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Human-Humanoid Collaborative Carrying
Don Joven Agravante, Andrea Cherubini, Alexander Sherikov,

Pierre-Brice Wieber and Abderrahmane Kheddar, Senior Member, IEEE

Abstract—This paper contributes to the field of physical
human-robot collaboration. We present a complete control frame-
work which aims at making humanoid robots capable of carrying
objects together with humans. Firstly, we design a template
identifying the primitive subtasks necessary for collaborative
carrying. Then, these subtasks are formulated as constrained
optimization problems for controlling the whole-body motion of
a humanoid robot. The subtasks include two walking pattern gen-
erators that account for physical collaboration, as well as posture
and grasping controllers. Finally, we validate our framework in
a variety of collaborative carrying experiments, using the HRP-4
humanoid robot.

Index Terms—Physical human-robot interaction, humanoid
robotics, task-space optimization control.

I. INTRODUCTION

PHYSICAL human-robot collaboration implies that the
interaction forces between the human and robot must be

used to achieve a common goal. In this regard, humanoid
robots provide many advantages when working together with
humans to perform various tasks. Humans learn to physically
collaborate with one another from daily experiences. There-
fore, a humanoid with a similar range of motion and sensing
has the potential to be an intuitive interface. Within physical
collaboration, carrying objects with a human in various pos-
tures and situations is a problem that is rich, unexplored and
has high potential for practical application.

Early work on enabling human-humanoid carrying was done
in [1] via the Humanoid Robotics Project (HRP), where the
HRP-2P humanoid cooperates with a human for a panel trans-
portation task. Disregarding the legged aspect, even earlier
work in this topic was done in [2]. The authors used mobile
manipulator robots as in [3], with wheels instead of legs. That
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work revealed an important issue: coordinating the motion of
the mobile base with that of the upper robot body and with
the human intention (generally represented by the interaction
force). More recent examples of collaborative carrying mo-
bile manipulators include [4], [5], [6]. Although these works
discuss the handling of interaction forces and coordination,
balance and integrity constraints handling is missing. Indeed,
as discussed in [7], [8], even wheeled robots can fall over in
challenging scenarios. One of the main contributions of this
paper is to tackle the coupling of balanced legged locomotion
and collaborative manipulation.

The task of collaborative carrying has also been tested on
small scale humanoid platforms, e.g., NAO in [9]. However [9]
focused on the use of internal sensors, instead of the wrist
force/torque sensors commonly used in physical human-robot
interaction. NAO is also used in [10], where the capture
point [11], [12] guides walking; a different more robust variant
of this idea is detailed in [13] with iCub. A similar work
is [14], where Darwin robots carry a stretcher (no human
is participating). When only robots are used, e.g. [15], the
interest is turned to multi-robot synchronization and commu-
nication. Both multi-robot and human aspects are considered
in [16], while [17] addresses table lifting with NAO, using
machine learning to improve interaction.

Understanding and improving physical human-robot inter-
action is a very broad and active research field. For exam-
ple, [18], [19], [20], [21], [22], [23] study human-human haptic
interaction and apply it to human-robot teams. Role allocation
and role switching (e.g., between leader and follower) have
been studied in [24], [20], [25]. The common ground of
these methods is to infer human intention and steer the
robot to a proactive or versatile physical interaction behavior.
The authors in [26] address mutual learning and adaptation,
whereas [27] focuses on the uncertainty of human behavior
prediction. Haptic interaction recognition using supervised
learning is presented in [28]. A bounded memory model is
investigated in [29] for human-robot adaptation. Recently,
differential game theory is used to design an observer of
human control strategy [30]. All these works, and others, can
constitute a plugin brick in follower/leader role allocation in
the control scheme we propose, see Sec. VI-C.

Our previous framework, specific to table carrying [31],
could not be extended to any posture (and therefore objects),
since the used walking pattern generator (WPG) [32] and
whole-body controller considered the center of mass (CoM)
to be coincident with the robot waist. Hence, any posture
moving the CoM away from the waist (e.g. extending the
arms or leaning with the chest) would fail. More generally, the
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WPG of [32] worked well for stand-alone walking, but was
not designed for physical interaction, as explained in [33].

Given these limitations, we reformulate the entire pipeline to
have a generic framework for humanoid collaborative carrying
with viable perspective/view on how to generate humanoid
motion under postural constraints (dictated by the object to
be carried jointly and the taxonomy of the task), and under
sustained external forces (that can no longer be considered
as external ‘perturbations’), and with either leader or follower
behaviors (that can be sequenced smoothly or combined at
will). In particular, our contributions are:

• While various pHRI controllers have been proposed for
robotic arms or task-space leader/follower pHRI, our
work is the first to go beyond in expanding pHRI control
to walking pattern gaits. This enables walking under
sustained forces in either leader or follower modes that
can be sequenced or combined at will. .

• Subsequently, our work is also the first to explicitly
integrate the force wrench inherent to pHRI in the
model predictive formulation of this new walking pattern
generator. We detail the modeling choices and, more
importantly, the integration with whole-body control.

• Our whole-body framework can simultaneously and uni-
formly account for both walking and carrying under pos-
tural constraints. We explain how collaborative carrying
can be formulated and implemented as an optimization
problem.

• The framework is validated in a series of experiments on
the HRP-4 humanoid robot, with a variety of robot roles
(leader/follower), grasp types (hand/body) and carried
objects (different shapes and sizes).

• We provide the source code of all these components.
We structured the paper as follows. Section II presents

the collaborative carrying taxonomy, along with the required
primitive subtasks. Section III provides a review of task-space
control using quadratic optimization which is used throughout
our work. The walking pattern generators accounting for
physical interaction are presented in Section IV. Section V
describes our optimization framework for whole-body control.
Finally, Section VI presents the experimental validation.

II. THE TASK OF COLLABORATIVE CARRYING

To understand collaborative carrying, we take inspiration
from how humans do it. This is done by creating a taxonomy,
i.e., an abstraction layer that provides a scaffold for our
control optimization framework. Then, we design a Finite
State Machine (FSM) accounting for all collaborative carrying
subtasks in order to map each state to an optimization problem.

A. A taxonomy of collaborative carrying

We consider the problem of having a pair of agents, whose
goal is to move a specified object from one location to another.
Figure 1 shows several real examples of human-human collab-
orative carrying (left), with the corresponding simulations of
what we envision with a humanoid robot collaborator (right).

Fig. 1. Collaborative carrying examples (left), with a human avatar and a
humanoid robot mimicking the corresponding postures (right). These figures
are merely illustrative, since some postures may be unfeasible due to joint
range limitations in the real HRP-4 humanoid platform (e.g., the fifth posture
from the top is unfeasible on humanoid robot HRP-4, because of the body
grasp configuration).
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We assume that neither object nor agent composition can be
changed afterwards, and consider the following relationships:

• Agent-object relation (grasp type). We consider two
broad classes of grasp types: hand grasps and body
grasps. Hand grasps are those with contact points located
uniquely on the hand/gripper [34]. Body grasps are those
that utilize grasp contacts on body parts not limited to
the hand (e.g., arms, torso, see Fig. 1).

