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Abstract— This paper introduces a novel concept of an air 
bearing test bench for CubeSat ground testing together with 
the corresponding dynamic parameter identification method. 
Contrary to existing air bearing test benches, the proposed 
concept allows three degree-of-freedom unlimited rotations and 
minimizes the influence of the test bench on the tested CubeSat.  
These advantages are made possible by the use of a robotic 
wrist which rotates air bearings in order to make them follow 
the CubeSat motion. Another keystone of the test bench is an 
accurate balancing of the tested CubeSat. Indeed, disturbing 
factors acting on the satellite shall be minimized, the most 
significant one being the gravity torque. An efficient balancing 
requires the CubeSat center of mass position to be accurately 
known. Usual techniques of dynamic parameter identification 
cannot be directly applied because of the frictionless suspension 
of the CubeSat in the test bench and, accordingly, due to the 
lack of external actuation. In this paper, a new identification 
method is proposed. This method does not require any external 
actuation and is based on the sampling of free oscillating 
motions of the CubeSat mounted on the test bench. 

I. INTRODUCTION 
One of the widespread and demanded branches of space 

technologies is CubeSat-class satellites. CubeSats are 
miniaturized satellites with standardized sizes of one-unit 
(1U, 10x10x10 mm), or a multiple of one unit (e.g. 3U). The 
development of such satellites is common in schools and 
universities due to the relatively short development time, the 
wide range of components available off-the-shelf, and 
compatibility with standardized launch ejectors.  In addition 
to educational purposes, nowadays, CubeSats are employed 
in full scale scientific and technological missions, and every 
year the number of professional CubeSat programs increases 
[1]. This tendency leads to the necessity of complete CubeSat 
ground testing. One of the main issues of the pre-launch 
examination is the inspection of the Attitude Determination 
and Control System (ADCS) once it is assembled and 
integrated in the satellite. ADCS testing, unlike tests of other 
subsystems, requires the satellite to move.  Each constraint 
impairing the satellite free rotation yields cases where the 
ADCS cannot be checked and might thus cause problems 
during its on-orbit operation. Results obtained for the 
available range of angles are often extrapolated to other 
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attitudes in order to confirm ADCS operability, which 
decreases the probability of faultless operation.  

 The development of an ADCS test bench is a challenging 
task, but some examples can be found in the literature. Most 
of the developed test benches are designed for satellites with 
a mass greater than 50 kg [2]-[9]. They cannot be used for 
CubeSat ADCS tests, because inertia parameters of the test 
bench are critical for a reliable checkout and shall be 
comparable with those of the tested satellite. Some test 
benches have been designed specifically for CubeSats  [10]-
[12], but their maximum rotation angle is approximately 90° 
or less.  

In this paper, a novel approach to the design of 1..3U 
CubeSat test benches is proposed. The corresponding design 
eliminates the limitations on the satellite attitude (orientation) 
during the testing since it allows full three degree-of-freedom 
(DoF) satellite rotations. The test bench consists of two 
frames, which have spherical mating surfaces conventionally 
called Spheres, and of a 4 DoF redundant robotic wrist. 
Moreover, four air bearings are employed to allow 
frictionless motion of the satellite mounted on the test bench.   

Reliable and trustworthy results of ADCS testing can be 
obtained only if the effects of all disturbing torques caused by 
gravity, aerodynamic drag, and friction, are minimized. The 
total disturbing torque shall be one order of magnitude 
smaller than the total expected external torque on the orbit 
[8]. While other sources of disturbances can be reduced up to 
negligible values by optimizing environmental conditions at 
the test facility, the torque due to gravity always influences 
the satellite when there is an offset between the satellite 
center of mass (CM) and the test bench center of rotation 
(CR). A balancing procedure, aiming at eliminating this 
offset, requires an accurate identification of the satellite CM 
position together with its inertial parameters. In the sequel, 
the inertial parameters and the CM position are referred to as 
the dynamic parameters.  

