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Human-Humanoid Collaborative Carrying

Don Joven Agravante1, Andrea Cherubini1, Alexander Sherikov2,

Pierre-Brice Wieber2 and Abderrahmane Kheddar1,3,

Abstract—This paper contributes to the field of human-robot
interaction, specifically physical human-robot collaboration. We
present a complete control framework which aims at making hu-
manoid robots capable of carrying objects together with humans.
Firstly, we design a template identifying the primitive subtasks
necessary for collaborative carrying. Then, these subtasks are
formulated as constrained optimization problems for controlling
the whole-body motion of a humanoid robot. The subtasks
include two walking pattern generators that account for physical
collaboration, as well as posture and grasping controllers. Finally,
we validate our framework in a variety of collaborative carrying
experiments, using the HRP-4 humanoid robot.

Index Terms—Physical Human-Robot Interaction.

I. INTRODUCTION

PHYSICAL human-robot collaboration implies that the

interaction forces between the human and robot must be

used to achieve a common goal. In this regard, humanoid

robots provide many advantages when working together with

humans to perform various tasks. Humans learn to physically

collaborate with one another from daily experiences. There-

fore, a humanoid with a similar range of motion and sensing

has the potential to be an intuitive interface. Within physical

collaboration, carrying objects with a human in various pos-

tures and situations is a problem that is rich, unexplored and

has high potential for practical application.
Early work on enabling human-humanoid carrying was

done in [1] via the Humanoid Robotics Project (HRP), where

the HRP-2P humanoid cooperates with a human for a panel

transportation task. Disregarding the legged aspect, even ear-

lier work in this topic was done in [2]. The authors used

mobile manipulator robots as in [3], with wheels instead of

legs. That work revealed an important issue: coordinating

the motion of the mobile base with that of the upper robot

body and with the human intention (generally represented by

the interaction force). More recent examples of collaborative

carrying mobile manipulators include [4], [5], [6]. Although

these works discuss the handling of interaction forces and

coordination, the topic of balance is missing.
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However, as discussed in [7], [8], even wheeled robots

can fall over in challenging scenarios. One of the main

contributions of this paper is to tackle the coupling of balanced

legged locomotion and collaborative manipulation.

The task of collaborative carrying has also been tested on

small scale humanoid platforms, e.g., NAO in [9]. However [9]

focused on the use of internal sensors, instead of the wrist

force/torque sensors commonly used in physical human-robot

interaction. NAO is also used in [10], where the capture

point [11], [12] guides walking. A similar work is [13], where

Darwin robots carry a stretcher (no human is participating).

When only robots are used (e.g. simulated HRP-2 robots

in [14]), the interest is turned to multi-robot synchronization

and communication. Both multi-robot and human aspects are

considered in [15], while [16] addresses table lifting with

NAO, using machine learning to improve interaction.

Understanding and improving physical human-robot inter-

action is a very broad and active research field. For exam-

ple, [17], [18], [19] study human-human haptic interaction

and apply it to human-robot teams. Role allocation and

role switching (e.g., between leader and follower) have been

studied in [20], [21], [22], [23]. The authors of [24] address

mutual learning and adaptation, whereas [25] focuses on the

uncertainty of human behavior prediction. Haptic interaction

recognition using supervised learning is presented in [26].

Contrary to these, this paper presents the entire pipeline

required by a humanoid to realize collaborative carrying.

Specifically, we embed a humanoid robot with a control

framework that allows it to achieve a large variety of human-

humanoid carrying tasks.

Our previous framework, specific to table carrying [27],

could not be extended to any posture (and therefore objects),

since the used walking pattern generator (WPG) [28] and

Stack-of-Tasks whole-body controller [29] considered the cen-

ter of mass (CoM) to be coincident with the robot waist.

Hence, any posture moving the CoM away from the waist

(e.g. extending the arms or leaning with the chest) would

fail. More generally, the WPG of [28] worked well for stand-

alone walking, but was not designed for physical interaction,

as explained in [30].

Given these limitations, we reformulate the entire pipeline to

have a generic framework for humanoid collaborative carrying.

The contributions of this paper follow.

• Two pattern generators for walking under sustained forces

are designed, one for a leader and the other for a follower

robot. Although these were outlined in [30], further

details on the modeling choices and on the integration
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with whole-body control are given here. Furthermore, we

discuss the WPG trajectory feasibility and analyze the

underlying model predictive control problem.

• Our whole-body framework can simultaneously account

for both the carrying tasks and walking. We show how

collaborative carrying can be formulated as an optimiza-

tion problem, and provide details on its feasibility.

• The framework feasibility is validated in a series of

experiments on a real-size humanoid robot, with a variety

of robot roles (leader/follower), grasp types (hand/body)

and carried objects (different shapes and sizes).

We structured the paper as follows. Section II presents

the collaborative carrying taxonomy, along with the required

primitive subtasks. Section III provides a review of quadratic

optimization which is used throughout our work. The walk-

ing pattern generators accounting for physical interaction are

presented in Section IV. Section V describes our optimiza-

tion framework for whole-body control. Finally, Section VI

presents the experimental validation.

II. THE TASK OF COLLABORATIVE CARRYING

To understand collaborative carrying, we take inspiration

from how humans do it. This is done by creating a taxonomy,

i.e., an abstraction layer that provides a scaffold for our

quadratic optimization framework. Then, we design a Finite

State Machine (FSM) accounting for all collaborative carrying

subtasks in order to map each state to an optimization problem.

A. A taxonomy of collaborative carrying

We consider the problem of having a pair of agents, whose

goal is to move a specified object from one location to another.

Figure 1 shows several real examples of human-human collab-

orative carrying (left), with the corresponding simulations of

what we envision with a humanoid robot collaborator (right).

We assume that neither object nor agent composition can be

changed afterwards, and consider the following relationships:

• Agent-object relation (grasp type). We consider two

broad classes of grasp types: hand grasps and body

grasps. Hand grasps are those with contact points located

uniquely on the hand/gripper [31]. Body grasps are those

that utilize grasp contacts on body parts not limited to

the hand (e.g., arms, torso, see Fig. 1).

• Agent-agent relation (relative pose). In our taxonomy, we

relate this to the inter-agent communication modes, touch

and vision. For translations, we check whether direct

touch between the agents is possible (near relation) or

not (far). For the orientation, we consider the agents’

Field Of View (FOV), specifically: the nominal (when

the perceiving agent is in a resting position), and the

extended (as the agent looks around, by moving its body)

FOV. Then, we can classify agents as facing front (other

agent is in the nominal FOV), side (other agent is not in

the nominal but in the extended FOV), back (other agent

is not in the extended FOV).