• Agent-agent relation (relative pose). In our taxonomy, we
relate this to the inter-agent communication modes, touch
and vision. For translations, we check whether direct
touch between the agents is possible (near relation) or
not (far). For the orientation, we consider the agents’
Field Of View (FOV), specifically: the nominal (when
the perceiving agent is in a resting position), and the
extended (as the agent looks around, by moving its body)
FOV. Then, we can classify agents as facing front (other
agent in the nominal FOV), side (other agent not in the
nominal but in the extended FOV), back (other agent not
in the extended FOV).

All six scenarios of Fig. 1 can be easily classified according
to the proposed taxonomy. But more importantly, we are con-
cerned with the practical implications of using the taxonomy
to program a humanoid robot.

B. Collaborative carrying as a Finite State Machine

To make a robot capable of collaborative carrying, we must
decompose this complex task into subtasks that are easier to
program. Formally, we use an FSM to describe the whole task,
with subtasks as states. The FSM should be general enough
for all cases encompassed by the taxonomy. The FSM that we
create is specific to our experiments and hence minimalistic
as our aim is to conduct the experiment assuming no gross
variations in the setting conditions. Only light uncertainties in
contact, sensing... are handled in the detailed implementation.
However, the FSM is open to be programmed to handle cases
where things could turn wrong. The current limitation however
is that every unlucky situation should be programmed a priori
(and this is not realistic either).

A useful decomposition is one where the states can be
easily mapped to optimization problems. We first consider
the state transitions. These should include brief periods where
the motion is minimal. We assume that the robot is in quasi-
static state (i.e., dynamic effects can be disregarded), with
discrete changes in its contact state. The state transitions
can be triggered either by relevant sensed variables (when
available), or by human input (in case of shared autonomy).
Considering this, a collaborative carrying FSM is shown in
Fig. 2.

While walking, the feet contacts occur in a predictable
pattern that can be used to define the walking states: left/right
single support, and double support. To decompose grasping,
we need a pregrasp posture, i.e., a waypoint between grasping
and the other states. The next state, squeeze, moves the robot to
generate predefined contacts between its body and the object.
Figure 3 shows the pregrasp and squeezing postures for two
body grasps. The hold state maintains the contacts between

Fig. 2. Detailed FSM for collaborative carrying, with each state/subtask
corresponding to an optimization problem, and arrows indicating transitions
between states.

robot and object. Note that it must be active throughout the
carrying walk. Finally, the release state, is simply the inverse
of squeeze. Force or tactile sensors, when available, can trigger
transitions between these states.

Fig. 3. Two examples of “body grasps”: pregrasp (left) and squeeze (right).

Figure 4 shows how the various parts of the framework fit
together, and which section of the paper details which part.
The active state in the FSM of Fig. 2 defines the subtask
to be realized by the robot. Each subtask corresponds to
two quadratic optimization problems (see Sec. III), one to
be solved by the walking pattern generator (WPG), and a
second one to be solved by the whole body controller (WBC).
Specifically, the WPG (described in Sec. IV) computes the
desired center of mass and footstep positions, depending
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on: the subtask, the robot role (leader or follower), and the
external wrench. Then, the desired center of mass and footstep
positions, along with the subtask to be realized, are input to
the WBC (described in Sec. V) that yields the joint commands
to be sent to the robot.

Finite	State	
Machine	
(FSM)	
	

Sect.	II	

Walking	Pa5ern	
Generators	(WPG)	

	
Sect.	IV	

Whole	Body	
Control	(WBC)	

	
Sect.	V	

	
Robot	
	

subtask	 Joint	
controls	

CoM	
footsteps	

Robot	role	(leader/follower)	

External	wrench	

Fig. 4. Block diagram of the overall collaborative carrying framework (CoM:
Center of Mass).

III. INTRODUCTION TO QUADRATIC OPTIMIZATION

Recently, optimization-based approaches have shown to be
very effective for controlling humanoid robots. This is true for
both WPG [35] and WBC, e.g. [36]. In general, we seek the
robot control input, represented by the optimization argument
x that minimizes a collection of objective functions, subject
to various constraints (from the robot hardware, environment,
and task).

The formalism chosen here is largely based on [37]. We con-
sider a weighted quadratic programming formulation which
allows to use the L2 norm to define a number of objective
functions fi(x):

fi(x) = ∥Aix− bi∥2 , (1)

so that all optimization problems are of the form:

argmin
x

∑
i

wi ∥Aix− bi∥2 (2a)

subject to Acx ≦ bc. (2b)

The control input x is defined via the objectives (2a), which
are regarded in accordance to their scalar weights wi > 0.
Equality and inequality constraints must also be satisfied; for
the sake of space and readability, these are both expressed in a
compact form (2b). When this is not possible, the optimization
problem is infeasible and the constraints are said to be in
conflict. Infeasibility can be accounted for, by relaxing the
conflicting constraints as is common in hierarchical optimiza-
tion [38], or as explained later in the paper for individual
optimization problems.

Formulation (2) allows the use of off-the-shelf Quadratic
Programming (QP) solvers implementing efficient algorithms
and suitable for real-time applications [39].

The limitation of weighted-priority task space formulations
is in the difficulty in automating or having a systematic
procedure for tuning the weights wi among the tasks in the cost
function. This has to be done ad-hoc in all our experiments
and some gains may even changed depending on the state in
which the robot is operating.

IV. WALKING DESIGNED FOR PHYSICAL COLLABORATION

In robotics, walking has historically been treated separately
from manipulation. However, manipulation and locomotion
must be consistent, in particular during collaborative carrying.
Eventually, both need to be thought of as parts of the whole-
body control problem (discussed in the next section). In this
section, we revisit the modeling of walking pattern generators
(WPG), and redesign them with physical collaboration in
mind. This section was partially published in [33]. Here, we
recall the main points, namely the addition of the external
wrench into the model, and the design of objectives and con-
straints, based on this wrench. Additionally, we better specify
the usage of our new WPG in the collaborative carrying task.

A. Modeling

First, we use a centroid-based dynamic model accounting
for physical interaction. Three possible versions of such mod-
els were proposed in [40]:

1) a model with full knowledge of object and/or human that
considers robot, human and object as a single system,

2) a model that considers the effects of the object and/or
human as external wrenches applied at their contact
locations,

3) a model that considers the effects of the object and/or
human as external wrenches applied on the robot CoM.