The identification of dynamic parameters is a well-known 
technique in robotics and related fields. Several approaches 
have been proposed in the literature to solve the dynamic 
parameter identification problem [2], [13]-[18]. Some 
common features of these approaches can be found in [15], 
[18], namely:  

• The use of inverse dynamic or energy model to form 
the identification equations; 

• The use of an optimal exciting trajectory for efficient 
model sampling; 

• The use of an over-determinate linear system of 
equations resulting from the model sampling; 

• Solving the linear system by the Least Squares 
method to estimate the parameters. 

In all the aforementioned approaches, the identification is 
done for systems subjected to external actuation (usually, 
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Figure 2. The test bench. 

 
Figure 1. An air-levitated sphere and a spherical structure of the same 

diameter formed by several air bearings. 

joint forces/torques). For example in [2], where the 
identification and balancing of an 800 kg satellite is done, the 
test bench uses reaction wheels for actuation. The 
identification equations can be written in the following 
general form 

 ( ) =y Γ W x   (1) 

where Γ  is an external torque, W  is an observation matrix, 
and x  is the vector of the dynamic parameters to be 
identified. In the case of a passive system (with no actuation), 
the right-hand side of (1) is always equal to zero. The latter 
case is the one dealt with in this paper where the 
identification problem concerns the payload of the test bench 
which is passive, i.e., it is not subjected to external 
influences apart from the torque due to gravity. A method of 
dynamic parameter identification suitable to this passive 
case and based on the sampling of free oscillating rotations 
is presented in this paper. 

In summary, the first contribution of this paper is a novel 
design of an air bearing test bench for CubeSat ADCS 
testing, which includes a 4-DoF redundant robotic wrist. The 
second contribution is a dynamic parameter identification 
technique for a passive system. This technique is based on 
the observation of its oscillating rotational motions.  

The paper is organized as follows: Section 2 introduces 
the details of the test bench design, Sections 3 and 4 are 
devoted to the identification method. Section 5 presents 
simulation results while section 6 concludes the paper.  

II. THE TEST BENCH 
 The most popular and advanced technique to obtain 

frictionless 3-DoF rotational motions of a satellite on a test 
bench is the use of air bearings. Different types of air 
bearing test benches are discussed in [19], but all of these 
designs have limitations on the available pitch and roll 
rotations of the mounted payload, the maximum rotation 
amplitudes being around ±45°. These limitations could be 
eliminated if the payload is placed at the center of a hollow 
sphere gliding on an air bearing puck. Such an approach was 
tried for satellite disassembled hardware, the system 
provided rotations of ±180° but the reported tests included 
single-axis rotations only [20]. In [9], an air-levitated sphere 
with a 1U CubeSat placed inside is described, but it was not 
realized because of technological issues. A hollow sphere 
able to hold 3U CubeSats would be bulky and heavy, which 
are undesirable characteristics for a CubeSat test bench. 
Another disadvantage is technological complexity: The 
hollow sphere shall be built in several sections to be able to 
place a payload inside the sphere, while the surface shall be 
accurately machined to provide the roughness required by 
the air bearings. The design proposed in this paper has the 
advantage of the air-levitated sphere (satellite unconstrained 
rotations) without its aforementioned weaknesses.  

A. Concept 
The key advantage of the hollow sphere is the continuous 

surface that allows friction-free contact with the bearing 
puck at every possible angular position. The idea proposed 
here is that the same property can be achieved by means of 

several small air bearings rotating around a common CR 
placed at the spherical surface center (Fig. 1). The inner part 
of the structure, which consists of small hemispheres 
(spherical segments) as shown in the right part of Fig. 1, 
becomes much smaller and lighter than the air-levitated 
spheres suggested before. It is relevant to minimize the size 
and mass of this part of the test bench because of its 
unwanted moment of inertia. The frame on which the 
bearing pucks are attached, called the “External Sphere”, 
needs to follow the motion of the fictitious “Inner Sphere” 
wherein the satellite is mounted. The External Sphere is 
independent from the CubeSat mounted on the test bench 
and, therefore, has no influence on results of the tests.  