Fig. 1. Collaborative carrying examples (left), with a human avatar and a
humanoid robot mimicking the corresponding postures (right).
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All six scenarios of Fig. 1 can be easily classified according

to the proposed taxonomy. But more importantly, we are con-

cerned with the practical implications of using the taxonomy

to program a humanoid robot.

B. Collaborative carrying as a Finite State Machine

To program a robot for collaborative carrying, we must

decompose complex tasks into subtasks that will be easier to

program. Formally, we use an FSM to describe the whole task,

with subtasks as states. The FSM should be general enough

for all cases encompassed by the taxonomy. Although we will

create a specific FSM, the use of FSMs is common (e.g., it

was applied for humanoid ladder climbing in [32]).

A useful decomposition is one where the states can be

easily mapped to optimization problems. We first consider the

state transitions. These should include brief periods where the

motion is minimal, and the robot can be considered in quasi-

static state (i.e., dynamic effects can be disregarded), as well as

discrete changes in the robot contact state. The state transitions

can be triggered either by relevant sensed variables (when

available), or by human input (in case of shared autonomy).

Considering this, a collaborative carrying FSM is shown in

Fig. 2 (the numbers indicate the transition order).

Fig. 2. Detailed FSM for collaborative carrying, with each state/subtask
corresponding to an optimization problem.

While walking, the feet contacts occur in a predictable

pattern that can be used to define the walking states: left/right

single support, and double support (indicated respectively as

LSS/RSS and DS in Fig. 2). To decompose grasping, we need

a pregrasp posture, i.e., a waypoint between grasping and

the other states. The next state, squeeze, moves the robot to

generate predefined contacts between its body and the object.

Figure 3 shows the pregrasp and squeezing postures for two

body grasps. The hold state maintains the contacts between

robot and object. Note that it must be active throughout the

carrying walk. Finally, the release state, is simply the inverse

of squeeze. Force or tactile sensors, when available, can trigger

transitions between these states.

Fig. 3. Two examples of “body grasps”: pregrasp (left) and squeeze (right).

In summary, we assign specific optimization problems to

each state of the FSM in Fig. 2. The next Section III outlines

the general optimization formulation that has been used for

all states. This formulation is utilized for generating walks

accounting for external force (Section IV), as well as for whole

body control (WBC), see Section V. Figure 4 shows how the

various parts of the framework fit together, and which section

of the paper details which part.

Fig. 4. Simple block diagram of the overall framework

III. INTRODUCTION TO QUADRATIC OPTIMIZATION

Recently, optimization-based approaches have shown to be

very effective for controlling humanoid robots. This is true for

both WPG [28] and WBC [29], [32], [33], [34], [35], [36].

In general, we seek the robot control input, represented by

the optimization argument x that minimizes a collection of

objective functions, subject to various constraints (from the

robot hardware, environment, and task).

The formalism chosen here is largely based on [32], [37].

We consider a weighted quadratic programming formulation

which allows to use the L2 norm to define a number of

objective functions fi(x):

fi(x) = ‖Aix− bi‖2 , (1)
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so that all optimization problems are of the form:

argmin
x

∑

i

wi ‖Aix− bi‖2 (2a)

subject to Acx ≤ bc. (2b)

The control input x is defined via the objectives (2a), which

are regarded in accordance to their scalar weights wi > 0.

Equality and inequality constraints (2b) must also be sat-

isfied. When this is not possible, the optimization problem

is infeasible and the constraints are said to be in conflict.

Infeasibility can be accounted for, by relaxing the conflicting

constraints as is common in hierarchical optimization [38],

or as explained later in the paper for individual optimization

problems. Formulation (2) allows the use of off-the-shelf

Quadratic Programming (QP) solvers implementing efficient

algorithms and suitable for real-time applications [39].

IV. WALKING DESIGNED FOR PHYSICAL COLLABORATION

In robotics, walking has historically been treated separately

from manipulation. However, manipulation and locomotion

must be consistent, in particular during collaborative carrying.

Eventually, both need to be thought of as parts of the whole-

body control problem (discussed in the next section). In this

section, we revisit the modeling of walking pattern generators

(WPG), and redesign them with physical collaboration in

mind. This section was partially published in [30]. Here, we

recall the main points, namely the addition of the external

wrench into the model, and the design of objectives and con-

straints, based on this wrench. Additionally, we better specify

the usage of our new WPG in the collaborative carrying task.

A. Modeling

First, we must design a reduced robot dynamic model

accounting for physical interaction. Three possible versions

of such models were proposed in [40]:

1) a model with full knowledge of object and/or human,

2) a model that considers the effects of the object and/or

human on the robot contact locations and linear forces,

requiring additional grasp stability constraints,

3) a model that considers the effects of the object and/or

human as external wrenches applied on the robot CoM.

We have chosen the latter, because of its simplicity and

generality in terms of implementation on a real robot.

The development of this reduced model is inspired by [41],

and described in [30]. We separate the foot/ground contact

forces from other interaction contact forces that are denoted

by hext = [f⊤ext n⊤
ext]

⊤ ∈ R
6. This represents the external

wrench (from the carried object weight and from the human

collaborator), and is expressed in a fixed orientation frame

placed on the Center of Mass (CoM), c. As is common in the

literature [28], [42], we aim at keeping the center of pressure z

(also known as Zero Moment Point, ZMP) within the support

polygon (i.e., the convex hull of the feet contact points).

We assume that the robot is walking on a flat horizontal

ground, with a constant CoM height cz, and that the angular

momentum is constant. Then, Newton and Euler equations

yield the following relationship between CoM and ZMP:

zx,y = cx,y −
(

cz

gz − f z
ext

m

)

c̈x,y

+

[

0 1
−1 0

](

n
x,y
ext

mgz − f z
ext

)

+

(

czf
x,y
ext

mgz − f z
ext

)

,

(3)

with m the robot mass and g the gravity vector. In the absence

of an external wrench, this becomes:

zx,y = cx,y −
(

cz

gz

)

c̈x,y, (4)

From (3), we can infer that a heavier robot, lower CoM height

or an external force aligned with the CoM, will all reduce the

effects of the external wrench.

B. Model predictive control for walking

Model Predictive Control (MPC) consists in controlling a

system so that future states are taken into account. A common

MPC methodology consists in iteratively applying the model

over N discrete steps (noted k = 1 . . .N ), resulting in a new

problem formulation where the predicted states are a function

of the current state and of the current and future control inputs.