The first model can be used (as was done in [40]) in simulation
to control the robot, while having perfect knowledge of each
subsystem (human, robot, object). However, for real applica-
tions with a human in the loop, it requires excessive processing
and sensing, and is practically unfeasible. The second option
yields a non-linear model, that is much more complicated than
an inverted pendulum. Since contact due to physical interaction
between the object-human and the robot does not contribute
to locomotion (i.e. the contact does not support locomotion,
but the robot still has to deal with it1), we opt for the third
model. That is, we use an inverted pendulum subject to an
external force for its simplicity and generality in terms of
implementation on a real humanoid robot.

The development of this reduced model is inspired by [35],
and described in [33]. We separate the foot/ground contact
forces from other interaction contact forces that are denoted
by h = [f⊤ n⊤]⊤ ∈ R6. This represents the external
wrench (from the carried object weight and from the human
collaborator), and is expressed in a fixed orientation frame
placed on the Center of Mass (CoM), c. As is common in the
literature [32], [41], we aim at keeping the center of pressure z
(also known as Zero Moment Point, ZMP) within the support
polygon (i.e., the convex hull of the feet contact points). We
assume that the robot is walking on a flat horizontal ground
and that the angular momentum is constant. We also set
the CoM at constant height cz. Although this is a common
assumption, recent Walking Pattern Generators – that relax
such constraint – could also be used in our framework.

1As a result, the humanoid built-in stabilizer for standalone walking is
perturbed. In fact, a novel stabilization scheme could account for such a
contact to be less conservative; this constitutes interesting future work.
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Newton and Euler equations yield the following relationship
between CoM and ZMP:

zx,y = cx,y −

(
cz

gz − f z

m

)
c̈x,y

+

[
0 1
−1 0

](
nx,y

mgz − f z

)
+

(
czf x,y

mgz − f z

)
,

(3)

with m the robot mass and g the gravity vector. In the absence
of an external wrench, this becomes:

zx,y = cx,y −
(
cz

gz

)
c̈x,y, (4)

From (3), we can infer that a heavier robot, lower CoM height
or an external force aligned with the CoM, will all reduce the
effects of the external wrench.

To generate smooth motions of the CoM, we assume its
trajectory to be differentiable three times. Having defined:
ĉk = [cxk ċxk c̈xk cyk ċyk c̈yk ]⊤, uk = [

...
c x
k

...
c y
k]

⊤, and
fk = [ny

k fx
k nx

k fy
k ]

⊤, we can obtain the following time-
varying discrete time linear model:

ĉk+1 =Γkĉk +Υkuk

zk+1 =Φk+1ĉk+1 +Ψk+1fk+1

=Φk+1Γkĉk +Φk+1Υkuk +Ψk+1fk+1,

(5)

with matrices Γk, Υk, Φk+1 and Ψk+1 derived from (3) and
detailed in [33]. Based on this model, we can now formulate
the walking pattern generators.

B. Model predictive control for walking

Model Predictive Control (MPC) consists in controlling a
system so that future states are taken into account. A common
MPC methodology consists in iteratively applying the model
over N discrete steps (noted k = 1 . . . N ), resulting in a new
problem formulation where the predicted states are a function
of the current state and of the current and future control inputs.

Since the CoM trajectory is differentiable three times, we
control it through the CoM jerk. Then, to apply MPC, we
define:

• the control input x =
[
ũ⊤ r̃⊤

]⊤
, with ũ and r̃ the

concatenation, over the preview horizon, respectively of
the CoM jerk uk and of future foot landing positions
(footsteps), expressed in a local frame placed at the
preceding foot;

• the system state c̃ as the concatenation of ĉk;
• the system output z̃G as the concatenation of zk;
• the predicted external wrench f̃ as the concatenation of

fk+1, considered a perturbation or part of the control
input, depending on the WPG design (see below).

Then, propagating (5) over the preview horizon yields:{
c̃ =Uxĉ0 +Uuũ

z̃G =Oxĉ0 +Ouũ+Of f̃ ,
(6)

where matrices Ux,Uu,Ox,Ou,Of can be obtained as
in [32]. We then express the second equation of (6) in terms
of the foot landing positions, as in [32]. This is done by
expressing the global ZMP positions z̃G through the ZMP

positions z̃ in local coordinates of the supporting foot such
that:

z̃G = Vr0 +Vr̃+Rz̃, (7)

where r̃ is a vector of future foot landing positions expressed
in a local frame assigned to the preceding foot positions. The
expression Vr0 + Vr̃ produces positions of the feet in the
global reference frame. Lastly, R is a block diagonal matrix
of the feet rotation matrices. This is also detailed in [32].

We can rewrite (6) and (7) as:
c̃ =

[
Uu 0

] [ũ
r̃

]
+Uxĉ0

z̃ =R⊤ [Ou −V
] [ũ

r̃

]
+R⊤

(
Oxĉ0 +Of f̃ −Vr0

)
,

(8)
or more concisely as:

c̃ =Sx+ s

z̃ =Szx+ sz.
(9)

As argument of the optimization problem (2) we use x.
Then, the objectives and constraints common to both WPG
formulations are listed below.

• The CoM jerk is minimized to smoothen the trajectory.
This is done via objective function:

fcom(x) = ∥ũ∥2 =
∥∥[I 0

]
x
∥∥2 . (10)

• The distance between ZMP and foot center is minimized
to increase the stability margin (since unknown distur-
bances could push the ZMP away from the target):

fzmp(x) = ∥z̃∥2 = ∥Szx+ sz∥2 . (11)

• The ZMP should be maintained within the support poly-
gon (with security margins) using the constraint2:

z̃ ≤ z̃ ≤ z̃. (12)

Using (9) to expose the argument:

z̃− sz ≤ Szx ≤ z̃− sz. (13)

• The feet positions should be constrained:

r̃ ≤ r̃ ≤ r̃. (14)

Since r̃ is part of the argument, this can be written as:

r̃ ≤
[
0 I

]
x ≤ r̃. (15)

Note that objectives (10), (11) are expressed as (1), and
constraints (13), (15) as (2b).

Using (9), we can now design various WPG, suited to dif-
ferent types of physical interaction. In particular, we revisit the
leader and follower modalities [20]. Apart from the common
constraints and objectives cited above, the leader and follower
optimization problems are each characterized by a specific
formulation of the objective function controlling the CoM.
Yet, both walking pattern generators output the CoM jerk and
footsteps over the preview horizon: ũ and r̃. These are then

2Throughout this paper, we denote with x and x lower and upper bounds
(respectively) of variable x.
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processed, to obtain the desired CoM trajectory cdes(t) and
the desired swing foot trajectory rswdes(t) for moving between
consecutive footsteps3.

