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Abstract. This article is devoted to propose some lower and upper bounds for the
coupled-tasks scheduling problem in presence of compatibility constraints according
to classical complexity hypothesis (P 6= N P , ET H). Moreover, we develop an effi-
cient polynomial-time approximation algorithm for the specific case for which the
topology describing the compatibility constraints is a quasi split-graph.
Keywords: coupled-task, compatibility graph, complexity, approximation.

1 Introduction, motivations, model

We consider in this paper the coupled-task scheduling problem subject to compatibility
constraints. The motivation of this model is related to data acquisition processes using
radar sensors: a sensor emits a radio pulse (first sub-task ai), and listen for an echo reply
(second sub-task bi). To make the notation less cluttered, the processing time of a sub-task
will be denoted by ai instead of pai

used in the theory of scheduling. Between these two
instants (emission and reception), clearly there is an idle time Li due to the propagation,
in both sides, of the radio pulse. A coupled-task (ai, Li, bi), introduced by Shapiro (1980),
is a natural way to model such data acquisition. This model has been widely studied in
several works, i.e. Blażewicz et al. (2009). Other works proposed a generalization of this
model by including compatibility constraints: scheduling a sub-task during the idle time of
another requires that both tasks are compatible. The relations of compatibility are modeled
by a compatibility graph G, linking pair of compatible tasks only. This model is detailed in
Simonin et al. (2012). In previous works, we studied the complexity of scheduling coupled-
tasks with compatible constraints under several parameters like the size of the sub-tasks
or the class of the compatibility graph (Simonin et al. 2013).

In this work, we propose original complexity and approximation results for the problem
of scheduling stretched coupled-task with compatibility constraints. A stretched coupled-
tasks i is a coupled-task having both sub-tasks processing time and idle time equal to a
triplet (α(i), α(i), α(i)), where α(i) is the stretch factor of the task i - one can apply a
stretch factor α(i) to a reference task (1, 1, 1) to obtain i -.

The objective is to minimize the makespan Cmax. The input of the problem is a col-
lection of coupled-tasks T = {t1, t2, . . . tn}, a stretch factor function α : T → IN, and a
compatibility graph Gc = (T , E) where edge from E link pairs of compatible tasks only.
When dealing with stretched coupled-tasks only, a edge {x, y} ∈ E exists if α(x) = α(y)
(then x and y can be scheduled together without idle time as the idle time of one task is em-
ployed to schedule the sub-task of the other, thus we can schedule sequentially ax, ay, bx, by
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- or ay, ax, by, bx - in 4α(x)
3 time units), or if 3α(x) ≤ α(y) (then x can be entirely executed

during the idle time of y i.e. ay, ax, bx, by and scheduling both tasks requires 3α(y) time
units). We note #(X) the number of different stretch factors in a set of tasks X , and we
note dG(X) the maximum degree of any vertex x ∈ X in a graph Gc.

We use the well-known Graham notation (Graham et al. 1979) to define the problems
presented in this paper. In this work, we propose new complexity and inapproximability
results when the compatibility graph is a restricted 1−stage bipartite graph G = (X, Y, E),
i.e. a bipartite graph where edges are oriented from X to Y only. Then we show the
problem is N P-complete on a quasi-split graph G = (GX , GY , E)4 even if #(V (GX)) = 1
and #(V (GY )) = 1, but is 5/4-approximable.

2 Complexity and approximation results

Theorem 1. Deciding whether an instance of 1|α, Gc = 1 − stage − bipartite, #(X) =
2, #(Y ) = 1, dGc

(X) ∈ {1, 2}, dGc
(Y ) ∈ {3, 4}|Cmax is a problem hard to approximate

within 21−ρMax-3DM-2

20 ≤ ρ, where ρMax-3DM gives the upper bound for the Max-3DM. Since
ρMax-3DM-2 ≤ 140

141 , we obtain 1 + 1
2820 .

Proof. We prove first that the problem is N P-complete via a polynomial-time reduction.
Based on this reduction, we apply the gap-preserving reduction.

