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Abstract

In this article we present a complete control framework which aims at making humanoid robots capable of carrying
objects together with humans. Firstly, we review collaborative carrying by creating a human-inspired taxonomy. From
this taxonomy, we identify the required primitive subtasks. Next, these are formulated into constrained optimization
problems for controlling the whole-body motion of a humanoid robot. The subtasks include two walking pattern
generators that account for physical collaboration, as well as posture and grasping controllers. Finally, we validate
our framework in a variety of collaborative human-robot carrying experiments, using HRP-4.
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1 Introduction

Robotics is moving towards human-centered systems,
i.e., research focusing on the different facets of human-
robot interaction. An important part of this is physical
interaction, particularly collaboration between humans
and robots. Several application areas can be envisioned
where robots that can collaborate in tasks will be useful.
For example, manufacturing and home assistance. In
this regard, humanoid robots provide many advantages
when working together with humans to perform various
tasks. Humans learn to physically collaborate with one
another from daily-life gathered experiences. Therefore, a
humanoid with a similar range of motion and sensing has
the potential to be an intuitive interface.

Carrying objects in collaboration with a human partner,
in various postures and situations, is a problem that is
rich, unexplored and has a high potential for practical
application. Several situations can be envisioned, for
instance, in large-scale manufacturing, construction, rescue,
and disaster sites. Therefore, in this paper, we focus on
this specific task and on its implementation on a humanoid
robot.

Early work on enabling human-humanoid carrying was
done by Yokoyama et al. (2003) in the Humanoid Robotics
Project (HRP), where the HRP-2P humanoid cooperates
with a human for a panel transportation task. This
system was envisioned to have possible future applications
in construction sites. Disregarding the legged aspect,
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even earlier work in this topic was done by Kosuge
et al. (2000). They used mobile manipulator robots
as in Khatib (1999), with wheels instead of legs for
locomotion. The trade-off is having an easier control (from
wheeled robotics technology) over more limited mobility
(i.e. requiring drivable terrain). Although the locomotion
mode is different, this pioneering work revealed one of
the main issues early on: coordinating the motion of
the mobile/floating base with the motion of the upper
body manipulator and the human intention (which is
often represented by the interaction force). More recent
examples of mobile manipulators doing collaborative
carrying are presented in Stiickler and Behnke (2011);
Lawitzky et al. (2010); Wang and Kosuge (2012). As
discussed in Lafaye et al. (2014), the problem of balance
of a wheeled manipulator robot can be very similar to
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the problem of balance of legged robots: even wheeled
robots can tilt and fall over Kim et al. (2016). However,
this aspect is noticeably missing in these earlier works,
where the coupling between locomotion and collaborative
manipulation was addressed only through kinematics and
compliance coupling. Note that in Wang and Kosuge
(2012), a linear inverted pendulum was used. Although this
model is often used in standalone balance and walking
control, this latter work extended its use by coupling
together two inverted pendulums in order to achieve
interactive dancing; although the robot used was balanced
by design. Neglecting balance was possible because these
robots had a very heavy and wide base, resulting in a low
Center of Mass, and going slowly enough that they could
very hardly loose balance. In contrast with these earlier
works, we tackle here the coupling of legged control and
balance with manipulation.

Going back to the task of collaborative carrying, it
has also been tested on small scale humanoid platforms.
For example, in Berger et al. (2013), the NAO humanoid
was used in collaborative tasks. However, its main focus
was on the use of internal sensors, in place of the hand
force/torque sensors commonly used in physical human-
robot interaction. NAO is also used in Bellaccini et al.
(2014), where the capture point, explained in Koolen et al.
(2012); Pratt et al. (2012), is used to guide walking.
However, this work is more related to Berger et al.
(2013) than the walking algorithm described here in the
sense that the IMU data is processed in order to set a
reference to NAO’s walking algorithm. Another closely
related demonstration can be found in McGill and Lee
(2011), where Darwin robots are shown carrying a stretcher.
However, the human element is removed. In these works
where only robots are used, the interest is turned to multi-
robot synchronization and communication. A similar work
is presented in Wu et al. (2016) with HRP-2 robots in
simulations. Both the multi-robot and human aspects have
been considered by Hirata and Kosuge (2000). Another
demonstration uses the example of lifting a table together
with NAO by Sheng et al. (2015). The interest was
in using learning algorithms to improve the interaction
behavior. The topic of improving and understanding
physical interaction of/with humans is a very broad and
active research field with demonstrations ranging from
industrial robot manipulators to humanoids. For example,
studying human-human haptic interactions and applying
it to human-robot teams was presented in Ikeura et al.
(1994); Reed and Peshkin (2008). The topic of roles
and role allocation is also very prevalent Mortl et al.
(2012). The aspect of mutual learning and adaptation has
also been studied Ikemoto et al. (2012). Synthesizing
controllers which take into account the uncertainty of
human behavior prediction was shown in Medina et al.
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(2015). The recognition of haptic interaction patterns from
a labeled dataset using supervised learning was presented
in Madan et al. (2015).

Within our research group, human-humanoid collabora-
tion is one of the main topics of interest. Various aspects of
this task have been studied: learning, multi-sensory integra-
tion, human intention recognition, and design of proactive
behaviors. More specifically, homotopy switching between
leader and follower controllers was theorized in Evrard and
Kheddar (2009a) and exemplified in Evrard and Kheddar
(2009b). After this, Bussy et al. (2012b) studied human-
human dyads, in order to understand how they cooperate
in a table carrying task. The main interest was to extract
physical interaction task-primitives and enhance impedance
control, with varying levels of proactivity. In Bussy et al.
(2012a), the idea of role switching and proactivity while
carrying an object and turning is also explored. Contrary to
these, this paper does not concentrate on high-level reason-
ing. Instead, we define all the pipeline that is required by
a humanoid to realize collaborative carrying. Specifically,
we embed a humanoid robot with a control framework that
allows it to achieve a large variety of human-humanoid
carrying tasks.

In our previous work Agravante et al. (2014), we
explored the area of multi-sensor integration for the
carrying task, by leveraging the framework of Bussy et al.
(2012a,b), which was designed for collaborative table
carrying. Although we successfully integrated vision and
haptic information, in a setup where both were necessary,
this study highlighted the limitations of the framework at
hand. Firstly, it was difficult to extend it to any posture
(and therefore objects), since the walking pattern generator
(WPG) from Herdt et al. (2010) and the Stack-of-Tasks
whole-body controller of Mansard et al. (2009) were
abstracted in a layered architecture which approximated the
CoM control using the waist frame on HRP-2. This means
postures which moved the CoM away from the waist frame
will fail (e.g. extending the arms or leaning with the chest).
Secondly, the WPG of Herdt et al. (2010) worked well for
stand-alone walking, but it was not designed for physical
interaction. Although our previous demonstrations were
shown to work well, this was because we limited the posture
such that the hands are always situated approximately near
the CoM. Simply situating the hands higher, while applying
the same force, caused the WPG to fail. This was found
while working on Agravante et al. (2013) which required
this postural change. This postural guideline and its basis
is explained in Agravante et al. (2016). With these in mind,
we worked on reformulating the entire framework, to have
a generic collaborative carrying algorithm for humanoid
robots.