1) Walking pattern generator for a follower robot:
A follower robot acts based on the leader’s intention. In our
work, this is represented by the external wrench applied by the
carrying partner. Usually, moving the object together implies
only a planar motion such that the intention can be defined
by f x,y. Hence, a follower WPG depends on these. Previous
works [20], [31] have used a damping control by providing a
reference CoM velocity to the WPG which is proportional to
the external force. We extend this to perform more complex
behaviors, by defining the full impedance model [42] of the
follower, with diagonal matrices M, B and K containing the
virtual mass, damping and stiffness parameters:

f x,y = Mc̈x,y +Bċx,y +Kcx,y. (16)

Matrices M, B and K affect the robot response as that of a
second order system. We do not add them to the optimization
argument, as they can be tuned in simulation and from
experiments, see also the interesting work in [43]. Further-
more, since these matrices are multiplied by the states in the
preview horizon, that would lead to a nonlinear optimization
problem, much more challenging for real time control. Using
an impedance parameter matrix Gmbk and a selection matrix
Sf (for choosing either f x or f y), this expression can be
propagated, so that the MPC will aim at minimizing:

ffol(x) =
∥∥∥Gmbkc̃− Sff̃

∥∥∥2 =
∥∥∥GmbkSx+Gmbks− Sff̃

∥∥∥2 .
(17)

Note that by injecting (9), we have expressed this objective
as (1). The optimization problem, including objectives (10),
(11), (17), and constraints (12), (14) is:

argmin
x

wcomfcom(x) + wzmpfzmp(x) + wfolffol(x)

subject to z̃ ≤ z̃ ≤ z̃

r̃ ≤ r̃ ≤ r̃.

(18)

Notice that the future wrench values are required in f̃ , to
make the robot proactive. Having a good model of human
intention can be difficult, but if the force can be measured
(e.g. by a force/torque sensor) at each iteration, we can use
fN = · · · = f1 = f0, with f0 the current measure. This
model is simplistic but it works well in our experiments (see
Sec. VI); possibly because (i) collaborators intuitively avoid
jerky motions (so interaction forces vary smoothly), and (ii)
the current force is measured and fed back to the MPC at
sufficiently high frequency (> 10Hz) for adapting properly
and timely. Developing more refined interaction models would
constitute a whole research theme per se, and will unlikely lead
to any practical improvement.

The core part of the following WPG is impedance (17).
Impedance control has been discussed in the literature several
times since [42]. Recently, [44] discusses it in the context
of collaborative carrying between mobile manipulators. The

3Both trajectories are polynomials with boundary conditions derived from
ũ and r̃.

interested reader can refer to these papers for a more in
depth discussion on impedance control. Here, it suffices to
say that (17) imposes a relation between (interaction) force and
(CoM) motion, which is a mechanical impedance. The novelty
here is in using impedance control in an MPC framework
together with balance constraints for walking (18). Although
its fidelity (i.e., maintaining the imposed force-motion relation)
has been shown in [33], it has inherent limits due to the
balance constraint (which takes priority). The main limiting
factor in (18) is the allowable instantaneous force change
given the ZMP constraints. With some assumptions, this can
be derived from the ZMP equation (3) as shown in [45]. Then,
if the change in applied force is below such allowable limit,
the robot can adjust its posture to handle the sustained force
as shown in the simulations of [33] where up to 150N are
applied to the robot.

2) Walking pattern generator for a leader robot:
For leading, a clear intention is necessary. The robot should
track a reference trajectory, known beforehand. For collabo-
rative carrying, this can be generated by knowing where the
object is and where it will be transported to. A classic way
for tracking a trajectory in operational space [46] is:

c̈x,y = c̈x,yref +B(ċx,yref − ċx,y) +K(cx,yref − cx,y), (19)

where B and K are diagonal gain matrices with positive
elements. This can be reformulated as an objective function,
with an appropriate gain matrix, similar to that of the follower:

flea(x) = ∥Gbk(c̃ref − c̃)∥2 = ∥Gbkc̃ref −GbkSx−Gbks∥2 .
(20)

Furthermore, with the robot acting as leader, the external
wrench should be included in the optimization argument,
expanding it as x = [ũ⊤ r̃⊤ f̃⊤]⊤. The idea is that placing a
part of the external wrench in the argument allows the robot
to use the interaction to balance itself. However, for safety, f̃
should be bounded and minimized:

ffor(x) =
∥∥∥f̃∥∥∥2 =

∥∥[0 0 I
]
x
∥∥2 . (21)

The optimization problem, including again objectives (10),
(11), and constraints (12), (14), becomes:

argmin
x

wcomfcom(x) + wzmpfzmp(x)

+ wforffor(x) + wleaflea(x)

subject to z̃ ≤ z̃ ≤ z̃

r̃ ≤ r̃ ≤ r̃

f̃ ≤ f̃ ≤ f̃ .

(22)

Since f̃ is now part of the argument, objectives and constraints
are still of the forms (1) and (2b), respectively.

C. Feasibility and stability of the MPC

To conclude this section, we provide some insight into the
feasibility of the QP problems (18)and (22). It has already
been reported in [35] that the nominal MPC for walking with
fixed footstep positions and without external forces is always
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feasible. It can be easily demonstrated that this property retains
for the MPC formulations presented here. Perpetual feasibility,
however, does not guarantee that the generated CoM motion
does not diverge, leading to robot fall.

The standard approach to avoid divergence in MPC is to
approximate an infinite preview horizon [47], for instance:

• It is possible to impose a terminal, so-called capturability,
constraint to ensure that within a particular preview
horizon the system can be stopped, e.g. [48]. Such
constraint effectively prevents divergence, but may lead
to infeasibility of the considered optimization problems.
A detailed discussion of this topic can be found in [49].

• The second option is to use a “long enough” preview hori-
zon, as justified in [50]. A bulk of previous works [11],
[20], [32], [41], [51], [31] validated this approach in
practice and reached a consensus on the length of the
preview horizon, which should span 2 footsteps (the time
horizon is less important than the number of footsteps in
practical implementations).

We use the second approach for the sake of simplicity; it was
proven to be sufficient. In future works, it may be interesting
to study the possibility of using a terminal constraint to allow
the robot to resist excessive force applied by the human. For
example, while following the human using (18), the robot may
be led to a fall. In this case, switching to (22) would allow
the robot to regain balance by resisting the human.

V. WHOLE-BODY CONTROL FOR COLLABORATIVE
CARRYING

The previous sections provided important building blocks
for the collaborative carrying task. This section aims at wrap-
ping everything together into coordinated whole-body motions.
For instance, to generate the described walks, the WPG
results cdes(t) and rswdes(t) (respectively CoM and swing foot
desired trajectory) must be mapped to robot joint commands,
q. To explain how this is done, we start by recalling the
optimization-based whole-body control framework developed
in our research group [37]. Next, recurrent objectives and
constraints are presented. Finally, we explain how all the com-
ponents are assembled to realize the collaborative carrying.