We assume that the CoM trajectory is differentiable three

times, so that the walk can be controlled through the CoM

jerk. Then, to apply MPC, we define:

• the control input x = [ũ r̃]
⊤

, with ũ and r̃ the con-

catenation, over the preview horizon, respectively of the

CoM jerk [
...
c x
k

...
c y
k] and of future foot landing positions,

expressed in a local frame placed at the preceding foot;

• the system state c̃ as the concatenation of CoM position,

velocity and acceleration [cxk ċxk c̈xk c
y
k ċ

y
k c̈

y
k ]

⊤
;

• the system output z̃ as the concatenation of [zxk z
y
k ]

⊤
,

expressed in the current foot frame;

• the predicted external wrench f̃ as the concatenation of

[ny
k fx

k nx
k f

y
k ]

⊤
, considered a perturbation or part of the

control input, depending on the WPG design (see below).

Then, propagating (3) over the preview horizon yields:

c̃ =Sx+ s,

z̃ =Szx+ sz,
(5)

with matrices S, Sz, vectors s, sz derived from the current

state and from f̃ , as detailed in [30].

As argument of the optimization problem (2) we use x.

Then, the objectives and constraints common to all of our

WPG formulations are listed below.

• The CoM jerk is minimized to smoothen the trajectory.

This is done via objective function:

‖ũ‖2 =
∥

∥

[

I 0
]

x
∥

∥

2

. (6)

• The distance between ZMP and foot center is minimized

to increase the stability margin (since unknown distur-

bances could push the ZMP away from the target):

‖z̃‖2 = ‖Szx+ sz‖2 . (7)
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• The ZMP should be maintained within the support poly-

gon (with security margins) using the constraint1:

z̃ ≤ z̃ ≤ z̃. (8)

Using (5) to expose the argument:

z̃− sz ≤ Szx ≤ z̃− sz. (9)

• The feet positions should be constrained:

r̃ ≤ r̃ ≤ r̃. (10)

Since r̃ is part of the argument, this can be written as:

r̃ ≤
[

0 I
]

x ≤ r̃. (11)

Note that objectives (6), (7) are expressed as (1), and con-

straints (9), (11) as (2b).

Using (5), we can now design various WPG, suited to dif-

ferent types of physical interaction. In particular, we revisit the

leader and follower modalities [22]. Apart from the common

constraints and objectives cited above, the leader and follower

WPG are each characterized by a specific formulation of the

objective function controlling the CoM.

1) Walking pattern generator for a follower robot:

A follower robot acts based on the leader’s intention. In our

work, this is represented by the external wrench applied by the

carrying partner. Usually, moving the object together implies

only a planar motion such that the intention can be defined

by f
x,y
ext . Hence, a follower WPG depends on these. Previous

works [22], [27] have used a damping control by providing a

reference CoM velocity to the WPG which is proportional to

the external force. We extend this to perform more complex

behaviors, by defining the full impedance model [43] of the

follower, with diagonal matrices M, B and K containing the

virtual mass, damping and stiffness parameters:

f
x,y
ext = Mc̈x,y +Bċx,y +Kcx,y. (12)

Using an impedance parameter matrix Gmbk and a selection

matrix Sf (for choosing either f x
ext or f

y
ext), this expression can

be propagated, so that the MPC will aim at minimizing:
∥

∥

∥
Gmbkc̃− Sff̃

∥

∥

∥

2

=
∥

∥

∥
GmbkSx+Gmbks− Sff̃

∥

∥

∥

2

. (13)

Note that by injecting (5), we have expressed this objective

as (1). The optimization problem, including objectives (6), (7),

(13), and constraints (8), (10) is:

argmin
x

wcom ‖ũ‖2 + wzmp ‖z̃‖2 + wfol

∥

∥

∥
Gmbkc̃− Sf f̃

∥

∥

∥

2

subject to z̃ ≤ z̃ ≤ z̃

r̃ ≤ r̃ ≤ r̃.
(14)

Notice that the future wrench values are required in f̃ , to make

the robot proactive. Having a good model of human intention

can be difficult, but if the force can be measured (e.g. by a

force/torque sensor) at each iteration, we can use a simplistic

model fN = ... = f1 = f0, with f0 the current measure. This

1Throughout this paper, we denote with x and x lower and upper bounds
(respectively) of variable x.

model has been validated experimentally (see Sect. VI).

The core part of the following WPG is impedance (13).

Impedance control has been discussed in the literature several

times since [43]. Recently, [44] discusses it in the context

of collaborative carrying between mobile manipulators. The

interested reader can refer to these for a more in depth

discussion on impedance control. Here, it suffices to say

that (13) imposes a relation between (interaction) force and

(CoM) motion, which is a mechanical impedance. The novelty

here is in using impedance control in an MPC framework

together with balance constraints for walking (14). Although

its fidelity (i.e., maintaining the imposed force-motion relation)

has been shown in [30], it has inherent limits due to the

balance constraint (which takes priority). The main limiting

factor in the QP (14) is the allowable instantaneous force

change given the ZMP constraints. With some assumptions,

this can be derived from the ZMP equation (3) as shown

in [45]. Then, if the change in applied force is below such

allowable limit, the robot can adjust its posture to handle the

sustained force as shown in the simulations of [30] where up

to 150N are applied to the robot.
2) Walking pattern generator for a leader robot:

For leading, a clear intention is necessary. The robot should

track a reference trajectory, known beforehand. For collabo-

rative carrying, this can be generated by knowing where the

object is and where it will be transported to. A classic way

for tracking a trajectory in operational space [46] is:

c̈x,y = c̈
x,y
ref +B(ċx,yref − ċx,y) +K(cx,yref − cx,y), (15)

where B and K are diagonal gain matrices with positive

elements. This can be reformulated as an objective function,

with an appropriate gain matrix, similar to that of the follower:

‖Gbk(c̃ref − c̃)‖2 = ‖Gbkc̃ref −GbkSx−Gbks‖2 . (16)

Furthermore, with the robot acting as leader, the external

wrench should be included in the optimization argument,

expanding it as x = [ũ⊤ r̃⊤ f̃⊤]⊤. The idea is that placing a

part of the external wrench in the argument allows the robot

to use the interaction to balance itself. However, for safety, f̃

should be bounded and minimized.