B. Design overview 
The proposed CubeSat test bench mainly consists of 

three parts: (i) the Inner Sphere composed of the sliding 
hemispheres attached to the CubeSat; (ii) the External 
Sphere built of the air bearing pucks; and (iii) a 4 DoF 
redundant robotic wrist, able to rotate the External Sphere 
around the CR (Figure 2). The External Sphere shall be 
rotated around the CR in order to follow the motion of the 
Inner Sphere so that each hemisphere remains aligned with 
its air bearing puck. The CR is thus common to both the 
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Figure 3. The frames involved in the identification process. 

Inner and External Spheres and is coincident with the 
common intersection point of the four robotic wrist revolute 
joint axes. While the whole system needs only 3 rotational 
DoF, the additional DoF of the wrist aims at eliminating 
kinematic singularities which would limit the possible 
rotations.  

The CubeSat is fixed to the Inner Sphere by means of an 
adjusting mechanism, which allows limited modifications of 
the satellite position with respect to the CR. This feature is 
needed for sampling the payload motion with different initial 
offsets between the CR and the CM and for the final 
balancing of the CubeSat. The maximum displacements of 
the satellite inside the Inner Sphere are ±20 mm along the X 
and Y directions and ±35 mm in the Z direction. These 
values have been chosen according to CubeSat Design 
Specification [21] that defines allowable CM locations for 
1...3U CubeSats. 

The motion of the satellite is a key point of ADCS tests 
and shall not be predicted but only observed. Moreover, the 
positioning of the External Sphere has to be corrected 
rapidly based on the current position of the satellite. For 
these purposes, a tracking system is required. Two possible 
means to observe the Inner Sphere motion are: 3D motion 
capture cameras or distance sensors. The sensors measure a 
relative position of the hemispheres and pucks. In order to 
obtain an absolute estimation of the Inner Sphere attitude, 
the encoders of the robotic wrist joints are then required.  

III. THE DYNAMICS OF THE TEST BENCH PAYLOAD 

The payload of the test bench is the CubeSat together 
with the Inner Sphere and the adjusting mechanism, which 
are rigidly connected and move as one body. Before dynamic 
parameter identification, the dynamics of the payload shall be 
described.  In the sequel, “body” refers to the payload. 

A. Frames 
The inertial fixed frame IR  is defined by the basis IB , 

denoted ( ), ,I I Ix y z , and its origin centered at the point CR . 
Vector Iz  is aligned with the local vertical (Fig. 3). Let the 
basis bfB , denoted ( ), ,x y z , be attached to the body, and let 
the body-fixed reference frame bfR consist of bfB  centered 
at a given point O of the body. The choice of O  will be 
discussed in Section 4.  

The frame BFR  shown in Fig. 3 has the same orientation 
as bfB  but its origin is CR . As shown in the sequel, the 

frame BFR  is introduced to simplify the writing of the 
equations of motion, suitable for identification. The position 
of the point CM  in BFR  is defined by the column vector ρ . 
As shown in Fig. 3, it can be written as the sum of the vectors 

Oρ  and r  expressed in bfB  

 = + Oρ r ρ   (2) 

It should be noted that the vector r  is related to the 
position of the body in BFR  and the vector Oρ  is constant 
for the given body (Fig. 3). 

B. Kinematics 
The orientation of BFR  with respect to IR  is given by 

the rotation matrix I
BFA . In IB , the angular velocity vector 

of the body Iω  can be found as follows 

 [ ] T
× =I I I

BF BFω A A&   (3) 

where [ ] ×
Iω  is the skew-symmetric matrix associated to the 

vector Iω . The following operation can be used to express 
the angular velocity vector ω in bfB  

 = BF I
Iω A ω   (4) 

In the sequel, all vectors without a left superscript are 
expressed in bfB . 

C. Dynamics 
The Euler’s equations of motion traditionally describes 

the rotational dynamics of a body with respect to a 
coordinate frame whose origin is the body’s CM. The test 
bench payload is subjected to the action of a gravity torque 
(when the points CR  and CM  are not perfectly coincident) 
and to the reaction forces at the air bearings. The reaction 
forces are pointing towards CR . They can be represented by 
a resulting force passing through CR . The magnitude and 
direction of this force are unknown. 