A. Whole-body control as an optimization problem

To start detailing our whole-body control framework, we
define the optimization argument in (2) as:

x =

[
q̈
λ

]
. (23)

Here, q defines the robot configuration, i.e. the joint positions
along with the floating-base representation, and λ is the vector
of linearized friction cone base weights. This is defined so that
all contact forces fcon stacked in a column vector yield:

fcon = Kfcλ, (24)

with Kfc ∈ R3n×nm a matrix of generators for linearizing the
friction cone (n is the number of contact points, m the number
of generators for linearization).

For each state (i.e., subtask) of the FSM of Fig. 2, we solve
the following optimization problem:

argmin
x

∑
j

wjfbase,j(x) +
∑
k

wkfspec,k(x)

subject to Abasex ≦ bbase

Aspecx ≦ bspec.

(25)

In Section V-B, we present the objectives and constraints
that are recurrent in the collaborative carrying FSM, specif-
ically the tracking and set-point objectives, and the contact
constraint. Then, the base objective functions (fbase), e.g.
posture, and base constraints (Abasex ≤ bbase), e.g. joint limits,
which are applied all along the experiments (and hence are
common to all FSM states), are detailed in Sec. V-C. Instead,
the collection of objectives (fspec) specific to each FSM
state, will be described, along with the specific constraints
(Aspecx ≦ bspec), in Sec. V-D.

In what follows, wξ denotes the weight of task ξ (i.e. the
task function that it multiplies), subscripts pos denote posture,
con is contact, des is desired, spec is specific, base is base, sp is set
point, c is CoM, sw is swing foot, tr is trajectory, gr is grasp, o
is object, sup is support. Others subscripts and variables with
less occurrence are defined at their use.

B. Reusable objectives and constraints

Several objectives and constraints are recurrent in the FSM,
and can be written in re-usable form. For this, let us first define
a task vector in the operational space e (e.g., the pose of any
frame on the robot or on the carried object), and the function
mapping it to robot joint space:

e = fe(q). (26)

Assuming fe is twice differentiable, and naming Je the task
Jacobian:

ė =Jeq̇, (27)

ë =Jeq̈+ J̇eq̇, (28)

we define the tracking task objective as:

ftr(x, edes(t)) =

1

2
∥K(edes − e) +B(ėdes − ė) + (ëdes − ë)∥2 ,

(29)

where edes(t) denotes the desired task trajectory (i.e., it in-
cludes edes, ėdes and ëdes), and K and B are square diagonal
gain matrices with positive values. These can be tuned by
considering the task dynamics equivalent to those of a mass-
spring-damper system with unit mass. Typically, to obtain a
critically damped system, only K needs to be tuned, with
B = 2

√
K. Using (27) and (28), (29) can be written as (2a).

A particular case of the tracking task is the set-point
objective, where only the reference position is considered,
while the reference velocity and acceleration are set to zero:

fsp(x, edes) =
1

2
∥K(edes − e)−Bė− ë∥2 . (30)

Apart from servoing a body part, another common goal is
to keep a certain body part motionless. A common example
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is to keep the feet in contact with the ground. To this end, we
define a contact constraint, by nullifying the acceleration of a
robot point that is in contact with the environment:

ë = 0. (31)

Using (28), this can be written as the equality constraint:[
Je 0

]
x = −J̇eq̇. (32)

C. Base objectives and constraints

1) Base objective functions:
The first base objective function is termed the posture task,
and represented as fpos. This corresponds to positioning joints
at a given posture qdes, with null q̇des and q̈des:

fpos(x,qdes) =
1

2
∥K(qdes − q)−Bq̇− q̈∥2 , (33)

with K and B square diagonal gain matrices with positive val-
ues. Note that this is a typical example of set-point task (30),
obtained with e = q. Exposing the joint accelerations via
numerical integration at each time interval k of duration ∆t:

q̇k+1 =q̇k + q̈k∆t,

qk+1 =qk + q̇k∆t+
1

2
q̈k∆t2,

(34)

it is straightforward to show that objective (33) is of the
form (2a). The goal of the posture task is to have a default
configuration of each joint. Hence, its weight wpos normally
has a low value, to give priority to more important tasks with
higher weights, that will instead induce motion of selected
joints. The second base objective consists in minimizing ∥λ∥2:

fλ(x) = ∥λ∥2 =
∥∥[0 I

]
x
∥∥2 . (35)

As shown in [37], this objective function, joined with (33),
allows an easier numeric solution to the QP problem.

2) Base constraints:
There are four constraints in the base formulation of our
optimization problem (25), namely:

λ ≥ 0 (36a)
τ ≤ τ ≤ τ (36b)
q ≤ q ≤ q (36c)

q̇ ≤ q̇ ≤ q̇, (36d)

τ being the applied joint torques.
Firstly, (36a) ensures that the contact forces are inside the

friction cone (no slipping). This can be formulated as:[
0 I

]
x ≥ 0. (37)

Second, (36b) places bounds on the torques τ . These can be
obtained from the robot dynamic equation:

τ = Hq̈+Cq̇+ τg − J⊤
confcon, (38)

with H and C respectively the inertia and Coriolis/centrifugal
terms taking into account the floating-base [52], τg the torques
due to gravity, Jcon the stacked contact point Jacobian matri-

ces, and fcon the stacked vector of contact forces from (24).
The constraint can then be rewritten:

τ −Cq̇− τg ≤
[
H −J⊤

conKfc
]
x ≤ τ −Cq̇− τg. (39)

The third and fourth constraints, (36c) and (36d), bound joint
positions and velocities. With (34), these become:

q̇− q̇ ≤
[
I∆t 0

]
x ≤ q̇− q̇, (40a)

q− q− q̇∆t ≤ 1

2

[
I∆t2 0

]
x ≤ q− q− q̇∆t. (40b)

Stacking (37), (39), (40a) and (40b), yields the explicit ex-
pressions of Abase, and bbase in (25).

D. Specific objectives and constraints of each FSM state

Here we detail the objectives and constraints specific to each
FSM state. An important aspect concerns the control of the
CoM. In walking FSM states (double support, right and single
support), this is servoed using a tracking task objective (29)
to follow the CoM trajectory output by the WPG (leader or
follower).

That is, cdes(t) and rswdes(t) are both generated by the WPG
detailed in Sec. IV. For all other FSM states, we use a set-
point objective (30) to attract the CoM towards the middle of
the two feet by setting cdes accordingly.

1) Double support:
During the double support state, both feet: rleft, rright, must
maintain contact with the ground, via contact constraints. The
CoM is servoed with a trajectory cdes(t), obtained from the
standard WPG of Sec. IV.

