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This article is devoted to propose some lower and upper bounds for the coupled-tasks scheduling problem in presence of compatibility constraints according to classical complexity hypothesis (P = N P, ET H). Moreover, we develop an efficient polynomial-time approximation algorithm for the specific case for which the topology describing the compatibility constraints is a quasi split-graph.

Introduction, motivations, model

We consider in this paper the coupled-task scheduling problem subject to compatibility constraints. The motivation of this model is related to data acquisition processes using radar sensors: a sensor emits a radio pulse (first sub-task a i ), and listen for an echo reply (second sub-task b i ). To make the notation less cluttered, the processing time of a sub-task will be denoted by a i instead of p ai used in the theory of scheduling. Between these two instants (emission and reception), clearly there is an idle time L i due to the propagation, in both sides, of the radio pulse. A coupled-task (a i , L i , b i ), introduced by [START_REF] Shapiro | Scheduling coupled tasks[END_REF], is a natural way to model such data acquisition. This model has been widely studied in several works, i.e. [START_REF] Blażewicz | Scheduling of coupled tasks with unit processing times[END_REF]. Other works proposed a generalization of this model by including compatibility constraints: scheduling a sub-task during the idle time of another requires that both tasks are compatible. The relations of compatibility are modeled by a compatibility graph G, linking pair of compatible tasks only. This model is detailed in [START_REF] Simonin | Theoretical Aspects of Scheduling Coupled-Tasks in the Presence of Compatibility Graph[END_REF]. In previous works, we studied the complexity of scheduling coupledtasks with compatible constraints under several parameters like the size of the sub-tasks or the class of the compatibility graph [START_REF] Simonin | Approximating a coupled-task scheduling problem in the presence of compatibility graph and additional tasks[END_REF].

In this work, we propose original complexity and approximation results for the problem of scheduling stretched coupled-task with compatibility constraints. A stretched coupledtasks i is a coupled-task having both sub-tasks processing time and idle time equal to a triplet (α(i), α(i), α(i)), where α(i) is the stretch factor of the task i -one can apply a stretch factor α(i) to a reference task (1, 1, 1) to obtain i -.

The objective is to minimize the makespan C max . The input of the problem is a collection of coupled-tasks T = {t 1 , t 2 , . . . t n }, a stretch factor function α : T → IN, and a compatibility graph G c = (T , E) where edge from E link pairs of compatible tasks only. When dealing with stretched coupled-tasks only, a edge {x, y} ∈ E exists if α(x) = α(y) (then x and y can be scheduled together without idle time as the idle time of one task is employed to schedule the sub-task of the other, thus we can schedule sequentially a x , a y , b x , b y -or a y , a x , b y , b x -in 4α(x) 3 time units), or if 3α(x) ≤ α(y) (then x can be entirely executed during the idle time of y i.e. a y , a x , b x , b y and scheduling both tasks requires 3α(y) time units). We note #(X) the number of different stretch factors in a set of tasks X, and we note d G (X) the maximum degree of any vertex x ∈ X in a graph G c .

We use the well-known Graham notation [START_REF] Graham | Optimization and Approximation in Deterministic Sequencing and Scheduling: a Survey[END_REF] to define the problems presented in this paper. In this work, we propose new complexity and inapproximability results when the compatibility graph is a restricted 1-stage bipartite graph G = (X, Y, E), i.e. a bipartite graph where edges are oriented from X to Y only. Then we show the problem is

N P-complete on a quasi-split graph G = (G X , G Y , E) 4 if #(V (G X )) = 1 and #(V (G Y )) = 1, but is 5/4-approximable.

Complexity and approximation results

Theorem 1. Deciding whether an instance of 1|α,

G c = 1 -stage -bipartite, #(X) = 2, #(Y ) = 1, d Gc (X) ∈ {1, 2}, d Gc (Y ) ∈ {3, 4}|C max is a problem hard to approximate within 21-ρ Max-3DM-2

20

≤ ρ, where ρ Max-3DM gives the upper bound for the Max-3DM. Since ρ Max-3DM-2 ≤ 140 141 , we obtain 1 + 1 2820 .

Proof. We prove first that the problem is N P-complete via a polynomial-time reduction.

Based on this reduction, we apply the gap-preserving reduction.