Our contributions and enhancements of the collaborative
carrying framework are as follows.
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e We present a novel collaborative carrying taxonomy,
inspired by similar works on interaction such
as Jarrassé et al. (2012), but with a specific focus on
human-robot object transportation. For this, we take
a human-centered approach, and observe how human
teams collaboratively carry objects. The taxonomy
aims at defining several cases, with few descriptors.
Firstly, this allows us to focus on this limited set of
use-cases, since methods can be generalized to all
other cases. Secondly, we can define the primitive
subtasks, that are common to all use cases, and that
can all be formulated as optimization problems.

e Two pattern generators for walking under sustained
forces are designed, one for a leader and the other
one for a follower robot. Although these WPG
have been originally presented in Agravante et al.
(2016), further details on the modeling choices and
its integration with a whole-body control are given
here.

e Our whole-body framework, can simultaneously
account for both the carrying tasks and walking. We
show how collaborative carrying can be formulated
as an optimization problem.

e Generality, proven by a series of case studies on
a real-size humanoid robot, with a variety of robot
roles (leader/follower), grasp types (hand/body) and
carried objects (different shapes and sizes).

The rest of the paper is organized as follows.
Section 2 presents the collaborative carrying taxonomy,
along with the required primitive subtasks. The walking
pattern generators, accounting for physical interaction
are presented in Sect. 3. Next, Sect. 4 describes our
optimization framework for whole-body control (i.e., to
realize the primitive subtasks). After this, Sect. 5 presents
the experimental validation of our methods, and Sect. 6
concludes the paper.

2 Decomposing the task of collaborative
carrying

Collaborative carrying is a very complex task. To
understand and decompose it, we take inspiration from
how humans normally do it. This is done systematically
by creating a taxonomy. After classifying how humans
carry objects together, we generalize this task by designing
a Finite State Machine (FSM), which accounts for all
collaborative carrying subtasks. The end-goal is to have
states which are instances of optimization problems.

2.1 A taxonomy of collaborative carrying

We first focus on various carrying schemes between pairs
of human carriers. From this, we want to gain insight
on how to program a humanoid, to effectively take the
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role of one of the human partners in such tasks. Figure 1
shows several real examples of human-human collaborative
carrying (left side), with the corresponding simulations of
what we envision with a humanoid robot collaborator (right
side).

The figure shows the broadness and applicability of this
skill, and serves as a useful visualization for breaking
it down. Although the examples are very different, any
collaborative carrying scenario simply boils down to two
important components:

1. the object being carried, and

2. the agents (humans and/or humanoid robots) carrying
the object.

From these descriptors, we can already form a taxonomy.
However, it would not be useful because the object and
agents are generally determined a priori. That is, we
consider the problem of having already a team of agents,
whose goal is to move a specified object from one location
to another. We assume that neither the object nor the agent
composition can be changed afterwards. For this problem,
a components-based taxonomy is useless. Instead, we can
consider the relationship between the components:

1. object-agent relation (grasp types),
2. agent-agent relation (relative pose).
These two taxonomies are detailed in the next subsections.

2.1.1 Object-agent relation: grasp types

The object-agent relation is simply defined by how the
agents grasp the object —what we term as the grasp type. We
can observe that the same object can be grasped in different
ways, for example the cylinder in the simulations of Fig. 1
has three different instances of grasp type. There will also
be cases where the same grasp type is used for different
objects. In this work, we define two broad classes of grasp
types: hand grasps and body grasps.

Hand grasps are those with contact points located
uniquely on the hand/gripper. For example: the ones used to
carry the table, stretcher and bucket in Fig. 1. These grasps
are the subject of most of the existing robotics literature
on grasping. This subclass was elaborated into its own
taxonomy in Cutkosky (1989) which indicated the three
main aspects to be considered when choosing a grasp:

1. task to do with the object after grasping,
2. object to be grasped,
3. gripper to be used.

The first two points are well-defined in our problem
statement. The third one deserves further attention. In
fact, we can consider another class of grippers, which
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Figure 1. Collaborative carrying examples (left), with a human
avatar and a humanoid robot mimicking the corresponding
postures (right).

characterizes the second grasp type: body grasps. Indeed,
we define body grasps as those that utilize grasp contact
points on body parts not limited to the hand. For example,
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the arms, shoulder and torso can be used. In Fig. 1, this is
the case when carrying the steel pipe or wooden logs. We
observe that the object to be grasped requires the use of this
kind of grasp. Generally, to grasp large objects, or objects
without natural handles, the whole body can be used to
form a larger gripper. The weight and shape of these objects
can determine the design of the body grasp postures.

Finally, note that it is common for both agents to use the
same grasp type, as shown in Fig. 1. Although there is no
restriction for such, we can infer that if both agents have the
same capabilities, and if the object is symmetric, using the
same grasp type is the most logical outcome.

2.1.2 Agent-agent relation: relative pose

The agent-agent relation is not as straightforward as the
object-agent relation. Several possible descriptors fit this
category, all of which are useful to define a taxonomy:

e team composition (all humans, all robots, ratio in
mixed groups, etc.),

o team/agent skill level in task execution (e.g., expert,
novice),

e team coordination (leader/s, follower/s, equal collab-
orators),

e communication modalities (gesture or vision, speech
or audition, haptics),

e agents’ relative pose.

Firstly, team composition is not relevant in our problem
statement (since it is predefined). The four other descriptors
are all viable for creating a taxonomy. In this work,
we prefer a descriptor that allows a quick and easy
classification of unknown cases. For this, the agents’
relative pose has been chosen among the four. As such,
the relative pose between each pair of agents in the
carrying team is used. The relative pose itself has two
components that can be used independently: translation
and orientation. These are quantitative descriptors, that can
precisely characterize each collaborative carrying use-case.
However, using these quantities directly is too specific, thus
inappropriate for classifying the various scenarios. Instead,
meaningful range boundaries are needed for classification.
For this, we exploit another agent-agent relation descriptor:
the communication modality. In particular, we relate haptic
communication to relative translation, and vision to relative
orientation.

The translation/distance between the agents can simply
be classified as ‘near’ or ‘far’. A meaningful range
boundary can be defined by considering knowledge from
peripersonal space in neuroscience, or simply if direct
haptic communication (touch) is possible or not, so that we
define:

e near: other agent is physically reachable,
e far: other agent is out of reach.
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For the orientation, we can define meaningful boundaries
by considering vision, more precisely the Field Of View
(FOV). To describe the orientation range, let us first define
the nominal FOV as the FOV when the agent is in a neutral
resting position. The extended FOV is defined as the FOV
of the agent as it looks around, by moving its body to some
extent (i.e., without changing stance). With this, we can
classify agents as facing:

e front: other agent is in the nominal FOV,

e side: other agent is not in the nominal FOV, but within
the extended FOV,

e back: other agent is not in the extended FOV.