However, the equations of motion does not include this 
unknown resulting force if the Euler’s equations of motion 
are expressed in BFR  

 + × =CR CR CRI ω ω I ω T&   (5) 

where CRI  is the inertia matrix of the body at CR , CRT is 
the torque induced at CR  by the weight mg  of the body  

 [ ] [ ]m m m× ×= × = − = −CR BF I
IT ρ g g ρ A g ρ   (6) 

Substituting (6)  into (5) results in 

 [ ]m ×+ × + =CR CR BF I
II ω ω I ω A g ρ 0&   (7) 

Equation (7) describes the dynamics of the test bench 
payload in bfB . As detailed in Section 4, this equation can 
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be used to obtain the identification equations in the 
following form 

 Φx = b   (8) 

where vector x  contains the body dynamic parameters to be 
identified.  

IV. IDENTIFICATION OF THE DYNAMIC PARAMETERS 
The goal of the identification process is to find the 

dynamic parameters of the body. The dynamic model (7) in 
the current formulation is a function of these parameters 
taken with respect to CR  ( CRI  and ρ ) so that the vector b
in (8) is always equal to zero. Moreover, CRI  and ρ are 
related to the position of the body in BFR , hence the result of 
the identification depends on the initial position of the body 
with respect to CR . Such an objectionable situation can be 
avoided if the dynamic parameters are taken at a point 
attached to the body. The points CM and O  (Fig. 3) are two 
candidate points. Choosing CM yields nonlinearities in the 
dynamic parameters. On the contrary, choosing O  leads to a 
linear system. CRI  and ρ  shall thus be expressed with 
respect to O  and substituted into (7). 

A. The Inertia Matrix 
The inertia matrix CMI  taken at CM  and expressed in 

bfB is: 

 
CM CM CM
xx xy xz
CM CM CM
xy yy yz
CM CM CM
xz yz zz

I I I
I I I
I I I

 
=  

  
CMI   (9) 

Then, CRI  can be found by applying the Huygens-
Steiner theorem:  

 ( )T Tm= + −CR CMI I ρ ρ 1 ρ ρ   (10) 

where 1  is the 3 3× identity matrix. Substituting (2) into 
(10) gives 

( ) ( ) ( )( )( )
( )( )( ) 2

T T

T T T

m
m

= + + + − + +
= + + − +

CR CM O O O O

O O O O

I I ρ r ρ r 1 ρ r ρ r
I C r ρ r1 ρ r rρ

(11) 

where 
 ( )T Tm= + −O CM O O O OI I ρ ρ 1 ρ ρ   (12) 

is the inertia matrix of the body taken at O  and expressed in 
bfB  and 

 ( ) ( )T Tm= −C r r r1 r r   (13) 

is a value depending only on the position of the body in 
BFR  and on the body’s mass m. The decomposition of the 

inertia matrix presented in (11) is convenient for further 
simplification and transformation of (7). 
 

B. The Identification Equations 
Taking into account the relations obtained in the previous 

section, (7) can be rewritten as a linear equation in the 

dynamic parameters. The product of the inertia matrix and 
the angular velocity becomes 

 ( )( ) ,m= + +CR O OI ω I ω C r ω B ω r ρ   (14) 

where matrix ( ),B ω r is defined as 

 ( )
2 2 3 3 2 1 1 2 3 1 1 3

1 2 2 1 1 1 3 3 3 2 2 3

1 3 3 1 2 3 3 2 1 1 2 2

ω ω 2 ω ω 2 ω ω
, 2 ω ω ω ω 2 ω ω

2 ω ω 2 ω ω ω ω

r r r r r r
r r r r r r
r r r r r r

− − − − 
= − − − − 

− − − −  
B ω r  (15) 

Equation (14) can be modified to highlight the fact that it 
is linear in the unknown values OI  and Oρ . The first term 
on the right-hand side can be written 