The proof is based on a reduction from the maximum 3 Dimensional Matching (Max-3DM) [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF] We transform the instance of Max-3DM-2 to an instance of 1|α,

G c = 1 -stage bi partite, #(X) = 2, #(Y ) = 1, d Gc (X) ∈ {1, 2}, d Gc (Y ) ∈ {3, 4}|C max = 63n -3k(1 -ǫ)
as follows: we define a set of tasks X ∪ Y and model the compatibility constraint with a graph G c = (X, Y, E). For each element x i ∈ A ∪ B ∪ C, we add an item coupled-task x i into X with α(x i ) = 1. For each triplet t i ∈ T , we add a box coupled-task t i to Y with α(t i ) = 9, and an item coupled-task t ′ i with α(t ′ i ) = 2 + ǫ. For each t i ∈ T and each x i ∈ t i , we add the compatibility arc (x i , t i ) to E. We also add the compatibility arc (t ′ i , t i ) to E. So, the set of X-tasks (resp. Y -tasks) are constituted by item coupled-task x i and t ′ i (resp. box coupled-task).

Clearly we have m box coupled-tasks (each with an idle time of 9 units) of degree 4 in G c , m item coupled-tasks with stretch factor 2 + ǫ of degree 1 in G c , and 3n item coupled-tasks with stretch factor 1 of degree 2 in G c . Moreover G c is a bipartite graph. The reduction is constructed in polynomial time.

It exists a schedule of length 63n -3k(1ǫ) iff it exists a matching of size k for Max-3DM-2 instance.

Hereafter, we propose some negative results concerning the existence of subexponentialtime algorithms under the following complexity-theoretic hypothesis that is known as the Exponential-Time Hypothesis (see [START_REF] Woeginger | Exact Algorithms for NP-Hard Problems: A Survey[END_REF]) for a survey on exact algorithms for N P-hard problems) for stretched coupled-tasks, and other ones previously studied.

Recall first the Exponential-Time Hypothesis ( (Impagliazzo & Paturi 2001), and (Impagliazzo et al. 2001)): there exists a constant c > 1 such that there exists no algorithm for 3-Satisfiability that uses only O(c l ) time where l denotes the number of variables.

Corollary 1. Assuming the Exponential-Time Hypothesis, there exists no algorithm with a worst-case running time that is subexponential in n (the number of vertices), i.e.: [START_REF] Van Rooij | Partition Into Triangles on Bounded Degree Graphs[END_REF], the authors proved that for Partition into triangles on graphs of maximum degree four, there is no algorithm with a worst-case running time O(2 o(n) ) that is subexponential in n. Therefore, we transform a Partition into triangles instance with n vertices and m edges into an equivalent instance G c for bounded degree at most four. Since the transformation is linear (see [START_REF] Simonin | Theoretical Aspects of Scheduling Coupled-Tasks in the Presence of Compatibility Graph[END_REF])) the result holds. [START_REF] Lokshtanov | Lower bounds based on the Exponential Time Hypothesis[END_REF] the authors proved that for Hamiltonian path there is no O(2 o(n) )-time algorithm. As the same way as previously the transformation is linear (see [START_REF] Simonin | Theoretical Aspects of Scheduling Coupled-Tasks in the Presence of Compatibility Graph[END_REF]). 3. 1|α, G c 1-bipartite|C max : In [START_REF] Chen | On the optimality of approximation schemes for the classical scheduling problem[END_REF], the authors proved that for Max 3DM, there is no O(2 O(n) )-time algorithm, therefore this result is transposed to the scheduling problem using the first part of the proof of Theorem 1.

For the 1|a

i = b i = p, L i = 2p, G c |C max problem in O(2 o(n) ) time 2. For 1|a i = a, b i = b, L i = a + b, G c |C max in O(2 o(n) ) time 3. 1|α, G c = 1 -bipartite|C max in O(2 O(n) )-time algorithm. Proof. 1. For 1|a i = b i = p, L i = 2p, G c |C max : In (van

For the problem 1|a

i = a, b i = b, L i = a+b, G c |C max : In
Theorem 2. Scheduling stretched coupled task in presence of a quasi split graph is a

N P-complete problem even if #(V (G X )) = 1 and #(V (G Y )) = 1
Proof. The proof is based on a reduction from a variant of the well-know N P-complete Partition into triangles. This problem consists to ask if the vertices of a graph G = (V, E), with |V | = 3q, q ∈ IN, can be partitioned into q disjoints sets T 1 , T 2 , . . . , T q , each containing exactly three vertices, such that for each