The optimization problem, including again objectives (6),

(7), and constraints (8), (10), becomes:

argmin
x

wcom ‖ũ‖2 + wzmp ‖z̃‖2 + wf

∥

∥

∥
f̃

∥

∥

∥

2

+ wlea ‖Gbkc̃ref −GbkSx−Gbks‖2

subject to z̃ ≤ z̃ ≤ z̃

r̃ ≤ r̃ ≤ r̃

f̃ ≤ f̃ ≤ f̃ .

(17)

Since f̃ is now part of the argument, objectives and constraints

are still of the forms (1) and (2b), respectively.

C. Feasibility and stability of the MPC

To conclude this section, we provide some insight into the

feasibility of the QP problems (14) and (17). It has already

been reported in [47] that the nominal MPC for walking with
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fixed footstep positions and without external forces is always

feasible. It can be easily demonstrated that this property retains

for the MPC formulations presented here. Perpetual feasibility,

however, does not guarantee that the generated CoM motion

does not diverge, leading to robot fall.

The standard approach to avoid divergence in MPC is to

approximate an infinite preview horizon [48], for instance:

• It is possible to impose a terminal, so-called capturability,

constraint to ensure that within a particular preview

horizon the system can be stopped [49], [50]. Such

constraint effectively prevents divergence, but may lead

to infeasibility of the considered optimization problems.

A detailed discussion of this topic can be found in [51].

• The second option is to use a “long enough” preview hori-

zon, as justified in [52]. A bulk of previous works [11],

[19], [22], [42], [53], [54], [55] validated this approach

in practice and reached a consensus on the length of the

preview horizon, which should span 2 footsteps.

We have chosen to use the second approach for the sake of

simplicity and it was proven to be sufficient. In future works,

however, it may be interesting to study the possibility of using

a terminal constraint to allow the robot to resist excessive

force applied by the human. For example, while following the

human using (14), the robot may be led to a fall. In this case,

switching to (17) would allow the robot to regain balance by

resisting the human.

V. WHOLE-BODY CONTROL FOR COLLABORATIVE

CARRYING

The previous sections provided important building blocks

for the collaborative carrying task. This section aims at

wrapping everything together into coordinated whole-body

motions. For instance, to generate the described walks, the

WPG results: c̃, r̃, and rsw (respectively: CoM trajectory,

footprints, and swing foot trajectory) must be mapped to

robot joint commands, q. To explain how this is done, we

start by recalling the optimization-based whole-body control

framework developed in our research group [32]. Next, re-

current objectives and constraints are presented. Finally, we

explain how all the components are assembled to realize the

collaborative carrying.

A. Whole-body control as an optimization problem

To start detailing our whole-body control framework, we

define the optimization argument in (2) as:

x =

[

q̈

λ

]

. (18)

Here, q defines the robot configuration, i.e. the joint positions

along with the floating-base representation [56], and λ is the

vector of linearized friction cone base weights. This is defined

so that all contact forces stacked in a column vector yield:

fcon = Kfcλ, (19)

with Kfc ∈ R
3n×nm a matrix of generators for linearizing the

friction cone (n is the number of contact points, m the number

of generators for linearization).

For each state (i.e., subtask) of the FSM of Fig. 2, we solve

the following optimization problem:

argmin
x

∑

j

wjfbase,j(x) +
∑

k

wkfspec,k(x)

subject to Abasex ≤ bbase

Aspecx ≤ bspec.

(20)

In Section V-B, we present the objectives and constraints that

are recurrent in the collaborative carrying FSM, specifically

the tracking and set-point objectives, and the contact con-

straint. Then, the base objective functions and constraints,

which are applied at all states of the FSM, are detailed in

Sect. V-C. Instead, the collection of objectives fspec specific

to each FSM state, will be described, along with the specific

constraints, in Section V-D.

B. Reusable objectives and constraints

Several objectives and constraints are recurrent in the FSM,

and can be written in re-usable form. For this, let us first define

a task vector in the operational space e (e.g., the pose of any

frame on the robot or on the carried object), and the function

mapping it to robot joint space:

e = fe(q). (21)

Assuming fe is twice differentiable, and naming Je the task

Jacobian:

ė =Jeq̇, (22)

ë =Jeq̈+ J̇eq̇, (23)

we define the tracking task objective as:

ftr(x, edes(t)) =

1

2
‖K(edes − e) +B(ėdes − ė) + (ëdes − ë)‖2 ,

(24)

where edes(t) denotes the desired task trajectory (i.e., it in-

cludes edes, ėdes and ëdes), and K and B are square diagonal

gain matrices with positive values. These can be tuned by

considering the task dynamics equivalent to those of a mass-

spring-damper system with unit mass. Typically, to obtain a

critically damped system, only K needs to be tuned, with

B = 2
√
K. Using (22) and (23), (24) can be written as (2a).

A particular case of the tracking task is the set-point

objective, where only the reference position is considered,

while the reference velocity and acceleration are set to zero:

fsp(x, edes) =
1

2
‖K(edes − e)−Bė− ë‖2 . (25)

Apart from servoing a body part, another common goal is

to keep a certain body part motionless. A common example

is to keep the feet in contact with the ground. To this end, we

define a contact constraint, by nullifying the acceleration of a

robot point that is in contact with the environment:

ë = 0. (26)

Using (23), this can be written as the equality constraint:
[

Je 0
]

x = −J̇eq̇. (27)
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C. Base objectives and constraints

1) Base objective functions:

The first base objective function is termed the posture task,

and represented as fpos. This corresponds to positioning joints

at a given posture qdes, with null q̇des and q̈des:

fpos(x,qdes) =
1

2
‖K(qdes − q)−Bq̇− q̈‖2 , (28)

with K and B square diagonal gain matrices with positive val-

ues. Note that this is a typical example of set-point task (25),

obtained with e = q. Exposing the joint accelerations via

numerical integration at each time interval k of duration ∆t:

q̇k+1 =q̇k + q̈k∆t,

qk+1 =qk + q̇k∆t+
1

2
q̈k∆t2,

(29)

it is straightforward to show that objective (28) is of the

form (2a). The goal of the posture task is to have a default

configuration of each joint. Hence, its weight wpos normally

has a low value, to give priority to more important tasks. The

second base objective consists in minimizing ‖λ‖2:

fλ(x) = ‖λ‖2 =
∥

∥

[

0 I
]

x
∥

∥

2

. (30)

As shown in [32], this objective function, joined with (28),

allows an easier numeric solution to the QP problem.
2) Base constraints:

There are four constraints in the base formulation of our

optimization problem (20), namely:

λ ≥ 0 (31a)

τ ≤ τ ≤ τ (31b)

q ≤ q ≤ q (31c)

q̇ ≤ q̇ ≤ q̇, (31d)

τ being the applied joint torques.
Firstly, (31a) ensures that the contact forces are inside the

friction cone (no slipping). This can be formulated as:
[

0 I
]

x ≥ 0. (32)

Second, (31b) places bounds on the torques τ . These can be

obtained from the robot dynamic equation:

τ = Hq̈+Cq̇+ τ g − J⊤

confcon, (33)

with H and C respectively the inertia and Coriolis/centrifugal

terms taking into account the floating-base [56], τg the torques

due to gravity, Jcon the stacked contact point Jacobian matri-

ces, and fcon the stacked vector of contact forces from (19).

