
HAL Id: lirmm-01310983
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01310983

Submitted on 3 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Atoms based control of mobile robots with
Hardware-In-the-Loop validation

Adrien Lasbouygues, Benoît Ropars, Robin Passama, David Andreu, Lionel
Lapierre

To cite this version:
Adrien Lasbouygues, Benoît Ropars, Robin Passama, David Andreu, Lionel Lapierre. Atoms based
control of mobile robots with Hardware-In-the-Loop validation. IROS: Intelligent Robots and Systems,
Sep 2015, Hamburg, Germany. pp.1083-1090 �10.1109/IROS.2015.7353505�. �lirmm-01310983�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01310983
https://hal.archives-ouvertes.fr


Atoms Based Control of Mobile Robots with Hardware-In-the-Loop
validation

Adrien Lasbouygues1, Benoit Ropars12, Robin Passama1, David Andreu1 and Lionel Lapierre1

Abstract— Mobile robots are nowadays used in a wide variety
of missions especially for exploring environments and allowing
scientists who study these environments to gather data about
them. However the monolithic design of control laws is often a
hindrance to adapting control solutions from a robotic appli-
cation to another. We thus propose a new control description
paradigm strongly focused on modularity as well as integrating
constraints coming both from the system capabilities and from
the concerns of control engineering (such as stability). In this
paper, we present the main ideas behind our approach and
illustrate it through Hardware-In-the-Loop simulation.

I. INTRODUCTION

The first mobile robots were developed in the late 60’s.
Their development has never stopped since leading to more
and more autonomous robots capable of performing missions
in more and more complex environments. Thus they began
interesting other sectors of the scientific community as a
tool to explore environments too dangerous or too costly for
human exploration. This is especially true in our application
context which is underwater robotics (for karstic exploration,
archeology or biology) in which we exploit application-
dependent models of the environment.

However a broader use of robots in scientific applications
is largely impeded both by the time and cost of developing
a control for a given robotic application (i.e. the resulting
interaction between a robot, its environment and the task
performed) and by the difficulty to integrate knowledge from
a specialist of the environment to this application.

The main underlying reason behind these issues is the way
control laws are designed by control engineers. Indeed as
explained in [1], control engineers focus on solving the con-
trol problem at hand often neglecting other considerations.
Thus the resulting control laws are very monolithic, merg-
ing knowledge together while strongly hiding relationships
between them as well as design assumptions.

Moreover control engineers rarely take into account
the fact that the control will then be implemented on a
Software and Hardware architecture which brings its own
constraints and limitations (for instance sensors update rates
or computation power). The monolithic nature of control
equations also strongly limits software engineers leeway
when implementing the control thus not allowing them to

The authors would like to thank the French Labex NUMEV for supporting
this research.

1Adrien Lasbouygues, Benoit Ropars, Robin Passama, David Andreu
and Lionel Lapierre are with LIRMM, University of Montpellier, Mont-
pellier, France. E-mails: {adrien.lasbouygues, ropars,
robin.passama, andreu, lapierre}@lirmm.fr

2Benoit Ropars is with Ciscrea, Toulon, France. E-mail:
bro@ciscrea.fr

use the full scope of their proposals in term of software
modularity and architectural solutions.

We thus believe that a strong focus should be put on
modularity concerns from the very beginning of the control
design and up to the implementation of this control. This is
the guideline of the approach presented in this paper.

We are currently working on the modified version of the
Jack ROV which was presented in [2].

This paper is organized as follows. In section II, we
discuss related works as well as our positioning towards
them. In section III, we describe the basic entity of our
approach. In section IV, we describe how to compose these
entities together to describe a control law. Section V presents
an insight on how Constraints are studied and show their
importance through a rather simple heading angle control
example which is validated using Hardware-In-the-Loop
(HIL) simulation. Finally this paper ends with a conclusion
and an opening towards future work.

II. RELATED WORKS AND POSITIONING

A. Modularity in control engineering

If modularity is a recent concern for control engineers, a
few approaches already tried to take it into account.