 ( )O OI ω = Ω ω j   (16) 

where Oj is a 6 1×  vector composed of the elements of the 
inertia matrix OI  and ( )Ω ω  is a 3 6×   matrix composed of 
the elements of the vector ω   

 [ ]TO O O O O O
xx yy zz xy xz yzI I I I I I=Oj   (17) 

 ( )
1 2 3

2 1 3

3 1 2

ω 0 0 ω ω 0
0 ω 0 ω 0 ω
0 0 ω ω ω 0

 
=  

  
Ω ω   (18) 

Accordingly, the expression of CRI ω&  can be written as 

 ( ) ( ) ( ),m= + +CR O OI ω Ω ω j B ω r ρ C r ω& & & &   (19) 

Collecting all dynamic parameters on the left-hand side, 
(7) is finally written in matrix form as 

( ) [ ] ( ) [ ] [ ]( )
[ ] [ ]

( (
)

)
)

,
(

)
(

,m
m

× × ×

× ×

 + + +    
= − − −

O

O
jΩ ω ω Ω ω B ω B g ρ

g r ω C r ω
ω ω
ω

r
C

r
r
&&
&

  (20) 

C. The Least Squares Solution 
In this work, the identification of the components of the 

inertia matrix and of the position of CM is based on the 
knowledge of the angular position of the body-fixed frame 
with respect to IR . A Least Squares (LS) solution requires 
data obtained from p experiments each having a duration of 

iN  sec or in  time steps. iN  and p as well as the initial 
conditions of the experiments should be optimized in order 
to obtain the best results. During the experiments, the body 
is moving freely under the influence of the gravity torque 
created by the body weight when CM  is not coincident with 
CR . In each experiment, the initial conditions, i.e. the offset 
between CR  and O , described by the vector ir , the initial 
orientation of the body in IR  and its initial angular velocity 
could be different.  

For the thj   measurement of the thi experiment, (20) is 

( ) [ ] ( ) [ ] [ ]( )
[ ] [ ]

, )( (
(

, )
)()

ij iij ij ijij ij

ij i ij i

i i

ij

j

i ij

m
m

× × ×

× ×

  + + +   
=− − −

O

O
jΩω ω Ωω B ω B g ρ

g r ω C ω C
ω r ω r

r r ω&
&& (21) 
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Figure 4. Simulation scheme of the identification of dynamic 
parameters. 

where 1...i p= , 1... ij n= . 
Finally, gathering all the measurements of all the 

experiments in a single equation gives 

 Φx = b   (22) 

where Φ  is a 3 9np×  observation matrix, x  is the 9 1×  
vector of dynamic parameters and b  is a 3 1np×
observation vector. 

Since there are more equations than unknowns, this 
problem can be solved computing the LS solution  

 +x =Φ b   (23) 

where +Φ is the pseudo-inverse of the observation matrix. 
This LS solution is an estimation of the dynamic parameters
x . The Huygens-Steiner theorem can finally be applied to 
find the inertia matrix of the body at itsCM   

 ( )T Tm= − −CG O O O O OI I ρ ρ 1 ρ ρ   (24) 

D. Iterative Approach for Multi-Body Payload 
The equations in the previous subsections are given for a 

single rigid body. Practically, in the test bench studied in this 
paper, the “body” consists of the CubeSat, the Inner Sphere 
and the adjusting mechanism. The identification shall be 
done only for the CubeSat’s dynamic parameters, which are 
constant since the CubeSat does not change a shape during 
the experiments. The parameters of the other elements are 
assumed to be well known. While they are not a subject of 
interest here, they influence the motion and shall thus be 
taken into account. Accordingly, (2) becomes 

 
1

1 1

1 l

k kl l
k

k k
k k

m m
m m m m =

= =

= + +
+ +

∑
∑ ∑

O Oρ r ρ ρ   (25) 

where m  and Oρ  refer now to the CubeSat while km  and 
k
Oρ  refer to the elements attached to the satellite, 1...k l= . 