In summary, the whole-body optimization problem is:

argmin
x

wcftr(x, cdes(t)) + wposfpos(x,qdes) + wλfλ(x),

subject to r̈left = 0,

r̈right = 0,

Abasex ≦ bbase.
(41)

2) Right/left single support:
While walking, single support states occur between two con-
secutive double support states. As such, they retain the CoM
trajectory tracking task from the standard WPG. Differently
from double support, only one foot supports the weight and
is constrained to the ground, while the other (swinging) is
servoed in the air to track rswdes(t) (any swing foot desired
trajectory). Hence, the optimization problem is:

argmin
x

wcftr(x, cdes(t)) + wswftr(x, rswdes(t))+

wposfpos(x,qdes) + wλfλ(x),

subject to r̈sup = 0,

Abasex ≦ bbase.

(42)

3) Pregrasping, squeezing and releasing:
The pregrasp, squeeze and release states have the same
formulation, the only difference being their preceding state.
Thus, without loss of generality, we only present the pregrasp.
The pregrasp state is a waypoint state that eases the grasping
by targeting a set of n preplanned pregrasp point locations,
{pgrdes, 1 . . .pgrdes, n}. The synthesis of these locations can be
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formalized either as a stance generation problem [53], or by
considering caging [54]. Here, we assume that a set of stable
grasp point locations is given, along with the corresponding
pregrasp stance, according to the chosen instance of the
taxonomy (grasp type, see Sec. II). For instance, we design
the body grasps shown in Fig. 3 for the pipe-shoulder and
pipe-front examples of Fig. 1. In those cases, we parametrize
the grasp via the contact frames shown in Fig. 3. More
generally, we define n operational frames on the robot body.
The pose of each one, denoted by: pgr, i (i = 1 . . . n), should
be servoed to a desired pose: pgrdes, i. This corresponds to
n set-point objectives (30). Note, from Fig. 2, that pre-grasp
and release are only performed when the robot is standing,
in double support. Thus, both foot contact constraints are
added as well as the set point task on the CoM that is needed
to maintain balance. In summary, the pregrasp, squeeze, and
release optimization problems can all be formulated as:

argmin
x

n∑
i=1

wgr,ifsp,i(x,pgrdes, i) + wcfsp(x, cdes)+

wposfpos(x,qdes) + wλfλ(x),

subject to r̈left = 0,

r̈right = 0,

Abasex ≦ bbase.

(43)

4) Holding the object while lifting, carrying, placing it:
After having successfully squeezed the object, a grasp is main-
tained by the hold state. We chose to formalize this via null
motion constraints between the grasping points on the robot
body. In principle, it is possible to constrain all permutations of
contact pairs. However, if the closed kinematic chains are not
handled properly, this results in numerical issues for the solver.
Instead, we only use n− 1 constraints, defined by all pairs of
points (i, i+ 1), with i = 1, . . . , n−1. This approach does not
impede changes in object configurations (e.g., motions while
holding), but ensures that the grasp form is maintained. This
principle comes from caging [54] where the object being caged
moves along with a properly formed cage. Once the object
is held, it can be considered as part of the robot. We can
then define an operational frame related to the object, o, and
servo its pose via a set-point task fsp(x,odes). We assume here
that odes is provided beforehand, for example by a high-level
plan (as for the grasp points in Sec. V-D3). For collaborative
carrying, the hold state is to be realized while lifting, walking,
and placing (see Fig. 2). In the following paragraphs, we
present the corresponding optimization problems. In each case,
we highlight the components (either in the cost function or
constraints) that vary from one problem to the other.

For holding while lifting and holding while placing, the

optimization problem is:

argmin
x

wofsp(x,odes) + wposfpos(x,qdes)+

+ wλfλ(x) + wcfsp(x, cdes) ,

subject to p̈gr,1 − p̈gr,2 = 0,

...
p̈gr,n-1 − p̈gr,n = 0,

r̈left = 0 ,

r̈right = 0 ,

Abasex ≦ bbase.

(44)

For holding during double support, the optimization prob-
lem is similar, except that wcfsp(x, cdes) is replaced by
wcftr(x, cdes(t)), with cdes(t) output by either the follower or
leader WPG. Therefore, the optimization problem is:

argmin
x

wofsp(x,odes) + wposfpos(x,qdes)+

+ wλfλ(x) + wcftr(x, cdes(t)) ,

subject to p̈gr,1 − p̈gr,2 = 0,

...
p̈gr,n-1 − p̈gr,n = 0,

r̈left = 0 ,

r̈right = 0 ,

Abasex ≦ bbase.

(45)

Finally, for holding during single support, the optimization
problem is:

argmin
x

wofsp(x,odes) + wposfpos(x,qdes)+

+ wλfλ(x) + wcftr(x, cdes(t)) +

+ wswftr(x, rswdes(t)) ,

subject to p̈gr,1 − p̈gr,2 = 0,

...
p̈gr,n-1 − p̈gr,n = 0,

r̈sup = 0 ,

Abasex ≦ bbase.

(46)

Again, cdes(t) can be output by the follower or leader WPG.

E. Note on feasibility

As indicated in Sec. III, conflicts may arise between the QP
constraints. Although constraint relaxation is a viable strategy
to recover from infeasibility, it may result in control inputs
which are either physically inconsistent, or not executable by
the hardware. Other strategies are detailed below.

Object handling motions –pregrasping, squeezing, and
releasing– are defined with the help of a contact stance planner
as in [53]. Since this planner guarantees feasibility only at
specific postures, we have to verify, through simulations,
that the interpolated motions are also feasible. For example,



10

the second scenario from below in Fig. 1 turned out to
be unfeasible on our humanoid, because of the body grasp
configuration.

Walking may not be feasible due to discrepancies between
the reduced model employed in the WPG and the whole body
model, namely because of these WPG assumptions:
(a) absence of kinematic and joint limits;
(b) zero rate of angular momentum;
(c) constant vertical component of the external force.
Issues of such kind are traditionally addressed with proxy con-
straints, which reflect limitations of the reduced model [55].
All the constraints in the WPG can be seen as proxies:

• bounds on the ZMP positions are chosen depending
on the size of the feet, while safety margins in these
constraints implicitly account for (b);

• feasible regions for the landing foot positions address
kinematic limits in (a) and can be estimated using simu-
lations as in [32];

• bounds on the external wrench reflect dynamic limits in
(a) and can also be chosen empirically in simulations.

Although it is also possible to avoid assumption (c) as in [56],
or to address (b) using a reduced model from [40], the three
proxy constraints presented above were sufficient in this work.