Interesting approaches are the ones based on hybrid con-
trol such as [3]. Indeed modularity is achieved by partitioning
a complex control problem into simpler subproblems and to
develop an individual solution for each of these subproblems.
The complete solution is obtained by switching between the
subproblem solutions according to the situation faced by the
robot. However implementation on a software architecture is
not taken into account in this approach.

Another interesting approach is Motion Description Lan-
guage (MDL) introduced in [4] which was then extended
in works over MDLe [5]. Focused on hybrid control, these
approaches describe a control as a sequence of kinematic
state machines with a lifetime T that can be aborted by an
interrupt. Such an entity is called Atom or Modal Segment
and if we use the same name for our basic entities (since in
both cases they are ”minimal” entities composed to form
more complex ones), our definition of an Atom is very
different as exposed in section III.

Another noteworthy work is the Modelica modelling lan-
guage. Though Modelica primary concern is not control law
design, it presents relevant concepts that could be extended
to control design. Modelica is a language aimed at simpli-
fiying the exchange of models and model libraries used for



modelling complex systems [6]. It builds on the benefits of
object-oriented methodology and applies its principles for
general-purpose physical modelling thus allowing to model
complex systems by assembling components [6].

Modelica was then given the possibility of describing
controllers through the addition of several libraries such as
the ones presented in [7] and [8]. But Modelica approach is
not focused on control description and so does not encompass
issues related to its real-time implementation.

B. Modularity and software engineering

On the other hand, modularity has long been a major
concern for software engineers especially when designing
robot control architectures. It has led to the development of
several modular architectures such as CLARAty [9]. One can
also cite GenoM [10], an approach based on the generation of
modules in order to integrate control algorithms to allow their
composition and implementation with no precise information
about their content. One can also refer to robotic middlewares
such as ROS[11]. All these works aim at developing modular
control softwares and control modularity and requirements
are not explicitely adressed.

In [1], a layered architecture was also proposed to improve
modularity on sensing and actuating steps. Thus a Sensor
Fusion layer and an Actuator Fusion layer are added to sep-
arate concerns between the control design and the physical
system drivers. Moreover requirements and capabilities of the
system are expressed through the interface of the components
which encompasses data’s unit, value, valid range as well
as measurement uncertainties. However modularity of the
control layer is not taken into account.

In [12], design contracts based on temporal constraints
and delays are proposed to organize the interaction between
control and software engineers. These contracts reify the
necessary tradeoff between control and software engineers
when implementing a control. However the design process
in itself is not detailed.

C. Positioning

As we saw in previous subsections, no work tried to
propose a comprehensive approach encompassing the whole
control design process from its description to its implementa-
tion while putting a strong and effective emphasis on modu-
larity. Moreover, while most approaches such as [1] propose
a separation of concerns between control engineering and
software engineering, we are considering the integration of
both concerns throughout the design process aiming at a
better integration of a control on the software architecture
used to implement it.

Figure 1 presents an overview of the proposed methodol-
ogy. On the one hand of the process, the control engineers
describe the control from a composition of basic entities
called Atoms which encapsulate knowledge coming from
various sources. We will give a more precise description of
this part in sections III and IV.

On the other hand of the process, the software engineers
will implement the control on the Software and Hardware

architecture of the implementation target using the projection
of Atoms as software entities using a dedicated API. This
part will not be specifically adressed in this paper.

However the frontiers between these different domains are
rather porous since expertise of one domain specialist might
also be required in the other one.

Thus we introduce between them a ”Bridge” which, taking
advantage of the precise control description allowed by
Atoms, will allow us to study our control properties to check
if the control can be implemented on our target system. And
if it can, this study allows us to produce information that
will help the software engineer in his task. This part will be
presented in more details in section V.

Fig. 1. The ”Bridge” between control design and software implementation

III. ENCAPSULATING KNOWLEDGE: TOWARDS THE
ATOMS

As we want to describe the control of a robot in a
modular way, we have to determine precisely which criteria
our modular approach should satisfy in order to design the
entities which will be the base of our control design paradigm
in the most suitable way.

A. Knowledge in control engineering

First of all we should define what we mean by the term
knowledge.

We define as knowledge any relevant information allowing
the robot to perform its mission online as well as any
data that could be gathered to allow offline post mission
processing.