The proof is based on a reduction from the maximum 3 Dimensional Matching

(Max-3DM) (Garey & Johnson 1979): let A, B, and C be three disjoint sets of equal size,
with n = |A| = |B| = |C|, and a set T ⊆ A × B × C of triplet, with |T | = m. The aim
is to find a matching (set of mutually disjoint triplets) T ∗ ⊆ T of maximum size. This
problem is well known to be N P-complete. The restricted version of this problem in which
each element of A ∪ B ∪ C appears exactly twice is denoted Max-3DM-2 and remains
N P-complete (Chlebik 2003). In this restricted version, we have m = 2n.

We transform the instance of Max-3DM-2 to an instance of 1|α, Gc = 1 − stage bi
partite, #(X) = 2, #(Y ) = 1, dGc

(X) ∈ {1, 2}, dGc
(Y ) ∈ {3, 4}|Cmax = 63n − 3k(1 − ǫ)

as follows: we define a set of tasks X ∪ Y and model the compatibility constraint with a
graph Gc = (X, Y, E). For each element xi ∈ A ∪ B ∪ C, we add an item coupled-task xi

into X with α(xi) = 1. For each triplet ti ∈ T , we add a box coupled-task ti to Y with
α(ti) = 9, and an item coupled-task t′

i with α(t′

i) = 2 + ǫ. For each ti ∈ T and each xi ∈ ti,
we add the compatibility arc (xi, ti) to E. We also add the compatibility arc (t′

i, ti) to E.
So, the set of X-tasks (resp. Y -tasks) are constituted by item coupled-task xi and t′

i (resp.
box coupled-task).

Clearly we have m box coupled-tasks (each with an idle time of 9 units) of degree 4
in Gc, m item coupled-tasks with stretch factor 2 + ǫ of degree 1 in Gc, and 3n item
coupled-tasks with stretch factor 1 of degree 2 in Gc. Moreover Gc is a bipartite graph.
The reduction is constructed in polynomial time.

It exists a schedule of length 63n − 3k(1 − ǫ) iff it exists a matching of size k for
Max-3DM-2 instance.

Hereafter, we propose some negative results concerning the existence of subexponential-
time algorithms under the following complexity-theoretic hypothesis that is known as the
Exponential-Time Hypothesis (see (Woeginger 2001) for a survey on exact algorithms for
N P-hard problems) for stretched coupled-tasks, and other ones previously studied.

Recall first the Exponential-Time Hypothesis ((Impagliazzo & Paturi 2001), and
(Impagliazzo et al. 2001)): there exists a constant c > 1 such that there exists no algorithm
for 3−Satisfiability that uses only O(cl) time where l denotes the number of variables.

4 A quasi split graph is a connected graph G = (GX , GY , E), with GX a connected non-oriented
graph (not complete) and GY a independent set. The other arcs are oriented from X to Y only.
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Corollary 1. Assuming the Exponential-Time Hypothesis, there exists no algorithm with
a worst-case running time that is subexponential in n (the number of vertices), i.e.:

1. For the 1|ai = bi = p, Li = 2p, Gc|Cmax problem in O(2o(n)) time
2. For 1|ai = a, bi = b, Li = a + b, Gc|Cmax in O(2o(n)) time
3. 1|α, Gc = 1 − bipartite|Cmax in O(2O(n))-time algorithm.

Proof. 1. For 1|ai = bi = p, Li = 2p, Gc|Cmax: In (van Rooij et al. 2013), the authors
proved that for Partition into triangles on graphs of maximum degree four, there
is no algorithm with a worst-case running time O(2o(n)) that is subexponential in n.
Therefore, we transform a Partition into triangles instance with n vertices and
m edges into an equivalent instance Gc for bounded degree at most four. Since the
transformation is linear (see (Simonin et al. 2012)) the result holds.

2. For the problem 1|ai = a, bi = b, Li = a+b, Gc|Cmax: In (Lokshtanov, Marx & Saurabh
2011) the authors proved that for Hamiltonian path there is no O(2o(n))-time al-
gorithm. As the same way as previously the transformation is linear (see (Simonin
et al. 2012)).