The constraint can then be rewritten:

τ −Cq̇− τg ≤
[

H −J⊤
conKfc

]

x ≤ τ −Cq̇− τ g. (34)

The third and fourth constraints, (31c) and (31d), bound joint

positions and velocities. With (29), these become:

q̇− q̇ ≤
[

I∆t 0
]

x ≤ q̇− q̇, (35a)

q− q− q̇∆t ≤ 1

2

[

I∆t2 0
]

x ≤ q− q− q̇∆t. (35b)

Stacking (32), (34), (35a) and (35b), yields the explicit ex-

pressions of Abase, and bbase in (20).

D. Specific objectives and constraints of each FSM state

Here we detail the objectives and constraints specific to

each FSM state. An important aspect concerns the control of

the CoM. In walking FSM states (DS, RSS and LSS), this is

servoed using a tracking task objective (24) to follow the CoM

trajectory output by the WPG (leader or follower).

That is, cdes(t) and rswdes(t) are both generated by the WPG

detailed in Sect. IV. For all other FSM states, we use a set-

point objective (25) to attract the CoM towards the middle of

the two feet by setting cdes accordingly.

1) Double support:

During the Double Support (DS) states, both feet: rleft, rright,

must maintain contact with the ground, via contact constraints.

The CoM is servoed with a trajectory cdes(t), obtained from

the standard WPG of Section IV.

In summary, the whole-body optimization problem is:

argmin
x

wcftr(x, cdes(t)) + wposfpos(x,qdes) + wλfλ(x),

subject to r̈left = 0,

r̈right = 0,

Abasex ≤ bbase.
(36)

2) Right/left single support:

While walking, single support states (RSS or LSS) occur

between two consecutive double support states. As such, they

retain the CoM trajectory tracking task from the standard

WPG. Differently from DS, only one foot supports the weight

and is constrained to the ground, while the other (swinging)

is servoed in the air to track rswdes(t) (any swing foot desired

trajectory). Hence, the optimization problem is:

argmin
x

wcftr(x, cdes(t)) + wswftr(x, rswdes(t))+

wposfpos(x,qdes) + wλfλ(x),

subject to r̈sup = 0,

Abasex ≤ bbase.

(37)

3) Pregrasping, squeezing and releasing:

The pregrasp, squeeze and release states have the same

formulation, the only difference being their preceding state.

Thus, without loss of generality, we only present the pregrasp.

The pregrasp state is a waypoint state that eases the grasping

by targeting a set of n preplanned pregrasp point locations,

{pgrdes, 1 . . .pgrdes, n}. The synthesis of these locations can be

formalized either as a stance generation problem [57], or by

considering caging [58]. Here, we assume that a set of stable

grasp point locations is given, along with the corresponding

pregrasp stance, according to the chosen instance of the

taxonomy (grasp type, see Section II). For instance, we design

the body grasps shown in Fig. 3 for the pipe-shoulder and

pipe-front examples of Fig. 1. In those cases, we parametrize

the grasp via the contact frames shown in Fig. 3. More

generally, we define n operational frames on the robot body.

The pose of each one, denoted by: pgr, i (i = 1 . . . n), should

be servoed to a desired pose: pgrdes, i. This corresponds to

n set-point objectives (25). Note, from Fig. 2, that pre-grasp

and release are only performed when the robot is standing,

in double support. Thus, both foot contact constraints are
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added as well as the set point task on the CoM that is needed

to maintain balance. In summary, the pregrasp, squeeze, and

release optimization problems can all be formulated as:

argmin
x

n
∑

i=1

wgr,ifsp,i(x,pgrdes, i) + wcfsp(x, cdes)+

wposfpos(x,qdes) + wλfλ(x),

subject to r̈left = 0,

r̈right = 0,

Abasex ≤ bbase.

(38)

4) Holding the object while lifting, carrying, placing it:

After having successfully squeezed the object, a grasp is main-

tained by the hold state. We chose to formalize this via null

motion constraints between the grasping points on the robot

body. In principle, it is possible to constrain all permutations

of contact pairs. However, this results in numerical problems

for the solver, if the closed kinematic chains are not handled

properly. Instead, we only use n − 1 constraints, defined by

all pairs of points (i, i+ 1), with i = 1, . . . , n − 1. This

approach does not impede changes in object configurations

(e.g., motions while holding), but ensures that the grasp form

is maintained. This principle comes from caging [58] where

the object being caged moves together with a properly formed

cage. Once the object is held, it can be considered as part of the

robot. We can then define an operational frame related to the

object, o, and servo its pose via a set-point task fsp(x,odes).
We assume here that odes is provided beforehand, for example

by a high-level plan (as for the grasp points in Section V-D3).

For collaborative carrying, the hold state is to be realized while

lifting, walking (RSS, DS, LSS), and placing (see Fig. 2).

For holding while lifting and holding while placing, the

optimization problem is:

argmin
x

wofsp(x,odes) + wcfsp(x, cdes)+

wposfpos(x,qdes) + wλfλ(x),

subject to p̈gr,1 − p̈gr,2 = 0,

...

p̈gr,n-1 − p̈gr,n = 0,

r̈left = 0,

r̈right = 0,

Abasex ≤ bbase.

(39)

For holding during double support, the optimization prob-

lem is similar, except that wcfsp(x, cdes) is replaced by

wcftr(x, cdes(t)), with cdes(t) output by either the follower or

leader WPG. Therefore, the optimization problem is:

argmin
x

wofsp(x,odes) + wcftr(x, cdes(t))+

wposfpos(x,qdes) + wλfλ(x),

subject to p̈gr,1 − p̈gr,2 = 0,

...

p̈gr,n-1 − p̈gr,n = 0,

r̈left = 0,

r̈right = 0,

Abasex ≤ bbase.