This knowledge can take heterogenous forms (parameters,
models, these models being maps, equations, ...). Moreover
knowledge comes from various sources. For instance control
engineers bring control equations, environment specialists
provide their models of the environment, robot manufacturer
knows the robot’s hardware specifications. Thus we would
like that control engineers who design the control equations
and software engineers who then implement them to be able
to handle this knowledge without being familiar with it.

Finally knowledge is only the expression of the current
set of information we know about a specific point
(this is particularly true for environment knowledge).



Thus knowledge is evolving as we gather data through
experiments or when theoretical breakthroughs are achieved.
We thus would like to be capable of making models evolve
without having to redesign our whole control laws.

We should then design the control no longer as a mono-
lithic block but as a composition of entities. These entities
shall encapsulate knowledge to allow it to be manipulated
easily without requiring information about their precise con-
tent and allow to modify their content without affecting
the surrounding entities. We are thus required to design a
self-sufficient interface to prevent the user from making any
assumptions that could lead to composition errors.

Finally these entities should also convey the information
that would be relevant for a software engineer to implement
this control within his software architecture on a given
hardware architecture while respecting the requirements from
the control engineer.
B. Atoms: the basic entity

Based on previous statements, we created an entity named
Atom to support our new control description paradigm. These
Atoms are mainly inspired from the object paradigm and are
in their structure similar to Modelica objects. Moreover we
paid a particular attention on their interface as it will be
discussed in the next subsection.

They are defined as:
Definition 1: An Atom is a minimal and

indivisible composable entity encapsulating a piece of
knowledge. An Atom, A, is represented as a 5-tuple:
A = (Name,Phy, Int, IntPar,Constraints)

The Inerface parameters, IntPar, will be defined in the
next subsection and Constraints will be presented in section
III-D.

The interface, Int, is what allows an Atom to be connected
to other Atoms. It is a 3-tuple (Ne,Pr, IS):
• The Needs (Ne): the set of knowledge required by the

Atom.
• The Products (Pr): the set of knowledge produced by

the Atom.
• The Internal Storages (IS): the set of knowledge stored

by Atoms (for data historization or integration of local
states for instance).

Any knowledge item belonging to one of these sets is
called an interface element. It is a pair (Name,Datatype).
The Datatype of an interface element i will be noted as D(i)
and will be defined more precisely in the next subsection.

The Physics, Phy, is the heart of the Atom. It is an
application defined as:

Phy : D(Ne1)× ...×D(NeDim(Ne))×D(IS1)× ...×D(ISDim(IS))

→ D(Pr1)× ...×D(PrDim(Pr))×D(IS1)× ...×D(ISDim(IS))
However there exists a specific kind of Atoms called

External Knowledge Atoms characterized by an undefined
Physics. They are used to explicit the elements that are not
directly part of the control composition but either produce
knowledge used by the control or use knowledge produced
by the control (for instance sensors, actuators, network links,

files to store data). Being implementation dependent, their
Physics is not defined and they will be projected as software
entities in a different way Atoms are.

We must note that the Atom paradigm, on the opposite of
other object-oriented approaches such as Modelica, doesn’t
integrate inheritance mechanisms.

C. Interface characterization : the Datatypes

As mentioned previously, the focus on the interface defi-
nition is crucial for allowing an efficient use of Atoms. Thus
the Datatype of the interface elements should convey all the
required information to use the Atom.

The Datatype is a 3-tuple (Type,Frame,Axis). It contains
the Type of the exchanged data which can be either a physical
quantity (i.e. Force, Speed, Acceleration and so on) or an
arithmetic type (i.e. Boolean, Unsigned Integer and so on).
While in other approaches such as [1] or [6], interfaces
express the unit of the data, in our approach, the Type
is an object that encapsulates the data and offers different
getters and setters (in the way they are defined in object
methodology) for the different units associated with the
quantity. Thus the element is specified in terms of quantity
and no longer in terms of unit.

But can we consider that knowing the Type is sufficient ?