These descriptors should be applied to each agent relative to
the other. Considering a team with only two agents, all nine
permutations are shown in Table 1, where the occurence
frequency in real-world cases is also given. Note that the
table is symmetric with respect to the diagonal (e.g., front-
side is equivalent to side-front). Thus, there are six classes
in the taxonomy that considers only the agents’ relative
orientations.

‘ Agent orientation ‘ Front ‘ Side ‘ Back ‘
Front Common | Rare Common
Side Rare Common | Rare
Back Common | Rare Extremely Rare

Table 1. Table of relative orientations for 2 carrying agents.

2.1.3 Applying the taxonomy

All six scenarios of Fig. | can be classified according to the
proposed taxonomy. Each can be specified according to the
three criteria: relative translation, relative orientation, and
grasp type. The result is:

(a) table: far, front-front, hand grasp;

(b) pipe-shoulder: far, front-back, body grasp;
(c) stretcher: far, front-back, hand grasp;

(d) bucket: near, side-side, hand grasp;

(e) pipe-side: far, front-back, body grasp;

(f) pipe-front: far, side-side, body grasp.

This shows the ease of classifying given cases with
the proposed taxonomy. But more importantly, we are
concerned with the practical implications of using the
taxonomy to program a humanoid robot. Directly, we note
that relative pose and grasp type describe the goal of the
humanoid when going towards the object and grasping
it. However, the relative pose has a deeper meaning.
As already mentioned in subsection 2.1.2, its classes are
related to sensing, and to the availability of communication
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modalities (vision and haptic). Therefore, the required
pose of the robot with respect to the human will largely
affect what type of sensors are needed, and the best way
to use them. For instance, consider a humanoid robot
equipped with tactile sensing on the arms and/or shoulders.
In a near relative translation scenario, these can be used
for communication (e.g., tapping the arm as a signal to
start/stop walking). On the contrary, far relative translation
scenarios immediately disallow this possibility. For vision,
a front-facing robot has the possibility to read the human
gestures and body language, making it a better follower.
Instead, a back-facing robot will be more aware of the
surrounding environment, making it a better leader (e.g.,
this setup can be preferred for visual navigation).

2.2 Collaborative carrying as a Finite State
Machine

The taxonomy highlighted the variations of collaborative
carrying resulting in specific cases. Differently, this
subsection will focus on the core similarities of the task. In
order to program a robot, we decompose complex tasks into
subtasks that will be easier to program. Formally, we use a
Finite State Machine (FSM) to describe the whole task with
subtasks as states. A useful decomposition is one where
the states can be easily written as optimization problems
for Sect. 4. A guideline for doing this is to first consider
the state transitions. These must allow a smooth change
from one optimization problem to the next. An easy way
to do this is to identify brief periods where the motion is
minimal. During these periods, the robot is said to be in
a quasi-static state. More formally, the dynamic effects are
small enough to be disregarded. Another important signifier
of state transitions are the discrete changes in the robot
contact state. Considering these, a first decomposition of the
collaborative carrying task into an FSM is shown by Fig. 2.

lift the
object

walk to
object

grasp the
object

carry the place the release the
object object object
together ) d

Figure 2. FSM for collaborative carrying.

Notice that there is a natural progression between
states, where the robot is quasi-static during transitions.
Furthermore, the conditions for transitioning between states
are determined by thresholds on relevant sensed variables
(for example, the distance between robot and object, or the
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force applied to the grasped object). This decomposition
also embeds the taxonomy components as targets:

e the agents’ relative pose determines the target stance
for the robot to reach when walking to the object,

o the grasp type determines the target posture (for body
grasps) or the gripper pose (for hand grasps).

Although this FSM has simple subtasks, it is still not easy to
translate some subtasks into optimization problems. Thus,
we design a more detailed version of this FSM shown in
Fig. 3, with the numbers indicating the transition order in
normal carrying.

Figure 3. Detailed FSM for collaborative carrying, with each
state/subtask corresponding to an optimization problem.

During walking, the contact transitions of the feet occur
in a predictable pattern that can be used to define the
walking states: left/right single support, and double support
(indicated respectively as LSS/RSS and DS in Fig. 3).
To decompose grasping, we need a pregrasp posture, i.e.,
a waypoint between grasping and the other states. The
next state, squeeze, simply moves the robot so that the
predefined contacts between the robot and object are made.
Figure 4 shows the pregrasp and squeezing postures for two
body grasps defined by the frames shown. Force or tactile
sensors, when available, can help improve the execution
of this state, and trigger the transition to the next state.
The hold state simply consists in maintaining the contacts
between the robot and the object. Note, however, that this
state must be active during the carrying walk. Finally,
the release state, is simply the inverse motion of squeeze.
Without loss of generality, we consider subtasks pregrasp,
squeeze, and release to be realized by the robot as it stands
still, in double support.

Each state of the FSM shown in Fig. 3 will be formalized
as a separate optimization problem. In the next subsection,
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Figure 4. Two examples of “body grasps”: pregrasp (left) and
squeeze (right) postures.

we outline the general formulation that has been used for
all the states. This formulation is instantiated for the walk,
in Sect. 3, and for all other states, in Sect. 4. Moreover, note
that the FSM also encompasses additional tasks to deal with
practical implementation of the main ones, see examples
in Vaillant et al. (2016).

2.3 States as optimization problems

All the aforementioned states/subtasks in collaborative
carrying require the synthesis of robot low-level motor
commands (usually in joint-space) from the high-level
task goals (generally defined in some operational space).
Furthermore, multiple goals with varying levels of
importance are to be considered. The optimization-based
approaches for whole-body control have shown to be
effective in Mansard et al. (2009); Bouyarmane and
Kheddar (2011); Escande et al. (2014a); Herzog et al.
(2015); Vaillant et al. (2016). In contrast with these works,
we concentrate on the implementation of collaborative
carrying. More precisely, how each state of the previously
designed FSM (Fig. 3) can be written as an optimization
problem.

Generally, we seek to find the robot control input,
represented by the optimization argument x, such that:

argmin
X

subject to

collection of objective functions,

robot constraints, )
environment constraints,

task constraints.

The formalism chosen here is largely based on Bou-
yarmane and Kheddar (2011) and on Vaillant et al. (2016).
That is, we consider a weighted quadratic programming
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formulation which allows to use the Euclidean or L? norm
to define the desired task functions. Specifically, we design
the total objective function as a weighted sum of objectives:

> wifi(x), )

where each objective function f;(x) is written in the basic
quadratic programming (QP) form:

flx) = %XTquX + c;;x. 3)
Standard QP solvers can be used to obtain the optimal value
of x for this problem. The reference text of Nocedal and
Wright (2000) can be used for more information regarding
this. Furthermore, it is well known that objectives expressed
in linear form:

Alsx = bls (4)

can also be incorporated in a QP, by using:

fx)

1
5 [[Awx — bISH2
2
)

1
i(AlsX —by) " (Ax — byy).