Moreover, (13) becomes 

 ( ) ( )
1

l
T T

k
k

m
=

= − + ∑ CRC r r r 1 r r I   (26) 

The resulting identification equations can be obtained by 
substituting  (25) and (26) into (21). 

Before a direct application of (21) to the identification of 
dynamic parameters, it should be mentioned that the vector 
x  is not homogeneous. The components of x  have 
different units (unit of Oρ  is m and unit of Oj  is kg·m2).  
For CubeSats, the values of Oρ  can be up to 2 orders of 
magnitude larger than the diagonal components of the inertia 
matrix, depending on the position of the CM and on the 
choice of the point O on the body. An accurate identification 
can be reached when all the components of x are of the same 
order of magnitude. To this end, an iterative approach 

aiming to minimize the magnitude of Oρ  can be considered. 
The following sequence of operations is suggested:  

• Initialization: Choose the origin O  of bfR  at the 
geometric center of the CubeSat (as a first 
approximation of the CM position) and select the 
initial position of the CubeSat in IR  (i.e. vector r ) 
for each one of the p experiments; 

• Run p experiments in order to form an over-
determinate linear system of equations (22); 

• Derive x  using the LS method; 

• Update the position of O  in IR according to the 
identified value Oρ ; 

• Update r  based on given scaling coefficients; 

• Repeat the operations until the required accuracy is 
reached   

This iterative approach results in decreasing the 
magnitude of Oρ  at every step. It can be seen in (12) that the 
contribution of 0

CGI in OI  is larger than the addition, which 
depends on Oρ , because Oρ is small and squared. While Oρ
decreases fast, Oj changes slowly. Accordingly, after a few 
iterations, the values of Oρ  and Oj will be of the same order 
of magnitude and the identification error should be 
minimized. Besides, when Oρ  is decreasing, the oscillation 
period increases and the experiment duration iN might not be 
large enough to capture the character of the motion. 
Consequently, a scaling of iN  after each iteration is 
recommended to avoid this issue.  

MATLAB SIMULATION 
The identification algorithm proposed above shall be 

tested and, if required, improved before its application to the 
test bench. Simulations of the identification process in 
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MATLAB are thus used to verify the algorithm efficiency. 
The MATLAB model consists of two parts: The simulation 
of the body dynamics and the identification of the dynamic 
parameters (Fig. 4).  

The rotating body dynamics is described by (7). The 
simulation of the body motion requires to solve this equation 
to determine the angular position of the body, described by 
the rotation matrix I

BFA . Finding I
BFA  emulates data that 

will be obtained from the sensors of the test bench during the 
real experiments.  

The part of the MATLAB model, dedicated to the 
identification of the inertial parameters, is similar to the one 
that will be used during the real experiments. The accuracy 
of the identification process can be estimated by comparing 
the “real” values CRI  and Oρ , chosen by the user for the 
current model run, and the values CRI$  and $ Oρ obtained by 
the identification process.  

E. Simulation of the body motion 
Equation (7) shall be written in the following form to be 

solved by the MATLAB Ordinary Differential Equation 
(ODE) solver  

 ( )f=y y& ,  (27) 

where y  is the vector of unknowns. Equation (7) contains 
first and second order derivatives of the angular position of 
the body. Moreover, the angular velocity is not linearly 
dependent on the sought-for rotation matrix I

BFA . The 
following solution is proposed to deal with this issue. 

Let y  to be the vector composed of the components of 
I

BFA and Iω  

 [ ]11 21 31 12 22 32 31 32 33 1 2 3
TA A A A A A A A A= ω ω ωy   (28) 

Using (3), the first 9 components of y&  can be found 
from the equation 

 [ ]×=I I I
BF BFA ω A&   (29) 

Equation (7) can be solved for Iω& , which are the last 3 
components of y&  

 ( ) [ ]( )( )1 m−

×= − × −I I CR BF I CR BF I BF I
BF I I Iω A I ωA I A ω A g ρ&  (30) 

Thereby, the equations of motion can be expressed in the 
form (27) which is required by the ODE solver.  