Fig. 2. The simple example of a control Atom using sonar measurements

Let us consider the Figure 2 example where measurements
performed by a sonar are used by a control Atom. How can
we interpret the control designer’s intentions ? With no other
information the following assumptions are possible:
• The control is performed in sonar frame.
• The sonar measurements are converted to robot frame

in the sensor’s driver.
• The sonar measurements are converted to robot frame

in the control Atom.
• The sonar is mounted in such a way that sonar and robot

frames coincidate and thus no conversion is required.
Without more information we can’t sort out which one

is the right assumption. And when we have to perform this
kind of assumptions at numerous locations when reusing a
control description, there is little chance our implementation
will work and finding which error(s) were made on the
interpretation of the control would be a very difficult task.

This is why in addition to the type, Atom Datatypes also
encompass a Frame field used to indicate in which frame is
expressed the data. In the previous example, we indicate that
the Product of the sonar is expressed in the PROXIMET ER
frame while the Need of the control is expressed in the
ROBOT frame. Thus direct connexion between them is
impossible and we are forced to add an Atom in charge
of performing a frame shift from the PROXIMET ER frame
to the ROBOT frame as shown in Figure 3, explicitely
indicating the presence of a frame shift.

Similarly we add another field called Axis that is in charge
of indicating to which axis or plane of the Frame is related



Fig. 3. With the Atom Datatype, we are forced to express explicitely the
shift from PROXIMETER to ROBOT frame.

the data. With this approach, we are capable of detecting and
preventing misconnections between Atoms during the design
phase. To understand their importance let us consider the
Atom presented in Figure 4 which is in charge of controlling
the heading angle (Yaw) of a robot (either with a static
reference or for path following).

Its Physics contains the following equation:

acc = acc des+K1∗de+K2∗ e

where e is the Yaw error, de its derivative, acc des the
desired acceleration profile and acc the resulting acceleration
to be applied to the robot’s dynamic model.

Fig. 4. Interface of the Atom containing the Yaw control equation

It is clear that e, de, acc des and acc should relate to
the same Frame and Axis, if not the control’s behavior will
not be the expected one. The Atom’s Interface can then be
described as :

Ne = {(e, [Angle,WORLD,z]),

(de, [AngularSpeed,WORLD,z]),

(K1, [Frequency,NOFRAME,NOAXIS]),

(K2, [FrequencySquared,NOFRAME,NOAXIS]),

(acc des, [AngularAcceleration,WORLD,z])}

Pr = {(acc, [AngularAcceleration,WORLD,z])}

where the Axis is set to z to indicate that the angle revolves
around the z axis of the WORLD frame, NOFRAME and
NOAXIS indicate that this Need is not related to a particular
Frame and Axis and FrequencySquared is the quantity name
we have associated with the unit Hz2.

To end the description of interface, we must introduce
a final notion which is Interface Parameters. Indeed the
previous equation used to control the Yaw angle of our robot
could as well be used to control its Roll or its Pitch, the only
difference being the Axis related to the interface. We could
make three Atoms for those three situations but that would
obviously be a waste of time (and also a quite error-prone
process). Thus we introduce a parameter that will allow us to
indicate that the Axis may vary depending on how the Atom
is used. Hence in the previous interface, z can be replaced
by an Interface Parameter.

We can of course also define Interface Parameters on the
Frames. However defining Interface Parameters on Types is

not allowed in our approach to avoid the design of models
which would be described in a too abstract way.

D. Temporal constraints

We need to specify a given number of additional informa-
tion to be capable of efficiently conveying knowledge from
control description to its implementation.

These information, that we call Constraints, should allow
us to encompass both the requirements of the control engi-
neer and what the system can do, as described in [12].

We have chosen to focus on temporal constraints since
they are particularly relevant in our context. Indeed control
engineers study stability of their control in continuous time
through tools such as Lyapunov functions. However since
control is executed in a discrete-time environment, periods of
execution become detrimental to maintain the stability of the
controlled system (though current tools to determine these
periods are very limited). On the other hand, temporality is
instrumental for the software engineers to know with which
mechanisms of their architecture and middleware they
should wrap knowledge (for instance consider the difference
between synchronous and asynchrounous execution).
Moreover it is crucial for them to know how to set up the
architecture and especially at which period the synchronous
components should run.