VI. EXPERIMENTS AND RESULTS

This section shows how we validated the proposed frame-
work, first in dynamic simulations, and then with experiments
on an HRP-4 humanoid from Kawada Industries, with cus-
tomized ATI Mini40 force/torque sensors in the wrists. The
robot is position controlled, with joint set points updated
every 5ms by the whole body controller described in Sec. V.
In all experiments, for the walk, we set the swing duration
to tswf = 0.7s, and the stepping height to rsth = 0.07m.
The average forward walking velocity, in the leader CoM
trajectory (19), is set to 0.1m.s−1. All simulations are run with
the same general parameters and timing constraints as on the
real robot, using a 2.7 GHz i7 processor. The source code that
we used in all these experiments is public and available4. The
main components of this code are dynamic and continuously
evolving. Yet, the latest versions of the QP controller and of
the walking pattern generator are also available online5,6.

A. Simulations

The base functionality of the WPG accounting for external
wrench was previously verified and tested, with the results
presented in [33]. Complementary to those results, we con-
centrate on the implications of carrying an object together
with a human. Specifically, due to the carried object weight,
a negative force component in the z direction will be present.
Equation (3) shows that an important negative f z will increase
the robustness to external wrenches in x and y directions, by
reducing their net effect on the ZMP. Furthermore, if f z is
comparable to the robot weight, it reduces the acceleration

4https://gite.lirmm.fr/multi-contact/hri scenario
5https://github.com/jrl-umi3218/Tasks
6https://github.com/bip-team/humoto-module-wpg03-collaboration

Fig. 5. One-handed pregrasp (left) and squeezing (right). Top to bottom:
shoulder-mounted body grasp, front-wrap body grasp, and right hand grasp.

effects. An intuitive way to interpret this is that the added
weight lowers the CoM of the combined (robot and object)
system. Hence, carrying heavier objects actually helps the
humanoid stability (assuming the robot motors can handle the
extra load).

Concerning whole body control, we present simulations on
the designed pregrasp and squeezing postures output by (43).
For these, we must define the control frame poses pgr, i on
the surface of the robot body parts (e.g. shoulder, chest,
hands, etc.), and compute the corresponding Jacobians. Some
postures have been shown in Fig. 3. However, due to hardware
issues (broken wrist joint), we also had to design one-handed
versions of these, shown in Fig. 5, along with a grasping
motion of the hand (bottom figures). On the HRP-4 hand, the
thumb is controlled by one motor, and the four other fingers are
actuated together by a second motor. Hence, the four fingers
open and close together during squeezing, and this motion is
defined by a single joint position. Another point of interest is
the left arm motion in the front-wrap squeezing (middle right
in Fig. 5). This is caused by objective function fsp(x, cdes)
in (43)), which keeps the ground projection of the CoM near
the center of the support polygon. Since the squeeze motion
moves the chest frame forward, the QP solver uses the left
arm to realize this objective.

For integrating the walk and the whole-body controller,
recall that at each instant the WPG (be it follower (18)
or leader (22)) provides a reference CoM position, velocity
and acceleration. In Fig. 6, we compare the CoM and ZMP
positions, as requested by the WPG (here: leader, with no
external forces) and as achieved by the whole body controller.
The plot shows that the CoM is tracked well enough and that

https://gite.lirmm.fr/multi-contact/hri_scenario
https://github.com/jrl-umi3218/Tasks
https://github.com/bip-team/humoto-module-wpg03-collaboration


11

the robot is actually walking at 0.1m.s−1, as requested. As
for the ZMP, the approximation of null angular momentum
rate leads to the slight tracking error visible in the figure.
Nevertheless, our tests (both dynamic simulations and real
experiments) show that this ZMP tracking error does not affect
robot balance.
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Fig. 6. Tracking task of the CoM using the WPG-generated reference CoM
along with a comparison of the resulting ZMP.

Lastly, we present simulations of walking as leader, while
holding (Sec. V-D4). Image sequences of walking while hold-
ing using two-handed front-wrap, and shoulder-mounted body
grasps, are respectively shown in Figures 7 and 8. Although
only some chosen examples are illustrated, either of the two
WPG may be used, along with any of the grasps. These
examples demonstrate that we are capable of properly servoing
the CoM, while maintaining the desired robot posture.

Fig. 7. Walking while holding, using a front-wrap body grasp.

Fig. 8. Walking while holding, using a shoulder-mounted body grasp.

B. Real robot experiments

After having verified the framework in simulation, we
moved on to experiments on the real HRP-4. Representative
tests are shown in the video, attached to this paper, and
available at: https://youtu.be/lHG4AbAvt 4.

Screenshots of collaborative carrying experiments are shown
in Fig. 9. This figure shows (left to right, top then bot-
tom): shoulder-mounted box carrying as leader, front-wrap
box carrying as leader, hand grasped stretcher carrying as
follower, and hand grasped bucket carrying as follower. These
correspond to four of the six examples introduced in Fig. 1.
All four collaborative carrying scenarios were successful, with
the robot acting as both leader and follower. For the two
missing examples: first, table carrying (first scenario in Fig. 1)
was validated in our previous work [20], [31]; second, the
example requiring a side body grasp (fifth scenario in Fig. 1)
is kinematically infeasible for HRP-4, as stated in Sec. V-E.

Fig. 9. Experiments with HRP-4 carrying various objects with a human. Top
left: 15N carton box. Top right: 15N carton box (for this experiment please
refer to time 0:23 of the attached video; the robot starts in a half-sitting posture
with its right arm preparing to hold the box; while the robot grasps the box,
the left arm motion, which was not programmed ad hoc, results from the
weight of the box and from the CoM/ZMP equilibrium tasks). Bottom left:
13N stretcher. Bottom right: 8N bucket.

Relevant data from the stretcher carrying task, with the
robot walking as follower (bottom left in Fig. 9), are shown
in Fig. 10. The top plot shows the CoM and ZMP reference
signals, generated by the WPG (18), together with the mea-
sured values. A significant difference, due to impact, is only
observed on contact transitions (footsteps). Meanwhile, the
bottom figure shows the forward (pulling) component of the
interaction force, measured by the two wrist force sensors,
and then low-pass filtered and transformed to the CoM frame,
f x. Although the whole wrench is considered by the WPG,
we only show this component, as it the most relevant for this
experiment. Note the pause in the walk (top figure), around
the 13 to 15 second mark, corresponding to a strong decrease
of interaction force (since the human stopped). Throughout the
experiment, the CoM and ZMP reference values are properly
adapted to the external force, as the robot follows the human.

Furthermore, Fig. 11 shows the low-pass filtered
force/torque sensor data in the corresponding force sensor
frames. In such frames, the x component roughly corresponds
to the object weight, showing the robot is carrying around

https://youtu.be/lHG4AbAvt_4


12

0 5 10 15 20 25 30 35 40

time (s)

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

p
o
s
it

io
n
 (

m
)

CoM and ZMP tracking in x

zx

zx ref

cx

cx ref

0 5 10 15 20 25 30 35 40

time (s)

-4

-2

0

2

4

6

8

10

12

fo
rc

e
 (

N
)

interaction force

fx

Fig. 10. Data from a stretcher carrying scenario with the robot walking as
a follower. Left: reference and actual CoM and ZMP (as generated by the
WPG). Right: forward (pulling) component of the interaction force (the walk
is triggered when this is greater than 1N).
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Fig. 11. Low-pass filtered force/torque sensor data from a stretcher carrying
scenario with the robot walking as a follower. Top: left hand. Bottom: right
hand.