F. Results 
MATLAB simulations were run for CAD models of 1U 

and 3U CubeSats with different dynamic characteristics and 
initial conditions, represented in Table I and Table III. At the 
beginning of each experiment, the CubeSat is at rest and the 
axes of bfR  and IR  are perfectly aligned.  

The scaling coefficients for r  and the duration of each 
experiment, which depends on the magnitude of Oρ  derived 
during the previous iteration, were found empirically and are 
given in Table II. The sampling time for all iterations is 0.1 
sec. 

TABLE I. INITIAL CONDITIONS 

Experiment 
number, p 1 2 3 4 

Initial offset,  
r (m) 

0.02
0.02
0.02

 
 
  

 
0.02
0.02

0.02

− 
− 

  
 

0.02
0.02
0.02

 
 
 − 

 
0.02
0.02
0.02

− 
− 

 − 
 

 
The results of the identification and the corresponding 

number of iterations, required to obtain Oρ  with an accuracy 
of 1µm (that is needed to meet disturbing torque 
requirements) are given in Table 3. 

These simulations provide good results in the 
identification of the CM location (largest error <0.1%) and 
of the moments of inertia (largest error <1%), but for the 
accurate identification of the products of inertia some 
additional measures might be needed. The latter can be 
explained by the small magnitudes of the products of inertia 
with respect to other identified values. However, the 
products of inertia should always be small due to the 
parallelepiped shape of the satellite. Furthermore, they are 
not important to the CubeSat balancing.  

Based on the conducted simulations of the identification 
process, better results are obtained when at least 4 
experiments are made such that, in each experiment, the 
geometric center of the CubeSat is located in a different 
octant of IR . However, further research on the optimization 
of the identification process shall be done to improve its 
efficiency.      

TABLE II. SCALING COEFFICIENTS 

Oρ at the previous 
iteration (m) 

Scaling coefficient 
for r  

Duration of each 
experiment, Ni (sec) 

≥ 0.01 1 5 

≥ 0.001 0.5 10 

≥ 0.0001 0.1 20 

< 0.0001 0.05 25 

TABLE III. RESULTS OF SIMULATIONS 

 
1U CubeSat 3U CubeSat 

CAD 
values 

Identified 
values 

CAD 
values 

Identified 
values 

O 3
1ρ (m 10 )−⋅  -0.2560 -0.2558 -1.6393 -1.6398 
O 3
2ρ (m 10 )−⋅  -0.9320 -0.9317 -1.2807 -1.2814 
O 3
3ρ (m 10 )−⋅  -9.9570 -9.9572 17.1741 17.1749 
CM 2 3
xxI (kgm 10 )−⋅  1.5460 1.5325 30.6915 30.4716 
CM 2 3
yyI (kgm 10 )−⋅  1.5910 1.5797 29.6998 29.4381 
CM 2 3
zzI (kgm 10 )−⋅  1.3840 1.3817 4.5775 4.5399 
CM 2 3
xyI (kgm 10 )−⋅  0.0090 -0.0087 0.0250 -0.2039 
CM 2 3
xzI (kgm 10 )−⋅  -0.0070 0.0030 -0.1459 -0.0052 
CM 2 3
yzI (kgm 10 )−⋅  0.0060 0.0082 0.0030 0.0021 

Number of 
iterations 
(Section IV-D) 

4 4 
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V. CONCLUSION 
A novel concept of an air bearing test bench for CubeSat 

ground testing was proposed in this paper. In contrast to 
existing air-bearing test benches, it allows unlimited 3 DoF 
rotations of the tested CubeSat while reducing the undesired 
influences caused by the other mobile elements attached to 
the CubeSat. Moreover, a dynamic parameter identification 
method, adapted to the proposed test bench, was presented. 
This method is mainly based on the sampling of free 
oscillating motions. Simulation results of dynamic parameter 
identification for CAD models were presented. Future work 
will aim at validating the identification method on the 
assembled test bench with a CubeSat prototype.    
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