Thus temporal constraints are applied both on the Needs
of the Atom and on its Physics. A Constraint is a pair
(value, properties) with the set of available properties de-
pending on the current Constraint value.

On the Physics, Constraints represent how the Physics
should be run temporally and thus how Products values are
updated. There exists three possible Constraint values:

• Constant: the Physics is run only once (initialization).
• Sporadic: we don’t know when the Physics will be

recomputed. It is associated with a property called Csphy .
This property refers to an Atom describing the condi-
tions under which the physics should run (an ”important
enough” change in a input value for instance). This
woud allow us, for instance, to describe controllers
based on Event-triggered control [13].

• Periodic: the Physics should run on a periodic basis. It is
associated with two properties called tcompmax represent-
ing the worst-case computation time of the Physics (this
value of course depends on the implementation target)
and Tphy which is the allowed or possible set of intervals
of periods for the Atom. For instance, in the case of a
control Atom, Tphy will correspond to the set of periods
for which we can guarantee that the controlled system
remains stable. On the other hand, for a sensor, Tphy
represents its set of update rates.

Constraints related to Atom Needs describe how the value
of the Needs should be updated through time to ensure
that computations performed in Physics always produce the
expected result and/or preserve system stability. There are 4
kinds of constraints:



• Constant: the Need’s value is set once and for all during
initialization.

• Sporadic: we don’t know when the Need’s value will
be updated.

• Coupled: the Need has to be updated every time the
Physics is runned. This induces a temporal coupling
between the two Atoms linked together.

• Periodic: the Need is updated periodically (indepen-
tently of Physics Constraints). It is associated with a
property TNeed specifying the allowed update periods.

The Constraint on a Need n, noted Ctr(n) and the Con-
straint on a Product (and hence on the associated Physics) p,
noted Ctr(p), are said compatible if they are both Constant,
both Sporadic, both Periodic or Coupled with Periodic. This
is noted Ctr(n)≡Ctr(p).

IV. A CONTROL LAW AS A COMPOSITION OF ATOMS

In the previous section, we introduced a minimal entity
called Atom. To describe a control, we now need to connect
them together.

A. The Molecules
Since Atoms are basic entities, it would be useful to allow

to have an entity allowing us to use groups of Atoms without
having to describe by hand their association every time we
need them. This is the role of Molecules defined as:

Definition 2: A Molecule is a composable entity whose
Physics is made of a composition of Atoms or Molecules. A
Molecule M is a 5-tuple:

M = (Name,Phy, Int, IntPar,Constraints)
with Phy = (E, l,L)
where E is the set of entities (Atoms or Molecules) used

in the Physics, l the set connections of these entities with
the interface of the Molecule and L the set of connections
between the entities.
B. Composition of atoms

The process of connecting Atoms and/or Molecules to-
gether through their interface is called Composition. It results
in creating a Composition of Atoms which is the atomic
description of a control law. However in order to use an
Atom or a Molecule in a Composition, we have to set
up how it will be used. This means we have to valuate
its Interface Parameters and its Constraints (though the
properties associated with the Constraints don’t have to be
since they may depend on the implementation target). This
process will be referred to as Instantiation and the resulting
elements as Instances.

A connection between a Product of an Instance and a
Need of another one is called a Link. Let n be a Need and
p a Product. The Link between them is noted L(n, p) and
we have : f an-in(n) = 1 and f an-out(p) = ∞.

Finally a valid Composition is defined as:
Definition 3: A Composition made of a set I of Instances

and a set L of Links, noted C = (I,L), is valid if and only if
Li is valid for all i.

Definition 4: A Link L(n, p) is valid if and only if
D(n) = D(p) and Ctr(n)≡Ctr(p).

V. THE ATOMS THROUGH EXAMPLE

In order to allow explanations and figures to remain simple
to explain and to display, we will focus on a quite simple
application: a heading angle control algorithm.

Figure 5 presents the legend that will be used in next
Figures. Moreover, the Links between Atoms have been
merged for the sake of readability of the figures.

Fig. 5. Legend used on Figures 7 to 9
A. Control Description

Thanks to the fine grain description allowed by atoms we
can represent a control description as a directed multigraph
known as Knowledge Association Graph.

