ∃j such that vij [k] = 0. In other words,
for any solution S and ∀k, there exists a stack s such that vs[k] = 0. Otherwise,
we simply remove such a coordinate from every vector of every set, and decrease
p by one. Since this coordinate would be set to 1 in all the stacks of all solutions,
such a preprocessing preserves approximation ratios and exact results.

In a �rst time, we de�ne the following polynomial-time computable function
f which associates an instance of (min

∑
0)#0≤1 to any k-uniform hypergraph,

i.e. an hypergraph G = (U,E) such that every hyperedges of E contains exactly
k distinct elements of U .

De�nition of f We consider a k-uniform hypergraph G = (U,E). We call f the
polynomial-time computable function that creates an instance of (min

∑
0)#0≤1

from a G as follows.

1. We set m = |E|, n = k and p = |U |.
2. For each hyperedge e = {u1, u2, . . . , uk} ∈ E, we create the set V e containing
k vectors {vej , j ∈ [k]}, where for all j ∈ [k], vej [uj ] = 0 and vej [l] = 1 for
l 6= uj . We say that a vector v represents u ∈ U i� v[u] = 0 and v[l 6= u] = 1
(and thus vector vej represents uj).

An example of this construction is given in Figure 2.

a

b

c

d

V a V b

V c V d1

2

3

4 5

6

7

0111111

1011111

1111110

0111111

1101111

1110111

1011111

1110111

1111011

1111011

1111101

1111110

Fig. 2: Illustration of the reduction from an hypergraph G = (U = {1, 2, 3, 4, 5, 6, 7},
E = {{1, 2, 7} , {1, 3, 4} , {2, 4, 5} , {5, 6, 7}}) to an instance (min

∑
0)#0≤1

Negative results assuming UGC We consider the following problem. Notice
that what we call a vertex cover in a k-regular hypergraph G = (U,E) is a set
U ′ ⊆ U such that for any hyperedge e ∈ E, U ′ ∩ e 6= ∅.



5

Decision Problem 1 Almost Ek Vertex Cover

Input We are given an integer k ≥ 2, two arbitrary positive constants
ε and δ and a k-uniform hypergraph G = (U,E).

Output Distinguish between the following cases:

YES Case there exist k disjoint subsets U1, U2, . . . , Uk ⊆ U ,
satisfying |U i| ≥ 1−ε

k |U | and such that every hyperedge con-
tains at most one vertex from each U i.

NO Case every vertex cover has size at least (1− δ)|U |.

It is shown in [3] that, assuming UGC, this problem is NP-complete.

Theorem 1. For any �xed n ≥ 2, for any constants ε, δ > 0, there exists a
n−nδ
1+nε -Gap reduction from Almost Ek Vertex Cover to (min

∑
0)#0≤1. Con-

sequently, under UGC, for any �xed n (min
∑

0)#0≤1 isNP-hard to approximate
within a factor (n− ε′) for any ε′ > 0.

Proof. We consider an instance I of Almost Ek Vertex Cover de�ned by two
positive constants δ and ε, an integer k and a k-regular hypergraph G = (U,E).

We use the function f previously de�ned to construct an instance f(I) of
min

∑
0. Let us now prove that if I is a positive instance, f(I) admits a solution

S of cost c(S) < (1 + nε)|U |, and otherwise any solution S of f(I) has cost
c (S) ≥ n(1− δ)|U |.

NO Case Let S be a solution of f(I). Let us �rst remark that for any stack
s ∈ S, the set {k : vs[k] = 0} de�nes a vertex cover in G. Indeed, s contains
exactly one vector per set, and thus by construction s selects one vertex per
hyperedge in G. Remark also that the cost of s is equal to the size of the
corresponding vertex cover.
Now, suppose that I is a negative instance. Hence each vertex cover has a
size at least equal to (1 − δ)|U |, and any solution S of f(I), composed of
exactly n stacks, veri�es c(S) ≥ n(1− δ)|U |.