We also consider all constraints to be expressed as linear
inequalities (or equalities, without loss of generality):

A x < b.. (6)

Before instantiating this formulation for the various
optimization problems, we must highlight a fundamental
part of the FSM —walking together with the human, while
holding the object. We consider this as a critical part, since
other subtasks have regularly been demonstrated separately
in robotics literature. That is: walking without additional
constraints, contact-free motion of the upper body (servoing
to a pregrasp posture), and grasping, are all regular topics
in state-of-the-art robotics, each with tractable solutions
for many common cases. The next section highlights the
need for a redesigned walking pattern generator, that fits the
subtask of walking with a human to transport an object. This
walking pattern generator will also be expressed through
the mentioned QP formulation. The output of this high-level
QP will be fed to a lower-level QP which controls the whole
robot body. The high-level QP for walking is detailed next
in Sect. 3 and the low-level QP in Sect. 4.

3 Walking designed for physical
collaboration

In the robotics literature, walking has historically been

treated separately from manipulation. This has resulted in

a good understanding of the underlying principles behind
walking and locomotion in general. Although this is a
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good starting point, both manipulation and locomotion
need to be consistent with each other, particularly when
physical collaboration is necessary. Eventually, both need
to be thought of as parts of the whole-body control
problem (discussed in the next section). In this section,
we start by revisiting the modeling of walking pattern
generators (WPG), and eventually redesign these with
physical collaboration in mind. The main concepts of this
section were published in Agravante et al. (2016). Here, we
recall the main points, namely: adding the external wrench
into the model, and designing the objectives and constraints
based on this wrench. Additionally, we better specify the
usage of the new WPGs in the collaborative carrying task.

3.1 Modeling

Before anything else, a choice must be made on how
to formulate the reduced dynamic model of the robot to
consider physical interaction. Three possibilities for this are
proposed in Audren et al. (2014). The differences can be
thought of as moving the abstraction layer of the physical
interaction. The proposed models are:

1. a model with full knowledge of the object (and/or
human),

2. a model that considers the effects of the object
(and/or human) on the robot’s contact locations
and linear forces, requiring additional grasp stability
constraints,

3. a model that considers the effects of the object
(and/or human) as external wrenches applied on the
robot CoM.

In Audren et al. (2014), the first option was chosen and
demonstrated in a simulation of a humanoid robot carrying
a box in multi-contact. The model showed good results
in simulation, and can be implemented on a real robot,
by using the hand force sensors to estimate the object’s
dynamics beforehand. If this model is to be used in the
context of collaborative carrying, it must consider the
robot, human and object as a single system. The CoM of
this system has contributions from the three subsystems.
Also, there can be four (2 for the robot, 2 for the
human) possible foot contacts, similar to a quadruped.
This model can be used in simulation to control only the
robot, while having perfect knowledge of each subsystem
(human, robot, object). However, for real application, it
requires important processing and sensing, and may not
even be practically realizable. This makes it unusable for
our purpose. The second option corresponds to a non-
linear model. We have chosen to avoid this complexity, as
motivated in Audren et al. (2014). This leaves us with the
third option, which is chosen because of its simplicity in
terms of implementation on a real robot, considering its
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application to human-robot interaction, in general, and to
collaborative carrying, in particular.

The development of this reduced model is inspired
by Wieber et al. (2015), and detailed to some extent
in Agravante et al. (2016). We separate the foot/ground
contact forces from other interaction contact forces that
are denoted by hey = [£}, nl]T € RS. This represents
the external wrench (from the carried object weight and
from the human collaborator), and is expressed in a fixed
orientation frame placed on the Center of Mass, ¢ (CoM).
As is common in the literature Kajita et al. (2003); Herdt
et al. (2010), we aim at keeping the center of pressure
z (also known as Zero Moment Point, ZMP) within the
support polygon (i.e., the convex hull of the feet contact
points). We assume that the robot is walking on a flat
horizontal ground, at a constant height (¢”), and that the
angular momentum is constant. Then, the Newton Euler
equations yield the following relationship between CoM
and ZMP:

I
75y — &Y _ &y
R
9"~ m

0 () (%)
-1 0 mg _fexl mg _fext
(7

with m the robot mass and g the gravity vector. In the
absence of an external wrench, this becomes:

o= (), ®)
gZ

which is the standard expression found in the literature.
Guidelines on how to reduce the effects of an external
wrench can be inferred from (7): a heavier robot (more

massive), lower CoM height, external force aligned with the
CoM to reduce the corresponding torque.

3.2 Walking optimization formulation

As detailed in Agravante et al. (2016), we use a triple-
integrator system for the CoM, assuming that its trajectory
is differentiable three times. The model input is then the
CoM jerk. The model output is defined using the ZMP
formulation in (7). Next, we apply model predictive control
methodology on this system such that we now have future
states, controls, and outputs represented. Furthermore, we
express the ZMP in a local foot coordinate to expose the
foot landing positions such that we can define:

x = N 7 ©)

r

where U1 and ¥ are the concatenation, over the preview
horizon, respectively of the control inputs €, and of future
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foot landing positions, expressed in a local frame placed at
the preceding foot pose. Vector x will be the argument of
the optimization problem (1). The future states and outputs
can be written as:

Cc =Sx + s, (10)
Z =S,Xx+s,.

Using (10), we can now design various WPGs, that
are suited to different types of physical interaction. In
particular, we revisit the leader and follower modalities,
designed in Bussy et al. (2012a). We then show how each
one drastically changes the way the external wrench is
used in the WPG. Before that, we list some objectives and
constraints that are common to the formulations:

e The control input (i.e., the CoM jerk) is minimized
to smoothen the CoM trajectory. This is done via the
objective function:

- 2
la*=|[x o]x|". (11)

e The distance between the ZMP and the foot center
must be minimized to increase the stability margin
(since unknown disturbances could push the ZMP
away from the target). This objective function is:

121" = 11Sx + s, (12)

e The ZMP should be maintained within the support

polygon (with security margins) using the constraint:

7 <% <7%. (13)
Using (10) to expose the argument, it becomes:
7—5,<S,x<%Z-—s,. (14)
e The feet positions should be constrained:
F<¥<F. (15)

Since T is part of the argument, this can be written as:

F<[0 Ix<F (16)
Note that objectives (11), (12) are expressed as (5), and
constraints (14), (16) as (6). Notations z and T means
respectively lower and upper bounds of whatever = means.