Definition 1: A Knowledge Association Graph
GC = (V,E) is the directed multigraph associated with the

Composition C = (I,L) so that:
V = I and E = L

Such a graph is presented in Figure 7 to Figure 9. The
”Bridge” presented in Figure 1 then consists in manipulat-
ing this graph to structure the control and extract relevant
information for its implementation as shown in Figure 6.

Fig. 6. The Different steps linking control design and implementation

Our robot, the Jack, is equipped with an Inertial Mea-
surement Unit (IMU), a Loch Doppler and a Depth sensor.
From these sensors, we can reconstruct our robot’s state as
shown in Figure 7. Moreover, since the way the IMU and
Loch Doppler are mounted can influence the measurements,
we must perform Frame Shifts in order to express the mea-
surements in Robot’s body frame. In Figure 7, ExpertiseIMU
and ExpertiseLoch are External Knowledge Atoms used to
indicate how they are mounted (information coming from the
robot’s manufacturer). You must also note three Molecules



RobotSpeedsBody, RobotSpeedsWorld (an Instance of the
same Molecule as RobotSpeedsBody but with a different
Interface Parameter) and RobotPose. They are used as buffers
allowing to insulate the computation of the robot’s state
from the rest of the Composition. This is a design technique
ensuring a better modularity in control design since we
can change the way they are computed (by introducing
sensor fusion for instance or by using a SLAM algorithm to
compute robot’s pose) without having to reroute the Links
referring to Robot’s state thus simplifying the changes.

Before the Actuators, the Dynamic Model (Figure 8)
is used to turn the desired accelerations into forces and
torques expressed in the robot’s frame. Desired accelera-
tions coming from the control don’t have to be updated
at every iteration hence allowing us to introduce Periodic
Links (Figure 9) while robot’s speeds are required at every
computation to determine the damping and coupling terms
to compensate them thus inducing a temporal coupling with
Robot’s state reconstruction. The control (Figure 9) is based
on the DynamicAngleControl Atom presented in section III
which is used to control the heading angle. The related
ExpertiseYawControl allows to set the values of K1 and
K2 as well as set to 0 the desired acceleration and speed
(since reference is static). The Yaw error is computed by
a simple substractor and the desired angle is set by the
operator through a Network link whose value is updated
on a Sporadic basis. The error derivative is computed by
an AngularSpeed substractor. Moreover since the produced
acceleration is expressed in the WORLD frame, we have to
frame shift it to ROBOT frame in order for it to be used
by the Dynamic Model which expects its inputs in ROBOT
frame (Figure 9).

Finally we have introduced Separator Atoms between
Robot’s states and the control which uses them (Figure 9).
The Separator Atoms are used to introduce periodic Links
thus enforcing time-decoupling between the control Atoms
and the ones in charge of reconstructing robot’s state. Hence
both can run at optimum periods without being constrained
by the other part of the Composition.

Fig. 7. Our example described as a Knowledge Association Graph part 1

B. Constraints evaluation

We should now see how a Composition can be structured
so that we can merge the Constraints exerted on each
Instance into Constraints exerted on their Composition as
shown in Figure 6.

Fig. 8. Our example described as a Knowledge Association Graph part 2

Fig. 9. Our example described as a Knowledge Association Graph part 3

We begin by checking the control validity. Then in order
to simplify the Graph, we merge edges that connect the
same nodes with identical Constraints. Finally since our main
goal is to determine the period of executions of all periodic
Instances, we remove the nodes and edges corresponding to
non periodic Instances. The resulting Graph for our example
is shown in Figure 10.

Fig. 10. The Graph with only periodic Atoms and separated Compositions

We then use the periodic Links to separate the Composi-
tion that are temporally independent and thus their Contraints
will be studied independently.

From this we can determine the Constraints related to each
Composition through the Diffusion process (Figure 6).



Let us consider the second one, C2. We have:

tcompmax(C2) =
7

∑
i=1

tcompmax(Insti)+∆com (1)

where ∆com represents the communication time between
the Atoms of the Composition and Insti the set of Instances
included in the Composition.