YES Case If I is a positive instance, there exists k disjoint sets U1, U2, . . . , Uk ⊆
U such that ∀i = 1, . . . , k, |U i| ≥ 1−ε

k |U | and such that every hyperedge con-
tains at most one vertex from each U i.
We introduce the subset X = U\

⋃k
i=1 U

i. By de�nition {U1, U2, . . . , Uk, X}
is a partition of U and X ≤ ε|U |. Furthermore, U i ∪ X is a vertex cover
∀i = 1, . . . , k. Indeed, each hyperedge e ∈ E that contains no vertex of U i,
contains at least one vertex of X since e contains k vertices.
We now construct a solution S of f(I). Our objective is to construct stacks
{si} such that for any i, the zeros of si are included in Ui ∪ X (i.e. {l :
vsi [l] = 0} ⊆ Ui ∪ X). For each e = {u1, . . . , uk} ∈ E, we show how to
assign exactly one vector of V e to each stack s1, . . . , sk. For all i ∈ [k], if
vej represents a vertex u with u ∈ U i, then we assign vej to si. W.l.o.g., let
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S′e = {s1, . . . , sk′} (for k′ ≤ k) be the set of stacks that received a vertex
during this process. Notice that as every hyperedge contains at most one
vertex from each U i, we only assigned one vector to each stack of S′e. After
this, every unassigned vector v ∈ V e represents a vertex of X (otherwise,
such a vector v would belong to a set U i, i ∈ k′, a contradiction). We assign
arbitrarily these vectors to the remaining stacks that are not in S′e. As by
construction ∀i ∈ [k], vsi contains only vectors representing vertices from
U i ∪X, we get c(si) ≤ |U i|+ |X|.
Thus, we obtain a feasible solution S of cost c(S) =

∑k
i=1 c(si) ≤ k|X| +∑k

i=1 |U i|. As by de�nition we have |X| +
∑k
i=1 |U i| = |U |, it follows that

c(S) ≤ |U |+ (k − 1)ε|U | and since k = n, c(S) < |U |(1 + nε).

If we de�ne a(n) = (1 + nε)|U | and r(n) = n(1−δ)
(1+nε) , the previous reduction

is a r(n)-Gap reduction. Furthermore, limδ,ε→0 r(n) = n, thus it is NP-hard to
approximate (min

∑
0)#0≤1 within a ratio (n− ε′) for any ε′ > 0.

ut

Notice that, as a function of n, this inapproximability result is optimal. In-
deed, we observe that any feasible solution S is an n-approximation as, for any
instance I of min

∑
03, Opt(I) ≥ p and for any solution S, c(S) ≤ pn.

Negative results without assuming UGC Let us now study the negative
results we can get when only assuming P 6= NP. Our objective is to prove that
(min

∑
0)#0≤1 is APX-hard, even for n = 2. To do so, we present a reduction

from Odd Cycle Transversal, which is de�ned as follows. Given an input
graph G = (U,E), the objective is to �nd an odd cycle transversal of minimum
size, i.e. a subset T ⊆ U of minimum size such that G[U \ T ] is bipartite.

For any integer γ ≥ 2, we denote Gγ the class of graphs G = (U,E) such

that any optimal odd cycle transversal T has size |T | ≥ |U |γ . Given G a class of
graphs, we denote OCTG the Odd Cycle Transversal problem restricted to
G.

Lemma 1. For any constant γ ≥ 2, there exists an L-reduction from OCTGγ
to (min

∑
0)#0≤1 with n = 2.

Proof. Let us consider an integer γ, an instance I of OCTGγ , de�ned by a graph
G = (V,E) such that G ∈ Gγ . W.l.o.g., we can consider that G contains no
isolated vertex.

Remark that any graph can be seen as a 2-uniform hypergraph. Thus, we use
the function f previously de�ned to construct an instance f(I) of (min

∑
0)#0≤1

such that n = 2. Since, G contains no isolated vertex, f(I) contains no position
k such that ∀i ∈ [m], ∀j ∈ [n], vij [k] = 1.

Let us now prove that I admits an odd cycle transversal of size t if and only
if f(I) admits a solution of cost p+ t.

3 Recall that we assume ∀k ∈ [p], ∃i,∃j such that vij [k] = 0
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⇐ We consider an instance f(I) of (min
∑

0)#0≤1 with n = 2 admitting a
solution S = {sA, sB} with cost c(S) = p+ t. Let us specify a function g which
produces from S a solution T = g(I, S) of OCTGγ , i.e. a set of vertices of U such
that G[U\T ] is bipartite.