T i = {u i , v i , w i }, 1 ≤ i ≤ q, all three of the edges {u i , v i }, {u i , w i }, {w i , v i } belong to E.
The problem Partition into triangles remains N P-complete even if the graph G can be partitioned into three sets with the same size, A, B et C such that each set is an independent set [START_REF] Morandini | NP-complete problem: partition into triangles[END_REF]. The polynomial-time transformation is based on this variant. Let G = (A ∪ B ∪ C, E) be an instance of the variant of Partition into Triangles. We consider the split-graph G ′ = (A ∪ B, C, E ′ ) obtained as follows:

∀v ∈ A (resp. B), we create a vertex A v (resp. B v ) with processing time (1, 1, 1). Moreover, ∀v ∈ C we create a task C v with processing time (4,4,4). The edges between A and B remained the same as the G ′ whereas the edge between A ∪ B and C are oriented. Finally in order to have a connected graph, we add two news vertices (resp. one) z 0 and z 1 (resp. z 2 with processing time equal to (1, 1, 1) (resp. (4,4,4)). We add edges between z 0 to A v (resp. z 1 to B v ). Lastly, we add the three edges (z 0 , z 2 ), (z 1 , z 2 ) and (z 0 , z 1 ).

Notice that the graph Proof. W.l.o.g., we suppose that the processing time of X-tasks (resp. Y -tasks) is (1, 1, 1) (resp. α(y i )). Indeed, if α(x) > 1, we put α(y i ) = ⌊ α (yi) α(x) ⌋ and α(x) = 1 . Algorithm: we transform the problem into an oriented maximum flow-problem between G X and G Y with two sources s and t, with ω(s, x) = ω(x, y) = 1 and ω(y, t) = ⌊ α (yi) 3α(x) ⌋, ∀y i ∈ Y, ∀x ∈ XG Y where ω(i, j) is the capacity of an arc (i, j) . After the computation of a maximum flow F of value f , for the uncovered remaining X-tasks a maximum M -matching (|M | = m) is applied. The schedule consists in processing first, the Y -tasks with X-tasks inside. The M -tasks are executed after. Lastly, we schedule s isolated-tasks. The length of schedule given by the algorithm is C max ≤ yi∈Y 3α(y i ) + 4m + 3s with 2m + s + f = n = |X| and yi∈Y 3α(y i ) ≥ 9f . In similar way, the optimal length is C * max ≥ yi∈Y α(y i ) + 4m * + 3s * . We suppose that in Y -tasks where are p * -edges processed and r * isolated-tasks, then we obtain 2(p * + m * ) + r * + s * = n, p * + r * ≤ f , and yi∈Y α(y i ) ≥ 12p * + 9r * . In the worst-case, the p * -edges are split into two tasks (so p * news tasks are added to s * ), and also the matched-edges are split (for each m * edges one task is executed into the Y -task, instead of one of r * -tasks). Therefore, 2m * tasks are added to the s-value. In the worst case, we have m * = r * , s = s * + p * + 2r * and m = 0. In such case, C max ≤ 12p * + 9r * + 3s * + 3p * + 6r * and C * max = 12p * + 9r * + 4r * + 3s * . Thus ρ ≤ 15p * +15r * +3s * 12p * +13r * +3s * ≤ max(5/4, 15/13, 1) = 5/4. Tightness: it exists an example for the C * max = 36, and for the heuristic C max = 45. Consider the graph: three triangles (x 1 , x 2 , y 1 ), (x 3 , x 4 , y 2 ), and (x 5 , x 6 , y 1 ). We add the edges (x 2 , y 3 , (x 3 , y 1 ) and (x 5 , y 2 ). The optimal solution consists in executing the Xtasks into the Y -tasks; whereas the heuristic leads the solution in which three X-tasks are processed after the Y -tasks.

A v ∪ B v form

  : let A, B, and C be three disjoint sets of equal size, with n = |A| = |B| = |C|, and a set T ⊆ A × B × C of triplet, with |T | = m. The aim is to find a matching (set of mutually disjoint triplets) T * ⊆ T of maximum size. This problem is well known to be N P-complete. The restricted version of this problem in which each element of A ∪ B ∪ C appears exactly twice is denoted Max-3DM-2 and remains N P-complete (Chlebik 2003). In this restricted version, we have m = 2n.

  a bipartite graph. The problem is clearly in N P. It exists a positive solution for the variant of Partition into triangles iff a valid schedule of length 12 × (|C| + 1) exists. It is sufficient to execute the two tasks A v and B v ′ in four units of time into a task C u . Theorem 3. The problem is 5/4-approximable on quasi split-graph where #(V (G Y )) = 1.

A quasi split graph is a connected graph G = (GX , GY , E), with GX a connected non-oriented graph (not complete) and GY a independent set. The other arcs are oriented from X to Y only.