Apart from the mentioned constraints and objectives
that are common, the leader and follower WPG are each
characterized by a specific formulation of the objective
function that controls the CoM. These are given in the
remainder of this subsection.
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3.2.1 Walking pattern generator for a follower robot
A follower robot acts based on the leader’s intention.
In a collaborative carrying situation, this is represented
by the external wrench applied by the carrying partner.
Usually, moving the object together implies only a planar
motion. This intention is then only f.;}. Hence, a follower
WPG must generate motions that are a function of this.
Previous works Agravante et al. (2014); Bussy et al. (2012a)
have used a damping control by providing a reference
CoM velocity to the WPG which is proportional to the
external force. We extend this to perform more complex
behaviors, by defining the full impedance model, with
diagonal matrices M, B and K containing the virtual mass,
damping and stiffness parameters:

£ = Mé™Y + Be™Y + Ke™v.

ext

A7)

Recalling that state ¢ contains CoM accelerations, veloc-
ities and positions, one can simply define an appropriate
impedance parameter matrix Gypk. An appropriate selec-
tion matrix Sy is also needed to select only the fX,, and f2,
components, so that the controller will aim at minimizing:

-2 ~112
HGm@fSﬂ‘:HGmﬁx+GmﬁfSﬂ‘.O&
Note that by injecting (10), we could write this objective

in the form (5). The optimization problem can be rewritten,
including objectives (11), (12), and constraints (13), (15):

. ~ |2 ~ 12 o112
argmin m”cmw_sﬂ\+wﬁm\+wﬂﬂ

subjectto Z <z <

[ N

E<F<T

19
Notice that the future wrench values are required in f.
This is an important aspect in MPC: a model is needed
to do a prediction, on which to base the ~control decision.
In this case, the prediction model for f coincides with
the concept of proactive behaviors. Having a good model
of human intention can be difficult (if at all possible).
But in such MPC schemes, the prediction is reevaluated
at each sampling time, so it does not need to be very
precise in the far future. In this case, we use a simplistic
model for predicting the future interaction force, a constant
value such that fy =... =1, =f,, with f; the current
wrench measure (obtained from a force/torque sensor). Of
course, any sophistication of the force prediction, e.g. using
machine learning from experience or advanced estimation
techniques, is also possible. Yet, this prediction model is
continuously updated at each sampling period with the
current reading of the force sensors. As always in control,
the most important element here is that there is feedback
of the current state of the system. This whole approach
is validated experimentally in Sect. 5. Also note that s,
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requires f%,. For the collaborative carrying task, this is
the contribution to carrying the object weight. This comes
from (7) where we can infer that a more negative fZ%,
(i.e., carrying a heavier object) actually helps to reject the
external wrench effects. A simulation showing this appears

in Sect. 5.

3.2.2 Walking pattern generator for a leader robot

For leading, a clear intention is necessary. We propose two
ways for formulating the leader intention in the WPG. The
first is to have the robot track a reference trajectory, known
beforehand. For the collaborative carrying task, this could
be generated by knowing where the object is and where it
will be transported to. A classical way to track a trajectory
in operational space Chung et al. (2008) is:

wTYy _ aT,Y .,y
c - cref + B(Cref

— &) 4 K(c%Y — c™Y),

ref (20)
where B and K are diagonal gain matrices with positive
elements. This can be reformulated as an objective function,
with an appropriate gain matrix, similar to that of the
follower:

|Gk (Eret — €)]]> = ||~ GekSx — Giis + Grret” -
2D

Again, with (10), we could write this objective in the
form (5). A second option consists in including the external
wrench in the optimization argument, expanding it as:
x=[a' #7 f7]T. Although the form of (10) is kept, the
matrices S and S, and vector s, are different as explicitly
shown in Agravante et al. (2016). Hence, the derivation of
objectives and constraints is analogous. The idea of this
formulation is that placing a part of the external wrench in
the argument might allow the robot to use the interaction to
balance itself. For safety, the applied wrench may need to
be constrained and/or minimized.

Using both options, along with objectives (11), (12), and
constraints (13), (15), the optimization problem becomes:

Wi || Gk (ret — €)1 + wy |||

argmin
X
) 2
+ w3 ||Z]|" 4+ wa HfH
. . _ o _ 3 22
subjectto z2<zZ<Z (22)
F<F<F
f<f<f

Since f is part of the argument, it is trivial to see that all
objective functions and all constraints are of the forms (5)
and (6), respectively. Note that in the absence of an external
wrench and using only velocities in the tracking task results
in the standard WPG from Agravante et al. (2016).
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3.3 Swing foot trajectories

The value of T resulting from either of the two WPG gives
only the future foot landing positions, i.e., the footprints, in
the preceding foot frame. However, the trajectory between
footprints must also be generated and provided to the
whole-body controller. Since there is no flight phase in
walking (both feet never leave the ground together), the foot
that is off the ground is referred to as the swing foot without
ambiguity. In this subsection, we explain how its trajectory
is designed, using cubic polynomials. We denote it by
Tswdes (f), expressed in the preceding foot frame. Without
loss of generality, the time is reset at each step, and starts
when the foot leaves the ground.

The total duration of the swing foot trajectory tgws
is predetermined, and the trajectory is designed to start
and end in a resting state: Tgydes(0) = Fswdes(tswi) = O.
Furthermore, the initial and final values are known: for =
and y they correspond to r.>), the current foot location
and .. which is generated by the WPG within ¥. z is
null for both. The z component can be parametrized by
step height ry, > 0. This will be attained half way through:
T'swdes (tswf/2) = Tsth-

Given these boundary conditions, the z and y
components of the swing foot trajectory are given by:

3
z,Y — Y z,Y T,Y\ 42
Tswdes (t) = Tswo + ) (Tswf - rswo)t -
sw2f (23)
z,y xz,y 3
+3 (rswf - rst) [
swi

For the z component, we need a concatenation of two cubic
polynomials:

rszwdes (t) =

1t22?”snh t2 _ 1S;sm t3 t< t>2wf’
Tsts}:lf_ 1227"5111 s(v;;_ M)Q + 16§"sm (t _ M)B t> tswr
to 2 tour 2 2
(24)

Figure 5 shows an example of the swing foot moving along
the generated trajectory.

e fas| oS

Figure 5. Parameterized swing foot trajectory.
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4 Whole-body control for collaborative
carrying

The last two sections provided important building blocks
for the collaborative carrying task. This section aims at
wrapping everything together into coordinated whole-body
motions. For instance, to generate the described walks, the
WPG results: ¢, ¥, and ry, (respectively: CoM trajectory,
footprints, and swing foot trajectory) must be mapped to
robot joint commands, q. To explain how this is done, we
start by recalling the base components of the optimization-
based whole-body control framework developed in our
research group Vaillant et al. (2016). Next, some recurrent
objectives and constraints are presented. Finally, we explain
how all these components are assembled, to formulate all
the collaborative carrying subtasks in the FSM of Fig. 3.

4.1  Whole-body control as an optimization

problem

To start detailing our whole-body control framework, we
define the optimization argument in (1) as:

o fi.

Here, q defines the robot configuration, i.e. the joint posi-
tions along with the floating-base representation Feather-
stone (2008), and A is the vector of linearized friction cone
base weights. This is defined such that all contact forces
stacked in a column vector correspond to:

(25)

fcon = Kfc)\, (26)
with K. € R3™*"™ 2 matrix of generators for linearizing
the friction cone (n is the number of contact points, and m
the number of generators chosen for the linearization). Note
that we use a distributed contact model without torque. For
example, the foot contacting with a flat floor is represented
by four contact points: one at each corner, each with its own
contact force.
Next, we can rewrite (1) more specifically as:
argmin
X

Z wifi(x) + wposfpos(X7 qdes) + wx fa (X)

subject to  ApyseX < bpage
lAspecX < bspec
27
We will refer to this as the base formulation, since it
only specifies the most essential parts of the optimization
problem which are always used. The first term in the
objective functions represents the collection of objectives
fi specific to the subtask, that will be described later
on, in Sect. 4.3. The two other objective functions are
detailed in Sect. 4.1.1 while the base constraints are
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detailed in Sect. 4.1.2. The last constraint symbolizes
specific constraints, which are discussed for each subtask
in Sect. 4.3.