We de�ne T =
{
u ∈ U : vsA [u] = vsB [u] = 0

}
, the set of coordinates equal to

zero in both sA and sB . We also de�ne A =
{
u ∈ V : vsA [u] = 0 and vsB [u] = 1

}
(resp. B =

{
u ∈ V : vsB [u] = 0 and vsA [u] = 1

}
), the set of coordinates set to

zero only in sA (resp. sB). Notice that {T,A,B} is a partition of U .
Remark that A and B are independent sets. Indeed, suppose that ∃{u, v} ∈ E

such that u, v ∈ A. As {u, v} ∈ E there exists a set V (u,v) containing a vector
that represents u and another vector that represents v, and thus these vectors
are assigned to di�erent stacks. This leads to a contradiction. It follows that
G[U\T ] is bipartite and T is an odd cycle transversal.

Since c(S) = |A|+ |B|+ 2|T | = p+ |T | = p+ t, we get |T | = t.
⇒ We consider an instance I of OCTGγ and a solution T of size t. We now

construct a solution S = {sA, sB} of f(I) from T .
By de�nition, G[U\T ] is a bipartite graph, thus the vertices in U\T may

be split into two disjoint independent sets A and B. For each edge e ∈ E, the
following cases can occur:

� if ∃u ∈ e such that u ∈ A, then the vector corresponding to u is assigned to
sA, and the vector corresponding to e \ {u} is assigned to sB (and the same
rule holds by exchanging A and B)

� otherwise, u and v ∈ T , and we assign arbitrarily veu to sA and the other to
sB .

We claim that the stacks sA and sB describe a feasible solution S of cost at
most p+ t.

Since, for each set, only one vector is assigned to sA and the other to sB , the
two stacks sA and sB are disjoint and contain exactly m vectors. S is therefore
a feasible solution.

Remark that vsA (resp. vsB ) contains only vectors v such that v [k] = 0 =⇒
k ∈ A∪T (resp. k ∈ B∪T ), and thus c(vA) ≤ |A|+ |T | (resp. c(vB) ≤ |B|+ |T |).
Hence c(S) ≤ |A|+ |B|+ 2|T | = p+ t.

Let us now prove that this reduction is an L-reduction.

1. By de�nition, any instance I of OCTGγ veri�es |Opt(I)| ≥ |U |/γ. Thus,

Opt(f(I)) ≤ |U |+Opt(I) ≤ (γ + 1)Opt(I)

2. We consider an arbitrary instance I of OCTGγ , f(I) the corresponding in-
stance of (min

∑
0)#0≤1, S a solution of f(I) and T = g(I), S the corre-

sponding solution of I.
We proved |T |−Opt(I) = c(S)−|U |− (Opt(f(I))−|U |) = c(S)−Opt(f(I)).

Therefore, we get an L-reduction for α = γ + 1 and β = 1. ut
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Lemma 2. There exist a constant γ and G ⊂ Gγ such that OCTG is APX-hard.

Proof. We present an L-reduction from VC-3, the vertex cover problem in graph
with maximum degree 3, to OCTGVC for an appropriate GVC . VC-3 is known to
be APX-complete [1].

Given an instance G = (U,E) of VC-3, we construct an instance f(G) =
(U ′, E′) as follows:

1. For each (u, v) ∈ E, create a vertex zu,v. These z-vertices form the set Z.

2. U ′ = U ∪ Z.
3. E′ = E∪{(u, zu,v), (v, zu,v) : (u, v) ∈ E}. In other words, for each (u, v) ∈ E,

we create the triangle {u, v, zu,v}.

Let us prove that G = (U,E) admits a solution V C of size |V C| = t if and
only if f(G) admits a solution T of size |T | = t.

⇒ Consider a vertex cover V C of size |V C| = t, for each u ∈ V C, we add
the vertex u′ to T . By de�nition, V C covers all the edges of G and then
all its (odd) cycles. Furthermore, it also covers all the created triangles in
f(G) since each of these cycles contains exactly one edge in common with
f(G)[U ′\Z]. Thus T is an odd cycle transversal and |T | = |V C|.