3. 1|α, Gc = 1−bipartite|Cmax: In (Chen, Jansen & Zhang 2014), the authors proved that
for Max 3DM, there is no O(2O(n))-time algorithm, therefore this result is transposed
to the scheduling problem using the first part of the proof of Theorem 1.

Theorem 2. Scheduling stretched coupled task in presence of a quasi split graph is a
N P−complete problem even if #(V (GX)) = 1 and #(V (GY )) = 1

Proof. The proof is based on a reduction from a variant of the well-know N P-complete
Partition into triangles. This problem consists to ask if the vertices of a graph G =
(V, E), with |V | = 3q, q ∈ IN, can be partitioned into q disjoints sets T1, T2, . . . , Tq, each
containing exactly three vertices, such that for each Ti = {ui, vi, wi}, 1 ≤ i ≤ q, all three
of the edges {ui, vi}, {ui, wi}, {wi, vi} belong to E.

The problem Partition into triangles remains N P-complete even if the graph G
can be partitioned into three sets with the same size, A, B et C such that each set is an
independent set (Morandini, M. 2004). The polynomial-time transformation is based on
this variant. Let G = (A ∪ B ∪ C, E) be an instance of the variant of Partition into

Triangles. We consider the split-graph G′ = (A ∪ B, C, E′) obtained as follows:
∀v ∈ A (resp. B), we create a vertex Av (resp. Bv) with processing time (1, 1, 1).

Moreover, ∀v ∈ C we create a task Cv with processing time (4, 4, 4). The edges between A
and B remained the same as the G′ whereas the edge between A ∪ B and C are oriented.
Finally in order to have a connected graph, we add two news vertices (resp. one) z0 and
z1 (resp. z2 with processing time equal to (1, 1, 1) (resp. (4, 4, 4)). We add edges between
z0 to Av (resp. z1 to Bv). Lastly, we add the three edges (z0, z2), (z1, z2) and (z0, z1).

Notice that the graph Av ∪Bv form a bipartite graph. The problem is clearly in N P . It
exists a positive solution for the variant of Partition into triangles iff a valid schedule
of length 12 × (|C| + 1) exists. It is sufficient to execute the two tasks Av and Bv′ in four
units of time into a task Cu.

Theorem 3. The problem is 5/4-approximable on quasi split-graph where #(V (GY )) = 1.

Proof. W.l.o.g., we suppose that the processing time of X-tasks (resp. Y -tasks) is (1, 1, 1)

(resp. α(yi)). Indeed, if α(x) > 1, we put α(yi) = ⌊ α(yi)
α(x) ⌋ and α(x) = 1 .

Algorithm: we transform the problem into an oriented maximum flow-problem be-
tween GX and GY with two sources s and t, with ω(s, x) = ω(x, y) = 1 and ω(y, t) =

⌊ α(yi)
3α(x)⌋, ∀yi ∈ Y, ∀x ∈ XGY where ω(i, j) is the capacity of an arc (i, j) . After the compu-

tation of a maximum flow F of value f , for the uncovered remaining X-tasks a maximum
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M -matching (|M | = m) is applied. The schedule consists in processing first, the Y -tasks
with X-tasks inside. The M -tasks are executed after. Lastly, we schedule s isolated-tasks.
The length of schedule given by the algorithm is Cmax ≤