4.1.1 Base objective functions
The first base objective function is termed the posture
task, and represented as fpos. This corresponds to joint
positioning at a given posture qges, With null qges and Qges,
and can be written as:
1 s w2
fpos(xa qdes) = 5 ||K(qdes - 01) - Bq - Q|| (28)
with K and B square diagonal gain matrices with positive
values. This objective is of the form (5). The goal of the
posture task is to have a default configuration of each
joint. This implies that its corresponding weight normally
has a relatively low value, to avoid conflicting with more
important tasks.
The second base objective consists in minimizing || A[*:
2 2
) = IAIF = [|[o 1) x| (29)
This objective function, in conjunction with the posture
task, ensures that the complete Qg matrix is positive
definite, allowing an easier solution to the QP.

4.1.2 Base constraints
There are four constraints in the base formulation of our
optimization problem (27), namely:
A>0
T<T

gS

<7
< (30)

r=s
IA
lolppe]
IA
2

These are active in all states of the collaborative carrying
FSM and we refer to them with the inequality:

ApaseX < bpages 31

where the various constraints, with their lower and upper
limits, are reformulated and stacked appropriately.

The first one ensures that the contact forces are inside the
friction cone (no slipping). It can be formulated as:

0 I]x>0. (32)

The second constraint in (30) places bounds on the
actuator torques 7. These can be obtained from the robot
dynamic equation:

-
- J confcona

T=Hq+Cq+1g (33)

with H and C respectively the inertia and Corio-
lis/centrifugal terms, Tg the torques due to gravity, Jeon
the stacked contact point Jacobian matrices, and f.,, the
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stacked vector of contact forces from (26). The constraint
can then be rewritten:
T-Cq—71g < [H —J;':)anC] x<T-Cq—Tg.
(34)
The third and fourth constraints in (30) bound joint
positions and velocities. The joint accelerations can be
exposed by using numerical integration at each time interval
k:

k1 =Gk + AcAt,

. 1. (35
Qi+1 =0k + AL + §QkAt2~
With (35), these constraints become:
gfq< [IAt 0]x <q-—4q,
(36)

q—-q—-qAt < - [IAt2 0]x <q-q-—gAt

Notice that all the robot limitations must be known.
Stacking (32), (34) and (36), yields the explicit expressions
of Apase, and by, which are omitted here.

4.2 Reusable objectives and constraints

Several objectives and constraints are recurrent in the FSM,
and can be written in a re-usable form. For this, let us first
define a task vector in the operational space e (e.g., the pose
of any frame on the robot body or on the carried object), and
the function mapping it to robot joint space:

e = fe(q). (37

Assuming f, is twice differentiable:
€ =Jeq, (38)
& =Jedi + Jeq, (39)

with J the task Jacobian. To servo e with the tracking task
objective in Chung et al. (2008):

ftr(xa edes(t)) =

(40)
5 Ko -

e) + B<édes - e) + (édes - e)||2 3
where eg.s(t) denotes the desired task trajectory (i.e., it
includes eges, €4es and €g4e5), and K and B are square
diagonal gain matrices with positive values. These can be
tuned by considering the task dynamics equivalent to those
of a mass-spring-damper system with unit mass. Typically,
to obtain a critically damped system, only K needs to be
tuned, with B = 2vK. Using (38) and (39), (40) can be
written as (5). Formulation (40) is so generic, that several
tasks can use it, e.g.: any physical point on the robot, the
center of mass, joint positions.
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A particular case of the tracking task is the ser-
point objective, where only the reference value is
considered, while the reference velocity and acceleration
are approximated as null:

1 L2
fp(X, €des) = 5 IK(eqs —e) —Beée —&||”. (41)
This formulation was used in Bouyarmane and Kheddar
(2011). An important example of the set-point task is
the aforementioned posture task (28). This is obtained by
setting e = q.

Apart from servoing a body part, another common goal is
to keep a certain body part motionless. A common example
is to keep the feet in contact with the ground. To this end, we
define a contact constraint as in Bouyarmane and Kheddar
(2011), by nullifying the acceleration of a robot point that
is in contact with the environment:

8=0. (42)

Using (39), it can be written as the equality constraint:

[Je 0]x=-Jeq. 43)
Furthermore, some DOF can be released by adding a
selection matrix, as in Vaillant et al. (2016). The interested
reader may also refer to the same reference for some
improvements on handling the numerical stability of this
constraint.

Lastly, it is possible to add collision avoidance as
in Vaillant et al. (2016), by computing the distances using
the approach explained in Escande et al. (2014b). This is
generally used to avoid self-collisions between robot body
parts, and is not essential to the discussion of this paper. The
interested reader is referred to these two works.

4.3 Objectives and constraints of each
subtask

Since the base objectives and constraints, that are common
to all states of the collaborative carrying FSM, have been
explained above, we only detail those specific to each
subtask. An important aspect concerns the control of the
CoM. In walking states (DS, RSS and LSS), this is servoed
using a tracking task objective to follow the CoM trajectory
output by the WPG (leader or follower). For all the other
subtasks, we use a set-point objective to pull the CoM
towards the middle of the two feet. This objective always
has a high weight such that it approximates a quasi-static
balancing constraint.

4.3.1 Double support

During the Double Support (DS) states, both feet: rief;, Trignt,
must maintain contact with the ground, via contact
constraints. The CoM is servoed with a trajectory cges(t),
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obtained from the standard WPG of Sect. 3. A set-point
torso orientation (characterized by the desired value of the
torso frame’s orientation, O.s) is also added to have an
upright posture while walking. In summary, the whole-body
optimization problem is:

argmin wcflr (X7 Cdes (t)) + wtsfsp (X7 0tsdes)+
Wpos fpos (Xv qdes) + wx f)\ (X)a

subjectto ¥ = 0, (44)
'f'right =0,

ApaseX < bpgge-

4.3.2 Right/left single supports

Single support states (RSS or LSS) occur during walking in
between two consecutive double support states. As such,
they retain the CoM trajectory tracking task from the
standard WPG, as well as the set-point torso orientation
task. Differently from DS, only one foot (support) is
constrained while the other (swing) is servoed in the air.
The generation of the swing foot trajectory: rwges(t) was
explained in Sect. 3.3, and is followed using a tracking task
objective. Hence, the optimization problem is:

argmin wcftI’(X; Cdes(t)) + wSWftr(X7 rswdes(t))+
x
wtsfsp (Xa etsdes) + wposfpos (Xa qdes)+
U)}\f)\ (X)a
subject to  Fgyp = 0,