⇐ Let us construct a function g that, given any solution T of f(G), computes a
solution V C = g(G,T ) ofG. Notice �rst that we can suppose that T contains
no z-vertex. Otherwise every triangle {u, v, zu,v} covered by a zu,v ∈ T , can
instead be covered by either u or v without increasing the size of T . Thus,
we set V C = T .

By de�nition of an odd cycle transversal, T covers all the odd cycles of
f(G) and especially the created triangles. Thus, the triangle {u, v, zu,v} cor-
responding to any edge {u, v} ∈ E is covered by V C. As V C ∩ Z = ∅, V C
is a vertex cover of G.

The previous reduction is an L-reduction for α = β = 1. Let us call GV C the
class of graph generated in this reduction. The previous reduction shows that
OCTGV C is APX-hard. It remains to check that GV C ⊆ Gγ for a constant γ.

Remark that VC-3 is only de�ned on 3-regular graphs, it implies that for

any instance G = (U,E) of VC-3, Opt(G) ≥ |U |3 . As |U ′| = |U |+ |E| ≤ 5|U |
2 , it

follows that Opt(f(G)) = Opt(G) ≥ |U |3 ≥
2|U ′|
15 . Hence, GV C ⊂ Gγ with γ = 15

2 .
ut

The following result is now immediate.

Theorem 2. (min
∑

0)#0≤1 is APX-hard, even for n = 2.
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2.3 Approximation algorithm for min
∑

0

Let us now show an example of algorithm achieving a n− f(n,m) ratio. Notice
that the (n− ε) inapproximability result holds for �xed n and #0 = 1, while the
following algorithm is polynomial-time computable when n is part of the input
and #0 is arbitrary.

Proposition 1. There is a polynomial-time n − n−1
nρ(n,m) approximation algo-

rithm for min
∑

0, where ρ(n,m) > 1 is the approximation ratio for independent
set in graphs that are the union of m complete n-partite graphs.

Proof. Let I be an instance of min
∑

0. Let us now consider an optimal solution
S∗ = {s∗1, . . . , s∗n} of I. For any i ∈ [n], let Z∗i = {l ∈ [p] : vs∗i [l] = 0 and vs∗t [l] =
1,∀t 6= i} be the set of coordinates equal to zero only in stack s∗i . Let ∆ =∑n
i=1 |Z∗i |. Notice that we have c(S∗) ≥ ∆ + 2(p −∆), as for any coordinate l

outside
⋃
i Z
∗
i , there are at least two stacks with a zero at coordinate l. W.l.o.g.,

let us suppose that Z∗1 is the largest set among {Z∗i }, implying |Z∗1 | ≥ ∆
n .

Given a subset Z ⊂ [p], we will construct a solution S = {s1, . . . , sn} such
that for any l ∈ Z, vs1 [l] = 0, and for any i 6= 1, vsi [l] = 1. Informally, the zero
at coordinates Z will appear only in s1, which behaves as a "trash" stack. The
cost of such a solution is c(S) ≤ c(s1) +

∑n
i=2 c(si) ≤ p+ (n− 1)(p− |Z|). Our

objective is now to compute such a set Z, and to lower bound |Z| according to
|Z∗1 |.

Let us now de�ne how we compute Z. Let P = {l ∈ [p] : ∀i ∈ [m], |{j :
vij [l] = 0}| ≤ 1} be the subset of coordinates that are never nulli�ed in two
di�erent vectors of the same set. We will construct a simple undirected graph
G = (P,E), and thus it remains to de�ne E. For vector vij , let Z

i
j = Z(vij) ∩ P ,

where Z(v) ⊆ [p] denotes the set of null coordinates of vector v. For any i ∈ [m],
we add to G the edges of the complete n-partite graph Gi = ({Zi1 × · · · × Zin})
(i.e. for any j1, j2, v1 ∈ Zij1 , v2 ∈ Z

i
j2
, we add edge {v1, v2} to G). This concludes

the description of G, which can be seen as the union of m complete n-partite
graphs.