We can then compute the set of possible execution periods
of the composition, Texe, through intersection of allowed
period sets of the different Instances:

Texe(C2) =
7⋂

i=1

Tphy(Insti)∩ [tcompmax(C2) ∞] (2)

We then valuate the different properties. If Texe of any
Compositions is an empty set then the control cannot be
implemented on the desired target. Otherwise one can choose
a period T 2 ⊂ Texe(C2) as the period of execution of all
Atoms in the Composition. Similarly we can choose T 1 ⊂
Texe(C1). This approach is for now an offline process but we
are considering its embedding in the application to cope with
potential changes in the temporality of some Atoms.

C. HIL setup presentation

Our HIL setup is constituted of the BeagleBone Black
[14] equipping our robot and which serves as main con-
troller. A Linux kernel 3.8.13 with a Debian distribution
and patched with Xenomai 2.6.3 is installed on the Bea-
gleBone. It embeds the ContrACT real-time middleware
developed at LIRMM [15] that allows to precisely configure
software components’ timing properties, which reveals very
complementary to the Atom approach. The controller is
connected to the simulation PC through a network link and
both communicate through an UDP protocol ensuring non
blocking communications. The simulator contains a model of
the robot, environment representation and sensors simulation
with noise.

D. Simulation Results

The following results have been obtained with T 1= 25ms,
T 2 = 50ms, K1 = 10.0Hz, K2 = 10.0Hz2 and ψdes = 75 ◦.
Figure 11 presents the heading angle evolution through time.
Maximal noise levels on the measurements of ψ and r are
noiseψ = 0.1rad and noiser = 0.05rad/s.

Fig. 11. Heading Angle vs setpoint with sensor noise

Figures 12 to 15 contain the execution time measurements
performed on the real-time loops in which Compositions
C1 and C2 have been implemented. We focused on the 20

first seconds of the simulation. There is no direct mapping
between Atoms and real-time loops but the precise process
is beyond the scope of this paper. C1 is implemented using
4 loops: Sensors and Actuators to replace the drivers of the
real components, MDynamic where the Dynamic model is
implemented and Navigation to reconstruct robot state. C2
is implemented by 2 loops: Control and Frameshift.

Figure 13 and Figure 15 present the overall execution
times associated with the Compositions. They integrate com-
putation and communication times between the real-time
loops. We neglected context switching times and these mea-
surements also do not integrate the applicative scheduler’s
computation times. These times remain inferior to execution
periods and the variability observed can be explained by
natural computation times variations, calls to non real-time
functions with important duration variations (especially the
ones used to log data) as well as possible preemptions by the
scheduler especially since we use other loops to communi-
cate with the simulator and to store data. They also illustrate
how hard it is to have a precise estimation of tcompmax

values for Atoms and Compositions hence underlining the
importance of HIL simulation in the design process.

Figure 12 and Figure 14 represent the evolution of delays
of the real-time loops start times compared to the theoretical
ones after the initial scheduling. For the execution i of a
control loop, the delay is computed as:

delayi = tstart thei − tstart reali (3)

These delays are influenced by computation durations
which impact start times of loops. Moreover since the
BeagleBone possesses only a single-core processor, potential
delays on a loop may also impact other loops start times.
However the delays remain very limited and, if some appear,
the scheduler manages deadlines to compensate for them.
The overall delays remain within admissible bounds due to
system imprecision as shown in Table I. The loop MDynamic
is the most affected one by delays because it is the most
computation time demanding loop and is very susceptible to
be impacted by other loops (since it needs data from most of
them). Thus it is the hardest one to manage for the scheduler
explaining delays superiors to the other loops.

Fig. 12. C1 delays to theoretical start times



Fig. 13. C1 execution durations

Fig. 14. C2 delays to theoretical start times

VI. CONCLUSION AND FUTURE WORK

We have presented a new control design paradigm based
on composable entities named Atoms and which benefits
from object-oriented principles in order to design modular
control laws.

We have illustrated it through an example described with
this paradigm and shown how a control can be represented as
a Knowledge Association Graph which is then manipulated
to determine the Constraints applied to our Compositions,
Constraints which are then used by software engineer to
parameterize the real-time software architecture.