Abasex < bbase~
45

4.3.3 Pregrasping and releasing

The pregrasp and release states have the same formulation,
the only difference being their preceding state. Thus we
present only the pregrasp. The pregrasp state is a waypoint
state that eases the grasping by targeting preplanned grasp
point locations. The synthesis of these locations can be
formalized either as a stance generation problem Brossette
et al. (2015), or by considering caging Rodriguez et al.
(2012). In this work, we assume that a set of stable grasp
point locations is given, along with the corresponding
pregrasp stance, according to the chosen instance of the
taxonomy (grasp type, see Sect. 2.1.1). For instance, we
design the body grasps shown in Fig. 4 for the pipe-
shoulder and pipe-front examples of Fig. 1. In those cases,
we parametrize the grasp via the contact frames shown.
More generally, we define n operational frames on the
robot body. The pose of each one, denoted by: pg,; (i =
1...m), should be servoed to a desired pose: Pgrges,i- This
corresponds to n set-point objectives (41). Note, from
Fig. 3, that pre-grasp and release are only performed when
the robot is standing, in double support. Thus, both foot
contact constraints are added as well as the set point task on
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the CoM that is needed to maintain balance. In summary,
the pregrasp and releasing optimization problems can both
be formulated as:

n
Z wgr,ifsp,i(xa Perdes, i) + wcfsp (X7 Cdes)+

argmin
x i=1
Whos fpos (X, Qdes) + wa fa(x),
subjectto ¥ = 0,
Frighe = 0,

Abasex S bbase~
(46)

4.3.4 Squeezing

The squeeze state is very similar in formulation to
pregrasping and releasing, and it is also performed with
the robot standing in double support. However, the pgrdes, i
are defined by the expected contact points on the object,
instead of the pregrasp stance. The second difference is
in the servoing function. To realize the grasp, set-point
tasks in the operational space can be used, similar to
pregrasp/release. However, we prefer to include the wrench
information related to the contact, h,, when available. For
example, a simple guarded-move algorithm can be added to
the set-point task to signal stopping above some threshold
on the wrench. Alternatively, force control can be used
for the same purpose. To generalize the different grasping
methods, we write f, as a function of hg,. In summary, the
squeezing optimization problem is:

n
Z Waer,i fgr,i (X7 Pgrdes, i hgr)+

argmin
x i=1
wcfsp(xa Cdes) + wposfpos (X, Qdes)+
wa fa(x), 47
subjectto ¥ = 0,
Frighe = 0,

Abasex S bbase~

4.3.5 Holding the object while lifting, carrying, and
placing it

After successfully squeezing the object, a grasp is
maintained by the hold state. We chose to formalize this
via null motion constraints between the grasping points
on the robot body. In principle, it is possible to constrain
all permutations of contact pairs. However, this results in
numerical problems for the solver, if the closed kinematic
chains are not handled properly. Instead, we only use n — 1
constraints, defined by all pairs of points (i,7 + 1), with
1 =1,...,n — 1. This approach does not impede changes
in object configurations (e.g., motions while holding), but
ensures that the grasp form is maintained. This principle
comes from caging Rodriguez et al. (2012) where the object
being caged moves together with a properly formed cage.
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Once the object is held, it can be considered as part of the
robot. We can then define an operational frame related to the
object, o, and servo its pose via a set-point task fy, (X, Oges ).
The motion could be improved with a trajectory generator,
possibly including collision avoidance. For collaborative
carrying, the hold state is to be realized while walking (RSS,
DS, LSS), lifting, and placing (see Fig. 3).

For holding while lifting and holding while placing, the
optimization problem is:

argmin w()fsp(x7 Odes) + wcfsp(X7 Cdes)+
xX

wposfpos (X, qdes) + w)\f)\ (X)7

subject t0  Pgri — Perp = 0,

(48)

ﬁgr,n—l - f)gr,n = 07
.I:Ieft = Oa
.I:right =0,

ApaseX < bpage-

For holding during double support, the optimization
problem is similar, except that w, fq (X, Caes) is replaced by
We fir (X, Ces(t)), With cges(t) output by either the follower
or leader WPG. Furthermore, as for all walking states,
the torso orientation is added. Therefore, the optimization
problem is:

argmin We fir (X, Caes (1)) + Wis fip (X, Orsaes )+
xX

wposfpos (Xv qdes) + w)\f)\ (X)a

subject to  Pgr1 — Per2 = 0,

(49)

ijgr,n-l - ijgr,n = 07
Frere = 0,
Fright = 0,

Abasex S bbase .

Finally, for holding during single support, the optimiza-
tion problem is:

argmin we fir (X, CdeS(t)) + W fur(X, rSWdes(t))+
X
Wes fop (X, Orsges) + wPOSfPOS(X’ Qdes )+
w)\f)x (X)’
subject 0 Pgri — Per2 = 0,

f)gr,n—l - I.jgr,n = 07
i:sup = 07
ApaseX < bpgge-
(50)
Again, cges(t) can be output by the follower or leader WPG.
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5 Experiments and Results

This section shows how we validated the proposed
framework, first in dynamic simulations, and then with
experiments on an HRP-4 humanoid from Kawada
Industries, with customized ATI Mini40 force/torque
sensors in the wrists. Details on using walking and whole-
body controllers on the HRP-4 can be found in Kajita
et al. (2010). With regards to that work, we are using
a similar stabilizing controller to control ground reaction
forces, but with a different WPG and whole-body controller,
which have been described in the two previous sections. In
all experiments, for the walk, we set the swing duration
to tswt = 0.7s, and the stepping height to rg, = 0.07m.
The average forward walking velocity, in the leader CoM
trajectory (20), is set to 0.1m.s 1.

5.1 Simulations

The base functionality of the WPG was previously verified
and tested, with the results presented in Agravante et al.
(2016). Complimentary to those results, we concentrate
on the implications of carrying an object together with
a human. Specifically, due to the carried object weight,
a negative force component in the z direction will be
present. Equation (7) shows that an important negative
f&, will increase the robustness to external wrenches in z
and y directions, by reducing their net effect on the ZMP.
Furthermore, if fZ, is large enough to be comparable to the
robot mass, it reduces the acceleration effects. An intuitive
way to interpret these effects, is that the added weight
lowers the CoM of the combined (robot and object) system.
Fig. 6 shows two simulations showing this effect. In both
figures a 150N force pulling the robot forward is applied.
To compensate this, the WPG produces a change in the
posture. This was previously demonstrated in Agravante
et al. (2016). However, on the right figure a weight of
~ H0ON is added. The end result is a less drastic posture
change from the WPG output. From this, we see that
carrying heavier objects actually helps the stability of
the humanoid (obviously, assuming the robot motors can
handle the extra load). In this analysis, we consider that
the human is also carrying approximately half the object
weight, thereby negating torques that would appear with
the robot carrying the object alone. However, the presented
WPG can also handle torques, also shown in Agravante
et al. (2016).

As for whole body control, we present simulations on
the designed pregrasp and squeezing postures for carrying
(respectively (46) and (47)). For these, we must define
the control frame poses pg; on the surface of the robot
body parts (e.g., shoulder, chest, hands, etc.), and compute
the corresponding Jacobians. Some postures have been
shown in Fig. 4. However, due to hardware issues (broken
wrist joint), we also had to design one-handed versions
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Figure 6. Screenshots of two simulations with 150N force
pulling to the left. In the simulation on the right, a vertical force
component fZ, ~ —500N is also added.

of these, shown in Fig. 7, along with a grasping motion
of the hand (bottom figures). On the HRP-4 hand, the
thumb is controlled by one motor, and the four other
fingers are actuated together by a second motor. Hence, the
four fingers open and close together during squeezing, and
this motion is defined by a single joint position. Another
point of interest is the left arm motion in the front-wrap
closing (middle right snapshot in Fig. 7). This is caused
by objective function fy,(x, Cges) in (47)), which keeps the
ground projection of the CoM near the center of the support
polygon. Since the squeeze motion moves the chest frame
forward, the QP solver uses the left arm to realize this
objective.