Let us now see the link between independent set in G and our problem. Let
us �rst see why Z∗1 is a independent set in G. Recall that by de�nition of Z∗1 , for
any l ∈ Z∗1 , vs∗1 [k] = 0, but vs∗j [k] = 1, j ≥ 2. Thus, it is immediate that Z∗1 ⊆ P .
Moreover, assume by contradiction that there exists an edge in G between to
vertices l1 and l2 of Z

∗
1 . This implies that there exists i ∈ [m], j1 and j2 6= j1 such

that vij1 [l1] = 0 and vij2 [l2] = 0. As by de�nition of Z∗1 we must have vs∗j [k1] = 1

and vs∗j [k2] = 1 for j ≥ 2, this implies that s∗1 must contains both vij1 and vij2 ,

a contradiction. Thus, we get OPT (G) ≥ |Z∗1 |, where OPT (G) is the size of a
maximum independent set in G.

Now, let us check that for any independent set Z ⊆ P in G, we can construct
a solution S = {s1, . . . , sn} such that for any l ∈ Z, vs1 [l] = 0, and for any
i 6= 1, vsi [l] = 1. To construct such a solution, we have to prove that we can add
in s1 all the vectors v such that ∃l ∈ Z such that v[l] = 0. However, this last
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statement is clearly true as for any i ∈ [m], there is at most one vector vij with

Z(vij) ⊆ Z.
Thus, any ρ(n,m) approximation algorithm gives us a set Z with |Z| ≥

|Z∗1 |
ρ(n,m) ≥

∆
nρ(n,m) , and we get a ratio of

p+(n−1)(p− ∆
nρ(n,m)

)

2p−∆ ≤ n − n−1
nρ(n,m) for

∆ = p.
ut

Remark 1. We can get, for example, ρ(n,m) = mnm−1 using the following al-
gorithm. For any i ∈ [m], let Gi = (Ai1, . . . , A

i
n) be the i-th complete n-partite

graph. W.l.o.g., suppose that A1
1 is the largest set among {Aij}. Notice that

|A1
1| ≥ OPT

m . The algorithm starts by setting S1 = A1
1 (S1 may not be an indepen-

dent set). Then, for any i from 2 to m, the algorithm set Si = Si−1 \ (∪j 6=j0Aij),
where j0 = argmaxj{|Si−1 ∩Aij |}. Thus, for any i we have |Si| ≥

|Si−1|
n , and Si

is an independent set when considering only edges from ∪il=1G
l. Finally, we get

an independent set of G of size |Sm| ≥ S1

nm−1 ≥ OPT
mnm−1 .

3 Exact resolution of sparse instances

The section is devoted to the exact resolution of min
∑

0 for sparse instances
where each vector has at most one zero (#0 ≤ 1). As we have seen in Section 2,
(min

∑
0)#0≤1 remains NP-hard (even for n = 2). Thus it is natural to ask

if (min
∑

0)#0≤1 is polynomial-time solvable for �xed m (for general n). This
section is devoted to answer positively to this question. Notice that we can-
not extend this result to a more general notion of sparsity as (min

∑
0)#0≤2 is

APX-complete for m = 3 [5]. However, the question if (min
∑

0)#0≤1 is �xed
parameter tractable when parameterized by m is left open.

We �rst need some de�nitions, and refer the reader to Figure 3 where an
example is depicted.

De�nition 3.

� For any l ∈ [p], i ∈ [m], we de�ne B(l,i) = {vij : vij [l] = 0} to be the set of
vectors of set i that have their (unique) zero at position l. For the sake of
homogeneous notation, we de�ne B(p+1,i) = {vij : vij is a 1 vector}. Notice
that the B(l,i) form a partition of all the vectors of the input, and thus an
input of (min

∑
0)#0≤1 is completely characterized by the B(l,i).

� For any l ∈ [p+ 1], the block Bl =
⋃
i∈[m]B

(l,i).