(40)

Finally, for holding during single support, the optimization

problem is:

argmin
x

wofsp(x,odes) + wcftr(x, cdes(t))+

wswftr(x, rswdes(t)) + wposfpos(x,qdes)+

wλfλ(x),

subject to p̈gr,1 − p̈gr,2 = 0,

...

p̈gr,n-1 − p̈gr,n = 0,

r̈sup = 0,

Abasex ≤ bbase.

(41)

Again, cdes(t) can be output by the follower or leader WPG.

E. Note on feasibility

As indicated in Section III, conflicts may arise between the

QP constraints. Although constraint relaxation is a viable strat-

egy to recover from infeasibility, it may result in control inputs

which are either physically inconsistent, or not executable by

the hardware. Other strategies are detailed below.
Object handling motions –pregrasping, squeezing, and

releasing– are defined with the help of a contact stance planner

as in [32], [57]. Since this planner guarantees feasibility only

at specific postures, we have to verify, through simulations,

that the interpolated motions are also feasible. For example,

the second scenario from below in Fig. 1 turned out to

be unfeasible on our humanoid, because of the body grasp

configuration.
Walking may not be feasible due to discrepancies between

the reduced model employed in the WPG and the whole body

model, namely because of these WPG assumptions:

(a) absence of kinematic and joint limits;

(b) zero rate of angular momentum;

(c) constant vertical component of the external force.

Issues of such kind are traditionally addressed with proxy con-

straints, which reflect limitations of the reduced model [59].

All the constraints in the WPG can be seen as proxies:

• bounds on the ZMP positions are chosen depending

on the size of the feet, while safety margins in these

constraints implicitly account for (b);

• feasible regions for the landing foot positions address

kinematic limits in (a) and can be estimated using simu-

lations as in [60];
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• bounds on the external wrench reflect dynamic limits in

(a) and can also be chosen empirically in simulations.

Although it is also possible to avoid assumption (c) as in [61],

or to address (b) using a reduced model from [40], the three

proxy constraints presented above were sufficient in this work.

VI. EXPERIMENTS AND RESULTS

This section shows how we validated the proposed frame-

work, first in dynamic simulations, and then with experiments

on an HRP-4 humanoid from Kawada Industries, with cus-

tomized ATI Mini40 force/torque sensors in the wrists. The

robot is position controlled, with joint setpoints updated every

5ms by the whole body controller described in Section V.

In all experiments, for the walk, we set the swing duration

to tswf = 0.7s, and the stepping height to rsth = 0.07m.

The average forward walking velocity, in the leader CoM

trajectory (15), is set to 0.1m.s−1. All simulations are run

with the same general parameters and timing constraints as

on the real robot, using a 2.7 GHz i7 processor.

A. Simulations

The base functionality of the WPG accounting for external

wrench was previously verified and tested, with the results

presented in [30]. Complementary to those results, we con-

centrate on the implications of carrying an object together

with a human. Specifically, due to the carried object weight,

a negative force component in the z direction will be present.

Equation (3) shows that an important negative f z
ext will increase

the robustness to external wrenches in x and y directions, by

reducing their net effect on the ZMP. Furthermore, if f z
ext is

comparable to the robot weight, it reduces the acceleration

effects. An intuitive way to interpret this is that the added

weight lowers the CoM of the combined (robot and object)

system, as shown in Fig. 5. Here, a 150N force is pulling the

robot forward. To compensate it, the WPG produces a posture

change. On the right image, a 500N weight is also added. The

end result is a less drastic posture change output by the WPG.

From this, we see that carrying heavier objects actually helps

the humanoid stability (assuming the robot motors can handle

the extra load).

Concerning whole body control, we present simulations on

the designed pregrasp and squeezing postures output by (38).

For these, we must define the control frame poses pgr, i on

the surface of the robot body parts (e.g. shoulder, chest,

hands, etc.), and compute the corresponding Jacobians. Some

postures have been shown in Fig. 3. However, due to hardware

issues (broken wrist joint), we also had to design one-handed

versions of these, shown in Fig. 6, along with a grasping

motion of the hand (bottom figures). On the HRP-4 hand, the

thumb is controlled by one motor, and the four other fingers are

actuated together by a second motor. Hence, the four fingers

open and close together during squeezing, and this motion is

defined by a single joint position. Another point of interest is

the left arm motion in the front-wrap squeezing (middle right

in Fig. 6). This is caused by objective function fsp(x, cdes)
in (38)), which keeps the ground projection of the CoM near

the center of the support polygon. Since the squeeze motion

Fig. 5. Screenshots of two simulations with 150N force pulling the robot
forward. In the simulation on the right, a downward vertical force component
of 500N is also added.

Fig. 6. One-handed pregrasp (left) and squeezing (right). Top to bottom:
shoulder-mounted body grasp, front-wrap body grasp, and right hand grasp.

moves the chest frame forward, the QP solver uses the left

arm to realize this objective.

For integrating the walk and the whole-body controller,

recall that at each instant the WPG (be it follower (14)

or leader (17)) provides a reference CoM position, velocity

and acceleration. In Fig. 7, we compare the CoM and ZMP
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positions, as requested by the WPG (here: leader, with no

external forces) and as achieved by the whole body controller.

The plot shows that the CoM is tracked well enough and that

the robot is actually walking at 0.1m.s−1, as requested. As

for the ZMP, the approximation of null angular momentum

rate leads to the slight tracking error visible in the figure.

Nevertheless, our tests (both dynamic simulations and real

experiments) show that this ZMP tracking error does not affect

robot balance.
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Fig. 7. Tracking task of the CoM using the WPG-generated reference CoM
along with a comparison of the resulting ZMP.

Lastly, we present simulations of walking as leader, while

holding (Section V-D4). Image sequences of walking while

holding using two-handed front-wrap, and shoulder-mounted

body grasps, are respectively shown in Figures 8 and 9.

Although only some chosen examples are illustrated, either of

the two WPG may be used, along with any of the grasps. These

examples demonstrate that we are capable of properly servoing

the CoM, while maintaining the desired robot posture.

Fig. 8. Walking while holding, using a front-wrap body grasp.

Fig. 9. Walking while holding, using a shoulder-mounted body grasp.

B. Real robot experiments

After having verified the framework in simulation, we

moved on to experiments on the real HRP-4. Representative

tests are shown in the video, attached to this paper, and

available at: https://youtu.be/lHG4AbAvt 4. Screenshots are

also shown in Fig. 10. The figure shows (left to right, top

then bottom): shoulder-mounted box carrying as leader, front-

wrap box carrying as leader, hand grasped stretcher carrying as

follower, and hand grasped bucket carrying as follower. These

correspond to four of the six examples introduced in Fig. 1. All

four collaborative carrying scenarios were successful, with the

robot acting as both leader and follower. For the two missing

examples: first, table carrying (first scenario in Fig. 1) was

validated in our previous work [19], [22], [27], [55]; second,

the example requiring a side body grasp (fifth scenario in

Fig. 1) is kinematically infeasible for HRP-4, as stated in

Section V-E.