∑
yi∈Y 3α(yi) + 4m + 3s with

2m + s + f = n = |X | and
∑

yi∈Y 3α(yi) ≥ 9f . In similar way, the optimal length is
C∗

max ≥
∑

yi∈Y α(yi) + 4m∗ + 3s∗. We suppose that in Y -tasks where are p∗-edges pro-
cessed and r∗ isolated-tasks, then we obtain 2(p∗ + m∗) + r∗ + s∗ = n, p∗ + r∗ ≤ f , and∑

yi∈Y α(yi) ≥ 12p∗ + 9r∗. In the worst-case, the p∗-edges are split into two tasks (so
p∗ news tasks are added to s∗), and also the matched-edges are split (for each m∗ edges
one task is executed into the Y -task, instead of one of r∗-tasks). Therefore, 2m∗ tasks are
added to the s-value. In the worst case, we have m∗ = r∗, s = s∗ + p∗ + 2r∗ and m = 0. In
such case, Cmax ≤ 12p∗ + 9r∗ + 3s∗ + 3p∗ + 6r∗ and C∗

max = 12p∗ + 9r∗ + 4r∗ + 3s∗. Thus

ρ ≤ 15p∗+15r∗+3s∗

12p∗+13r∗+3s∗
≤ max(5/4, 15/13, 1) = 5/4.

Tightness: it exists an example for the C∗

max = 36, and for the heuristic Cmax =
45. Consider the graph: three triangles (x1, x2, y1), (x3, x4, y2), and (x5, x6, y1). We add
the edges (x2, y3, (x3, y1) and (x5, y2). The optimal solution consists in executing the X-
tasks into the Y -tasks; whereas the heuristic leads the solution in which three X-tasks are
processed after the Y -tasks.

References

Blażewicz, J., Ecker, K., Kis, T., Potts, C., Tanas, M. & Whitehead, J. (2009), Scheduling of
coupled tasks with unit processing times, Technical report, Poznan University of Technology.

Chen L., Jansen K. & Zhang G. (2014), On the optimality of approximation schemes for the
classical scheduling problem, Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium

on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014

Chlebík M. & Chlebíková J. (1979), Inapproximability results for bounded variants of optimization
problems, Electronic Colloquium on Computational Complexity 10 (26), pp. 1–26.

Garey, M. R. & Johnson, D. S. (1979), Computers and Intractability: A Guide to the Theory of

NP-Completeness, W. H. Freeman & Co., New York, NY, USA.
Graham, R. L., Lawler, E. L., Lenstra, J. K. & Kan, A. H. G. Rinnooy (1979), Optimization and

Approximation in Deterministic Sequencing and Scheduling: a Survey, Annals of Discrete

Mathematics 5, pp. 287–326.
Impagliazzo, R. & Paturi, R. (2001), On the Complexity of k-SAT, Journal of Computer and

System Sciences 62(2), 367–375.
Impagliazzo, R., Paturi, R. & Zane, F. (2001), Which Problems Have Strongly Exponential Com-

plexity?, Journal of Computer and System Sciences 63(4), 512–530.
Lokshtanov, D., Marx, D. & Saurabh, S. (2011), Lower bounds based on the Exponential Time

Hypothesis, Bulletin of the EATCS 105, 41–72.
Morandini, M. (2004), NP-complete problem: partition into triangles, Technical report, Universita‘

di Udini.
Shapiro, R. D. (1980), Scheduling coupled tasks, Naval Research Logistics Quarterly 27, 477–481.
Simonin, G., Darties, B., Giroudeau, R. & König, J.-C. (2011), Isomorphic coupled-task scheduling

problem with compatibility constraints on a single processor, J. of Scheduling 14(5), 501–509.
Simonin, G., Giroudeau, R. & König, J.-C. (2013), Approximating a coupled-task scheduling

problem in the presence of compatibility graph and additional tasks’, International Journal

of Planning and Scheduling 1(4),pp. 285–300.
Simonin, G., Giroudeau, R., König, J.-C. & B. Darties (2012), Theoretical Aspects of Scheduling

Coupled-Tasks in the Presence of Compatibility Graph’, Algorithmic in Operations Research

7(1), 1—-12.
van Rooij J. M. M., van Kooten Niekerk, M. E. & Bodlaender H. L. (2013), Partition Into Triangles

on Bounded Degree Graphs, Theory Computing Systems 52(4), pp. 687-718.
Woeginger, G. J. (2001), Exact Algorithms for NP-Hard Problems: A Survey, in Combinatorial

Optimization, pp. 185–208.