Informally, the idea to solve (min
∑

0)#0≤1 in polynomial time for �xed m
is to parse the input block after block using a dynamic programming algorithm.
When arriving at blockBl we only need to remember for each c ⊆ [m] the number
xc of �partial stacks� that have only one vector for each V i, i ∈ c. Indeed, we do
not need to remember what is �inside� these partial stacks as all the remaining
vectors from Bl

′
, l′ ≥ l cannot �match� (i.e. have their zero in the same position)

the vectors in these partial stacks.
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Fig. 3: Left: instance I of (min
∑

0)#0≤1 partitionned into blocks. Right: A pro�le P ={
x{∅} = 2, x{1} = 1, x{2} = 1, x{3} = 1, x{1,2} = 1, x{1,3} = 1, x{2,3} = 1, x{1,2,3} = 1

}
encoding a set S of partial stacks of I containing two empty stacks. The support of s7
is sup(s7) = {1, 3} and has cost c(s7) = 1.

De�nition 4.

� A partial stack s = {vsi1 , . . . , v
s
ik
} of I is such that {ix ∈ [m], x ∈ [k]} are

pairwise disjoints, and for any x ∈ [k], vsix ∈ V
ix . The support of a partial

stack s is sup(s) = {ix, x ∈ [k]}. Notice that a stack s (i.e. non partial) has
sup(s) = [m].

� The cost is extended in the natural way: the cost of a partial stack c(s) =
c(
∧
x∈[k] v

s
ix
) is the number of zeros of the bitwise AND of the vectors of s.

We de�ne the notion of pro�le as follows:

De�nition 5. A pro�le P = {xc, c ⊆ [m]} is a set of 2m positive integers such
that

∑
c⊆[m] xc = n.

In the following, a pro�le will be used to encode a set S of n partial stacks
by keeping a record of their support. In other words, xc, c ⊆ [m] will denote the
number of partial stacks in S of support c. This leads us to introduce the notion
of reachable pro�le as follows:

De�nition 6. Given two pro�les P = {xc : c ⊆ [m]} and P ′ = {x′c′ : c′ ⊆ [m]}
and a set S = {s1, . . . , sn} of n partial stacks, P ′ is said reachable from P
through S i� there exist n couples (s1, c1), (s2, c2), . . . , (sn, cn) such that:

� For each couple (s, c), sup(s) ∩ c = ∅.
� For each c ⊆ [m], | {(sj , cj) : cj = c, j = 1, . . . , n} | = xc. Intuitively, the con-
�guration c appears in exactly xc couples.
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� For each c′ ⊆ [m], | {(sj , cj) : sup(sj) ∪ cj = c′, j = 1, . . . , n} | = x′c′ . Intu-
itively, there exist exactly x′c′ couples that, when associated, create a partial
of pro�le c′.

Given two pro�les P and P ′, P is said reachable from P ′, if there exists a
set S of n partial stacks such that P ′ is reachable from P through S.

Intuitively, a pro�le P ′ is reachable from P through S if every partial stack
of the set encoded by P can be assigned to a unique partial stack from S to
obtain a set of new partial stacks encoded by P ′.

Remark that, given a set of partial stacks S only their pro�le is used to
determine whether a pro�le is reachable or not. An example of a reachable pro�le
is given on Figure 4.

c5 = {1}

c4 = {1}

c3 = {3, 4}

c2 = {2, 4}

c1 = {∅}

s5 : sup(s5) = {2, 4}

s4 : sup(s4) = {2}

s3 : sup(s3) = {1, 2}

s2 : sup(s2) = {∅}

s1 : sup(s1) = {1, 2, 4}

c′5 = {1, 2, 3, 4}

c′4 = {1, 2, 4}

c′3 = {1, 2, 4}

c′2 = {2, 4}

c′1 = {1, 2}

P

x{∅} = 1

x{2,4} = 1

x{3,4} = 1

x{1} = 2

P ′

x{1,2} = 1

x{2,4} = 1

x{1,2,4} = 2

x{1,2,3,4} = 1

(c1, s1)

(c2, s2)

(c3, s3)

(c4, s4)

(c5, s5)

Fig. 4: Example of a pro�le P ′ =
{
x{1,2} = 1, x{2,4} = 1, x{1,2,4} = 2, x{1,2,3,4} = 1

}
that is reachable from P =

{
x{∅} = 1, x1 = 2, x{2,4} = 1, x{3,4} = 1

}
reachable through

S = {s1 : sup(s1) = {1, 2, 4} , s2 : sup(s2) = {∅} , s3 : sup(s3) = {1, 2} , s4 : sup(s4) = {2} ,
s5 : sup(s5) = {2, 4}}.