For integrating the walk and the whole-body controller,
recall that at each instant either of the pattern generators
(follower (19) or leader (22)) provides a reference CoM
position, velocity and acceleration. Since the WPG and
whole-body controller run at different loop rates (100ms
and 5ms respectively), a simple Euler integration is used
to interpolate the reference. In Fig. 8, we compare the
CoM and ZMP positions, as requested by the WPG (here:
leader, with no external forces) and as achieved by the
whole body controller. The plot shows that the CoM is
tracked well enough and that the robot is actually walking
at0.1lm.s~ 1, as requested. As for the ZMP, note that there is
currently no explicit task within the whole-body controller
to track it. However, on the real HRP-4 platform, this is
done within a low-level stabilizer which acts as a final
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Figure 7. One-handed pregrasp (left) and squeezing postures
(right). From top to bottom: shoulder-mounted body grasp,
front-wrap body grasp, and right hand grasp.

closed-loop controller to ensure balance Kajita et al. (2010).
Therefore, for the ZMP, we see more difference between the
curves, although our tests (both dynamic simulations, and
real experiments) show that this does not affect the robot
balance. Also note that, in terms of integration within the
whole-body controller, the two WPGs presented in Sect. 3
function similarly. The only difference is in needing force
control in the leader case, and only force sensing in the
follower case.

Lastly, we present simulations of walking as leader,
while holding (Sect.4.3.5). Image sequences of walking
while holding using two-handed front-wrap, and shoulder-
mounted body grasps, are respectively shown in Figures 9
and 10. Although only some chosen examples are
illustrated, either of the two WPG may be used, along with
any of the grasps. These examples demonstrate that we are
capable of properly servoing the CoM, without the need for
an approximate frame, as in our previous works Bussy et al.
(2012b); Agravante et al. (2014). This feature allows us to
freely modify the posture and to add constraints at ease.

5.2 Real robot experiments

After having verified the framework in simulation, we
moved on to experiments on the real HRP-4. Representative
tests are shown in the video, attached to this paper, and
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Figure 8. Tracking task of the CoM using the WPG-generated
reference CoM along with a comparison of the resulting ZMP.

Figure 9. Image sequence of walking while holding, using a
front-wrap body grasp.

visible at: https://www.youtube.com/watch?v=
VYwZU4_7sMA. Screenshots are also shown in Fig. 11.
The figure shows (left to right, top then bottom): shoulder-
mounted box carrying as leader, front-wrap box carrying
as leader, hand grasped stretcher carrying as follower, and
hand grasped bucket carrying as follower. These correspond
to four of the six examples introduced in Fig. 1. All four
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Figure 10. Image sequence of walking while holding, using a
shoulder-mounted body grasp.

collaborative carrying scenarios were successful, with the
robot acting both as leader and as follower.

Figure 11. Experiments with the HRP-4 carrying various
objects in collaboration with a human.

Relevant data from the stretcher carrying task, with the
robot walking as follower (bottom left in Fig. 11), are
shown in Fig. 12. The top plot shows the CoM and ZMP
reference signals, generated by the WPG (19), while the
bottom figure shows the forward (pulling) component of
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Figure 12. Data from a stretcher carrying scenario with the
robot walking as a follower. Top: reference Com and ZMP (as
generated by the WPG). Bottom: forward (pulling) component
of the interaction force.

the interaction force, measured by the force sensors, and
transformed to the CoM frame, fZ,. Note the pause in
the walk (top figure), around the 13 to 15 second mark.
This was due to the human stopping (see also the strong
decrease of interaction force in the bottom figure), and the
robot appropriately reacting. Throughout the experiment,
the CoM and ZMP reference values are properly adapted
according to the external force, as the robot follows the
human intention.

Although these results showed that the overall approach
worked well, the real experiments introduce some issues
which were not present in simulation. Notice that on
the hand grasps (bottom snapshots), the pose had to be
redesigned, so that the wrists could support the object
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weight. This had to be done because of the low payload
capacity of the HRP-4 fingers. Furthermore, the front-wrap
carry required the one-hand version, because of a broken
wrist joint at that moment. Moreover, force sensing is
available only in the robot wrists, and no force measurement
is available at the other contact points (e.g., on the shoulder
and chest). Thus, we had to take this into account when
using the sensed data, typically in the follower WPG.
Lastly, minor issues with the grasp stability could have also
been improved, if local force/contact sensing in the other
body parts was available.

6 Conclusion

This article explores several aspects of the human-
humanoid collaborative carrying task. We started by
looking at this task as a whole. To do this, we created
a taxonomy based on observing several cases of human
teams. We then tried to infer from this, the core principles
of collaborative carrying, in order to program it on a
humanoid robot. To this end, we created a generic Finite
State Machine, encompassing all of the necessary subtasks.
Next, we revisited locomotion and balance in relation to
physical interaction. For this, we designed two walking
pattern generators that not only take into account the
physical interaction constraints, but also use it accordingly,
to operate as a follower or leader. Finally, we discuss how
all of this can be designed as objectives and constraints of
an optimization problem for a whole-body controller. We
then present simulations and real test cases on the HRP-4
humanoid.

Although the approach presented here proved successful,
there are still several areas that can be largely improved
with future works. Firstly, one key issue, outlined by the
real experiments, is the need for force estimation. Related
to this, we outlined the need for distributed force sensing
on the entire robot body, instead of only on the wrist.
Distributed tactile sensors can improve body grasps as
tested with the HRP-2 in Mittendorfer et al. (2015). Another
key improvement, that we only briefly mentioned, concerns
the wrench prediction model for better proactive behaviors.
A current limitation is that the wrench is simply predicted
to be constant over the preview horizon. However, since
we believe the framework is very well suited for including
proactivity, a better perceptual model is necessary. This
requires integrating active human perception for intention
recognition, a difficult challenge, but also an active research
area in physical human-robot interaction. Concerning the
walk, although the WPG presented here is in simplified
form, its core concepts do not conflict with improvements
such as Brasseur et al. (2015) which add robustness,
allowing stair climbing. Apart from improving the WPG
itself, its integration to whole-body control can also be
improved, with works such as Sherikov et al. (2014) which
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aims at combining the separate QPs. Since this would
require reconsidering the QP weight tuning, hierarchies
could be added to the constrained optimization problem, as
in Escande et al. (2014a). Lastly, a limiting factor for our
real experiments was the low-level closed loop stabilizing
controller of the HRP-4, which modifies the final joint
references sent to the robot actuators Kajita et al. (2010). To
solve this, a dedicated stabilizer, consistent with our control
framework, should be designed.
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