Fig. 10. Experiments with HRP-4 carrying various objects with a human.
Top: 15N carton box, bottom left: 13N stretcher, bottom right: 8N bucket

Relevant data from the stretcher carrying task, with the robot

walking as follower (bottom left in Fig. 10), are shown in

Fig. 11. The top plot shows the CoM and ZMP reference

signals, generated by the WPG (14), together with the mea-

sured values. A significant difference, due to impact, is only

observed on contact transitions (footsteps). Meanwhile, the

bottom figure shows the forward (pulling) component of the

interaction force, measured by the two wrist force sensors, and

then low-pass filtered and transformed to the CoM frame, f x
ext.

Note the pause in the walk (top figure), around the 13 to 15

second mark, corresponding to a strong decrease of interaction

force (since the human stopped). Throughout the experiment,

the CoM and ZMP reference values are properly adapted to

the external force, as the robot follows the human.
Furthermore, Fig. 12 shows the raw force/torque sensor data

in the corresponding force sensor frames. In such frames,

the x component roughly corresponds to the object weight,

showing the robot is carrying around 10N per hand throughout

the experiment. According to our prior calibration data, each

hand weighs 7N . Therefore, the robot is supporting a total

of 6N of the stretcher weight which is about 13N , hence

it is approximately sharing the load with the human. The y

https://youtu.be/lHG4AbAvt_4
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Fig. 11. Data from a stretcher carrying scenario with the robot walking as
a follower. Top: reference and actual CoM and ZMP (as generated by the
WPG). Bottom: forward (pulling) component of the interaction force.

component roughly corresponds to the previously discussed

interaction force in Fig. 11. Finally, the z component coincides

with the grasping forces applied on the stretcher in between

both hands. This remains around 5N throughout the test.
These results show that the overall approach works well,

although force sensing is available only at the robot wrists,

and not at the other contact points (e.g., on the shoulder and

chest). The grasp stability could be improved, if force/contact

sensing was available on other body parts.

VII. CONCLUSION

This article explores several aspects of human-humanoid

collaborative carrying. We started by looking at this task as a

whole, to infer the core principles, in order to program them

on a humanoid robot. To this end, we created a Finite State

Machine, encompassing all of the necessary subtasks. Next,

we revisited locomotion and balance in relation to physical

interaction. For this, we designed two walking pattern genera-

tors that not only take into account the physical interaction
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Fig. 12. Raw force/torque sensor data from a stretcher carrying scenario with
the robot walking as a follower. Top: left hand. Bottom: right hand.

constraints, but also use them accordingly, to operate as a

follower or leader. Then, we discussed how all of this can

be designed as objectives and constraints of an optimization

problem for a whole-body controller. We finally presented

simulations and real test cases on the HRP-4 humanoid.

Although our approach proved successful, there are still

several areas that can be largely improved with future works.

Firstly, one key issue, outlined by the real experiments, is the

need for force estimation. Related to this, we outlined the

need for distributed force sensing on the entire robot body,

instead of only on the wrist. Distributed tactile sensors can

improve body grasps as tested with the HRP-2 in [62]. Another

key improvement concerns the wrench prediction model for

better proactive behaviors. A current limitation is that the

wrench is simply predicted to be constant over the preview

horizon. However, since we believe the framework is very

well suited for including proactivity, a better perceptual model

is necessary. This requires integrating human perception for

intention recognition, a difficult challenge, but also an active



12

research area in physical human-robot interaction. Concerning

the walk, although the WPG presented here is simplified, its

core concepts do not conflict with improvements such as those

in [63] which add robustness, allowing stair climbing. Another

possible direction for future investigation in WPG design is

addition of the terminal capturability constraint as indicated

in Section IV-C. Apart from improving the WPG itself, its

integration in whole-body control can also be improved, with

works such as [49] which aims at combining the separate

QPs. Lastly, a limiting factor for our real experiments was

the low-level closed loop stabilizing controller of the HRP-4,

which modifies the final joint references sent to the robot actu-

ators [64]. To solve this, a dedicated stabilizer, consistent with

our framework, should be designed. Finally, once the system

is improved in terms of performance, user-related studies, with

several different users (possibly also instrumented) is worthy

of investigation.
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[20] A. Mörtl, M. Lawitzky, A. Kucukyilmaz, M. Sezgin, C. Basdogan, and
S. Hirche, “The role of roles: Physical cooperation between humans and
robots,” Int. Journal of Robotics Research, vol. 31, no. 13, pp. 1656–
1674, 2012.

[21] P. Evrard and A. Kheddar, “Homotopy switching model for dyad haptic
interaction in physical collaborative tasks,” in EuroHaptics Conference

and Symposium on Haptic Interfaces for Virtual Environment and

Teleoperator Systems, pp. 45–50, IEEE, 2009.
[22] A. Bussy, P. Gergondet, A. Kheddar, F. Keith, and A. Crosnier, “Proac-

tive behavior of a humanoid robot in a haptic transportation task with
a human partner,” in IEEE Int. Symposium on Robot and Human

Interactive Communication, pp. 962–967, 2012.

[23] P. Evrard and A. Kheddar, “Homotopy switching model for dyad
haptic interaction in physical collaborative tasks,” in IEEE International

Symposium on Robot and Human Interactive Communication, (Toyama,
Japan), pp. 1–6, Sept. 27 2009-Oct. 2 2009.

[24] S. Ikemoto, H. B. Amor, T. Minato, B. Jung, and H. Ishiguro, “Physical
Human-Robot Interaction: Mutual Learning and Adaptation,” IEEE

Robotics Automation Magazine, vol. 19, pp. 24–35, Dec 2012.
[25] J. R. Medina, T. Lorenz, and S. Hirche, “Synthesizing Anticipatory

Haptic Assistance Considering Human Behavior Uncertainty,” IEEE

Trans. on Robotics, vol. 31, pp. 180–190, Feb 2015.
[26] C. E. Madan, A. Kucukyilmaz, T. M. Sezgin, and C. Basdogan,

“Recognition of Haptic Interaction Patterns in Dyadic Joint Object
Manipulation,” IEEE Trans. on Haptics, vol. 8, pp. 54–66, Jan 2015.