10N per hand throughout the experiment. According to our
prior calibration data, each hand weighs 7N . Therefore, the
robot is supporting a total of 6N of the stretcher weight
which is about 13N , hence it is approximately sharing the
load with the human. The y component roughly corresponds
to the previously discussed interaction force in Fig. 10.
Finally, the z component coincides with the grasping forces
applied on the stretcher in between both hands. This remains
around 5N throughout the test.

These results show that the overall approach works well,
although force sensing is available only at the robot wrists,
and not at the other contact points (e.g., on the shoulder and
chest). The grasp stability could be improved, if force/contact
sensing was available on other body parts.

C. Remarks on leader-follower role switching

Our framework supports a leader and a follower control
setting, but this does not imply that the role of each part-
ner is predefined once and for all by a binary rule [24].
We have already experimented table transportation with role
switching and a proactive behavior based on force and visual
sensing [20], [31]. Leader/follower switching was devised

from human-human learned patterns. Role distribution can
span on each subspace of the task by means of our QP
controller. Concerning the strategy on how and when the roles
are distributed, any approach can be plugged on top of our
controller.

The simplest role distribution can be done through smooth
sequencing during walking. The switch in the role can be
triggered by any condition: those given by the mission of the
robot or those that are inherent to robot’s integrity violation
(e.g. losing balance, workspace limitations, etc.). In a simple
experiment, we show that we can switch between the two
WPG formulations (18) and (22) instantly at will. The robot
starts out as a follower. After around 50s, we switch the roles,
and the robot becomes leader. It then tracks a predefined
trajectory that consists of going backwards 0.2m in 10s.
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Fig. 12. Smooth follower to leader switching: relevant data (top) and photos
of the experiment (bottom).

The Figure 12 shows generated WPG references and interac-
tion forces (top) along with photos of the experiment (bottom).
Notice that, even in the presence of sensor noise, the robot
can follow the intent of the human leader. During the leading
phase, note that the generated reference force is quite low
(gain tuning here was more coarse than in the simulations).
This allows the robot to balance itself, without relying on force
control.

Another option is to enable equal partnerships with adaptive
or versatile priority, eventually a continuous blending as in the
seminal work [24]. Although we didn’t try experimentally this
option, our framework extends to this possibility by combining
(18) and (22) into:

argmin
x

wcomfcom(x) + wzmpfzmp(x) + wforffor(x)

+W[flea(x), ffol(x)]

subject to z̃ ≤ z̃ ≤ z̃

r̃ ≤ r̃ ≤ r̃

f̃ ≤ f̃ ≤ f̃ .

(47)

In (47), W is a function that outputs the result of any im-
plemented strategy (among those cited in the introduction) to
assign role distribution or sharing. However, if these strategies
apply well in joint manipulations in the object’s task-space
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sharing, it is unlikely that they bring any added-value in the
walking process that is a hybrid process which is not a task that
is ‘shared’. In (47), the constraints on forces can be dropped;
this is also the case in (22) as their main purpose is to secure
the human partner.

VII. CONCLUSION

This article explores several aspects of human-humanoid
collaborative carrying. We started by looking at this task as a
whole, to infer the core principles, in order to program them
on a humanoid robot. To this end, we created a Finite State
Machine, encompassing all of the necessary subtasks. Next,
we revisited locomotion and balance in relation to physical
interaction. For this, we designed two walking pattern genera-
tors that not only take into account the physical interaction
constraints, but also use them accordingly, to operate as a
follower or leader. Then, we discussed how all of this can
be designed as objectives and constraints of an optimization
problem for a whole-body controller. We finally presented
simulations and real test cases on the HRP-4 humanoid.

Although our approach proved successful, there are still
several areas that can be largely improved with future works.
Firstly, one key issue, outlined by the real experiments, is the
need for force estimation. Related to this, we outlined the need
for distributed force sensing on the entire robot body, instead
of only on the wrist. Distributed tactile sensors can improve
body grasps as tested with the HRP-2 in [57]. Another key
improvement concerns the wrench prediction model for better
proactive behaviors. A current limitation is that the wrench
is simply predicted to be constant over the preview horizon.
However, since we believe the framework is very well suited
for including proactivity, a better perceptual model is neces-
sary. This requires integrating human perception for intention
recognition, a difficult challenge, but also an active research
area in physical human-robot interaction. Methods combining
machine learning and dynamical systems, e.g. [58] could be
investigated as they could also encompass the planning part.

Concerning the walk, although the WPG presented here is
simplified, its core concepts do not conflict with improvements
such as those in [59] which add robustness, allowing stair
climbing. Another possible direction for future investigation
in WPG design is addition of the terminal capturability con-
straint as indicated in Sec. IV-C. Apart from improving the
WPG itself, its integration in whole-body control can also be
improved, with works such as [48] which aims at combining
the separate QPs.

Lastly, a limiting factor in our real experiments was the
low-level closed loop stabilizing controller of the HRP-4,
which modifies the final joint references sent to the robot
actuators [60]. To solve this, a dedicated stabilizer, consistent
with our framework, should be designed. Another challenging
topic of on-going work consists in applying the multi-robot
version of our QP controller [61] to include the human as
an additional ‘robot’. However, going beyond simulation [62]
requires estimation of the human’s full or partial pose and
inertia parameters, to effectively close the overall control
loop in a pHRI setting. Finally, once the system is improved

in terms of performance, user-related studies, with several
different users (possibly also instrumented) is also worthy of
investigation.
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France. In 2016, he was a post-doctoral researcher
at INRIA-Rennes, France. Since 2017 he has been

a Researcher at IBM Research, Tokyo Research Lab, Japan.



15

Andrea Cherubini received the M.Sc. in Mechan-
ical Engineering in 2001 from the University of
Rome La Sapienza and a second M.Sc. in Control
Systems in 2003 from the University of Sheffield,
U.K. In 2008, he received the Ph.D. in Control
Systems from the University of Rome La Sapienza.
From 2008 to 2011, he was postdoc at Inria Rennes,
France. Andrea has co-authored over 60 papers in In-
ternational peer-reviewed Conferences and Journals
and is currently Associate Professor in Robotics at
University of Montpellier, France.

Alexander Sherikov received the Specialist degree
in computer science from Petrozavodsk State Uni-
versity, Petrozavodsk, Russian Federation, in 2008,
the M.S. degree in robotics from the Örebro Uni-
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