Further work is currently being done on defining a new
entity called Alternative used to integrate concepts from
switching and hybrid control to our control description
methodology. Assessing the impact of the decomposition
of monolithic control in terms of performance is also an
important issue. Finally we would like to push forward the
notion of Knowledge Association Graph to try an see if any
further control properties could be studied from it as well as
which kinds of Constraints it would be relevant to add to the
already existing temporal constraints.

REFERENCES

[1] P. Ulbrich, F. Franzmann, C. Harkort, M. Hoffmann, T. Klaus,
A. Rebhan, and W. Schröder-Preikschat, “Taking control: Modular

Fig. 15. C2 execution durations

TABLE I
AVERAGE DELAYS OF LOOPS AND DESRIED PERIODS.

RT Loop Comp. Av. delay(ms) Period(ms) Error(%)
Sensors C1 -0.3583 25 1.433

Actuators C1 -0.1535 25 0.614
Navigation C1 -0.2808 25 1.123
MDynamic C1 -1.0358 25 4.143

Control C2 -0.4878 50 0.976
Frameshift C2 -0.0173 50 0.035

and adaptive robotics process control systems,” in Robotic and Sensors
Environments (ROSE), 2012 IEEE International Symposium on, 2012.

[2] B. Ropars, A. Lasbouygues, L. Lapierre, and D. Andreu, “Thrusters
dead-zones compensation for the actuation system of an underwater
vehicle,” in European Control Conference (ECC’15), 2015.

[3] J. M. Toibero, F. Roberti, F. A. Cheein, C. Soria, and R. Carelli,
“Stable switching control of wheeled mobile robots,” in Mobile Robots
Navigation, A. Barrera, Ed. InTech, 2010, ch. 19, pp. 379–400.

[4] R. W. Brockett, “On the computer control of movement,” in Pro-
ceedings of IEEE 1988 International Conference on Robotics and
Automation, 1988.

[5] D. Hristu-Varsakelis, P. Krishnaprasad, S. Andersson, F. Zhang, P. So-
dre, and L. D’Anna, “The MDLe Engine: a software tool for hybrid
motion control,” Center for Dynamics and Control of Smart Structures,
Tech. Rep. CDCSS TR 2000-8, 2000.

[6] H. Elmqvist, S. E. Mattsson, and M. Otter, “Modelica - the new
object-oriented modeling language,” in The 12th European Simulation
Multiconference (ESM), 1998.

[7] M. Baur, M. Otter, and B. Thiele, “Modelica libraries for linear control
systems,” in Proceedings of the 7th Modelica Conference, 2009.

[8] M. Bonvini and A. Leva, “A modelica library for industrial control
systems,” in Proceedings of the 9th Modelica Conference, 2012.

[9] R. Volpe, I. A. D. Nesnas, T. Estlin, D. Mutz, R. Petras, and H. Das,
“CLARAty: Coupled layer architecture for robotic autonomy,” NASA
- JET PROPULSION LABORATORY, Tech. Rep., 2000.

[10] A. Ceballos, L. D. Silva, M. Herrb, F. Ingrand, A. Mallet, A. Medina,
and M. Prieto, “GenoM as a robotics framework for planetary rover
surface operations,” in ASTRA, 2011.

[11] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs,
E. Berger, R. Wheeler, and A. Ng, “ROS: an open-source robot
operating system,” in ICRA workshop on Open-source Software, 2009.

[12] P. Derler, E. A. Lee, M. Torngren, and S. Tripakis, “Cyber-physical
system design contracts,” in ACM/IEEE 4th International Conference
on Cyber-Physical Systems (ICCPS ’13), 2013.

[13] W. Heemels, K. Johansson, and P. Tabuada, “An introduction to event-
triggered and self-triggered control,” in Decision and Control (CDC),
2012 IEEE 51st Annual Conference on, 2012.

[14] G. Coley, BeagleBone Black System Reference Manual - Revision C.1,
May 2014.

[15] R. Passama and D. Andreu, “ContrACT: a software environment
for developing control architecture.” in 6th National Conference on
Control Architectures of Robots, Grenoble, France, 2011.