[27] D. J. Agravante, A. Cherubini, A. Bussy, P. Gergondet, and A. Kheddar,
“Collaborative Human-Humanoid Carrying Using Vision and Haptic
Sensing,” in IEEE Int. Conf. on Robotics and Automation, 2014.

[28] A. Herdt, H. Diedam, P.-B. Wieber, D. Dimitrov, K. Mombaur, and
M. Diehl, “Online walking motion generation with automatic footstep
placement,” Advanced Robotics, vol. 24, no. 5-6, pp. 719–737, 2010.

[29] N. Mansard, O. Stasse, P. Evrard, and A. Kheddar, “A versatile gen-
eralized inverted kinematics implementation for collaborative working
humanoid robots: The stack of tasks,” in International Conference on

Advanced Robotics, pp. 1–6, IEEE, 2009.
[30] D. J. Agravante, A. Sherikov, P. B. Wieber, A. Cherubini, and A. Khed-

dar, “Walking pattern generators designed for physical collaboration,”
in IEEE Int. Conf. on Robotics and Automation, 2016.

[31] M. Cutkosky, “On grasp choice, grasp models, and the design of hands
for manufacturing tasks,” IEEE Trans. on Robotics and Automation,
vol. 5, pp. 269–279, Jun 1989.

[32] J. Vaillant, A. Kheddar, H. Audren, F. Keith, S. Brossette, A. Escande,
K. Bouyarmane, K. Kaneko, M. Morisawa, P. Gergondet, E. Yoshida,
S. Kajita, and F. Kanehiro, “Multi-contact vertical ladder climbing with
an HRP-2 humanoid,” Autonomous Robots, vol. 40 (3), pp. 561–580,
2016.

[33] M. Johnson, B. Shrewsbury, S. Bertrand, T. Wu, D. Duran, M. Floyd,
P. Abeles, D. Stephen, N. Mertins, A. Lesman, J. Carff, W. Rifenburgh,
P. Kaveti, W. Straatman, J. Smith, M. Griffioen, B. Layton, T. de Boer,
T. Koolen, P. Neuhaus, and J. Pratt, “Team IHMC’s Lessons Learned
from the DARPA Robotics Challenge Trials,” Journal of Field Robotics,
vol. 32, no. 2, pp. 192–208, 2015.

[34] S. Feng, E. Whitman, X. Xinjilefu, and C. G. Atkeson, “Optimization-
based Full Body Control for the DARPA Robotics Challenge,” Journal

of Field Robotics, vol. 32, no. 2, pp. 293–312, 2015.
[35] A. Herzog, N. Rotella, S. Mason, F. Grimminger, S. Schaal, and

L. Righetti, “Momentum control with hierarchical inverse dynamics
on a torque-controlled humanoid,” Autonomous Robots, vol. 40, no. 3,
pp. 473–491, 2015.

[36] S. Kuindersma, R. Deits, M. Fallon, A. Valenzuela, H. Dai, F. Permenter,
T. Koolen, P. Marion, and R. Tedrake, “Optimization-based locomotion
planning, estimation, and control design for the atlas humanoid robot,”
Autonomous Robots, vol. 40, no. 3, pp. 429–455, 2016.

[37] K. Bouyarmane and A. Kheddar, “Using a multi-objective controller to
synthesize simulated humanoid robot motion with changing contact con-
figurations,” in IEEE/RSJ Int. Conf. on Intelligent Robots and Systems,
pp. 4414–4419, Sept 2011.

[38] A. Escande, N. Mansard, and P.-B. Wieber, “Hierarchical quadratic pro-
gramming: Fast online humanoid-robot motion generation,” Int. Journal

of Robotics Research, 2014.



13

[39] J. Nocedal and S. Wright, Numerical Optimization. Springer Series in
Operations Research and Financial Engineering, Springer, 2000.

[40] H. Audren, J. Vaillant, A. Kheddar, A. Escande, K. Kaneko, and
E. Yoshida, “Model preview control in multi-contact motion-application
to a humanoid robot,” in IEEE/RSJ Int. Conf. on Intelligent Robots and

Systems, pp. 4030–4035, Sept 2014.

[41] P.-B. Wieber, R. Tedrake, and S. Kuindersma, “Modeling and control
of legged robots,” in Springer handbook of robotics (B. Siciliano and
O. Khatib, eds.), ch. 48, Springer, second ed., 2015.

[42] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi,
and H. Hirukawa, “Biped walking pattern generation by using preview
control of zero-moment point,” in IEEE Int. Conf. on Robotics and
Automation, vol. 2, pp. 1620–1626, 2003.

[43] N. Hogan, “Impedance control - An approach to manipulation. I -
Theory. II - Implementation. III - Applications,” ASME Transactions

Journal of Dynamic Systems and Measurement Control B, vol. 107,
pp. 1–24, Mar. 1985.

[44] S. Erhart, D. Sieber, and S. Hirche, “An impedance-based control
architecture for multi-robot cooperative dual-arm mobile manipulation,”
in IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2013.

[45] M. Murooka, S. Nozawa, Y. Kakiuchi, K. Okada, and M. Inaba, “Whole-
body pushing manipulation with contact posture planning of large and
heavy object for humanoid robot,” in IEEE Int. Conf. on Robotics and

Automation, pp. 5682–5689, May 2015.

[46] W. Chung, L.-C. Fu, and S.-H. Hsu, “Motion Control,” in Springer

handbook of robotics (B. Siciliano and O. Khatib, eds.), ch. 6, pp. 133–
159, Springer, 2008.

[47] D. Dimitrov, P.-B. Wieber, H. J. Ferreau, and M. Diehl, “On the
implementation of model predictive control for on-line walking pattern
generation,” in IEEE Int. Conf. on Robotics and Automation, 2008.

[48] J. B. Rawlings and D. Q. Mayne, Model Predictive Control: Theory and
Design. Nob Hill Publishing, 2009.

[49] A. Sherikov, D. Dimitrov, and P.-B. Wieber, “Whole body motion
controller with long-term balance constraints,” in IEEE-RAS Int. Conf.

on Humanoid Robots, pp. 444–450, Nov 2014.

[50] N. Bohórquez, A. Sherikov, D. Dimitrov, and P.-B. Wieber, “Safe
navigation strategies for a biped robot walking in a crowd,” in IEEE-RAS

Int. Conf. on Humanoid Robots, pp. 379–386, 2016.

[51] A. Sherikov, Balance preservation and task prioritization in whole body

motion control of humanoid robots. PhD thesis, Communauté Université
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