We introduce now the following problem Π. We then show that this prob-
lem can be used to solve (min

∑
0)#0≤1 problem, and we present a dynamic

programming algorithm that solves Π in polynomial time when m is �xed.

Optimization Problem 2 Π

Input (l, P ) with l ∈ [p+ 1], P a pro�le.

Output A set of n partial stacks S = {s1, s2, . . . , sn} such that S is a
partition of B =

⋃
l′≥lB

l′ and for every c ⊆ [m], |{s ∈ S|sup(s) =
[m] \ c}| = xc and such that c(S) =

∑n
j=1 c(sj) is minimum.

Remark that an instance I of (min
∑

0)#0≤1 can be solved optimally by
solving optimally the instance I ′ = (1, P = {x∅ = n, xc = 0,∀c 6= ∅}) of Π. The
optimal solution of I ′ is indeed a set of n partial disjoint stacks of support [m]
of minimum cost.

We are now ready to de�ne the following dynamic programming algorithm
that solves any instance (l, P ) of Π by parsing the instance block after block
and branching for each of these blocks on every reachable pro�le.
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Function MinSumZeroDP(l, P )

if k == p+ 1 then

return 0;
return min(c(S′)+MinSumZeroDP(l + 1, P ′)), with P ′ reachable from P
through S′, where S′ partition of Bl;

Note that this dynamic programming assumes the existence of a procedure
that enumerates e�ciently all the pro�les P ′ that are reachable from P . The
existence of such a procedure will be shown thereafter.

Lemma 3. For any instance of Π (l, P ), MinSumZeroDP(l, P ) = Opt(l, P ).

Proof. Lemma 3 is true as in a given block l, the algorithm tries every reachable
pro�le, and the zeros of vectors in blocks B =

⋃
l′<lB

l′ cannot be matched with

those of vectors in block B′ =
⋃
l′≥lB

l′ . This is the reason why the support
of the already created partial stacks (stored in pro�le P ) is su�cient to keep a
record of what have been done (the positions of the zeros in the partial stacks
corresponding to P is not relevant). ut

Let us focus now on the procedure in charge of the enumeration of the reach-
able pro�le. A �rst and intuitive way to perform this operation is by guessing,
for all c, c′ ⊆ [m], yc,c′ the number of partial stacks in con�guration c that will
be turned into con�guration c′ with vectors of current block Bl. For each such
guess it is possible to greedily verify that each yc,c′ can be satis�ed with the
vectors of the current block. As each of the yc,c′ can take values from 0 to n
and c and c′ can be both enumerated in O∗(n2m), the previous algorithm runs

in O∗(n22m).
This complexity can be improved as follows. The idea is to enumerate ev-

ery possible pro�le P ′ and to verify using another dynamic programming al-
gorithm if such a P ′ is reachable from P . We de�ne AuxP ′(P,X), that veri-
�es if P ′ is reachable from P by using all vectors of X. If X = ∅, then the
algorithm returns whether P is equal to P ′ or not. Otherwise, we consider
the �rst vector v of X (we �x any arbitrary order) for which a branching is
done on every possible assignment of v. More formally, the algorithm returns∨
c⊆[m],xc>0,c∩sup(v)=∅AuxP ′(P2 = {x′l}, X \ {v}), where x′l = xl − 1 if l = c,

x′l = xl + 1 if l = c ∪ sup(v), and x′l = xl otherwise.
Using Aux in MinSumZeroDP, we get the following theorem.

Theorem 3. (min
∑

0)#0≤1 can be solved in O∗(n2m+2

).

We compute the overall complexity as follows: for each of the pn2
m

possible
values of the parameters of MinSumZeroDP, the algorithm tries the n2

m

pro�les
P ′, and run for each one AuxP ′ in O∗(n2

m

nm) (the �rst parameter of Aux can
take n2

m

values, and the second nm as we just encode how many vectors left in
X).
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