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Abstract. If the Signal to Noise Ratio (SNR) is a figure of merit com-
monly used in many areas to gauge the quality of analogue measure-
ments, its use in the context of Side-Channel Attacks (SCA) remains
very difficult because the nature and characteristics of the signals are
not a priori known. Consequently, the SNR is rarely used in this latter
area to gauge the quality of measurements or of experimental protocols
followed to acquire them. It is however used to quantify the amount of
leakage in a set of traces regardless of the quality of the measures. This is
a surprisingly lack despite the key role of measurements and experiments
in this field. In this context, this paper introduces a fast and accurate
method for estimating the SNR. Then, simple and accurate techniques
are derived. They allow to process some daily tasks the evaluators have
to perform in a pragmatic and efficient manner. Among them one can
find the analysis of the electrical activity of Integrated Circuit (IC) or the
identification of the frequencies carrying some information or leakages.

1 Introduction

In recent years, emphasis has been put on the localization of leaking content
in space [13], [4], [14] and time [1], but also to increase our understanding of
the latest or again to enhance our extraction capability [9], [2], [6]. Efforts have
also been invested to assess the efficiency of attacks resulting in notions like the
success rate and the guessing entropy.

Based on [16], one generally considers two types of evaluation metrics for
assessing the leakage emitted by cryptographic devices. First, information the-
oretic metrics aim to capture the amount of information available in a side-
channel leakage, independently of the adversary exploitation. Second, security
metrics aim to quantify how this information can be exploited by adversary using
the notions of Success Rate (SR) and Guessing Entropy (GE). In SCA context,
these two types of metrics are clearly related but they are also surrounded by the
quality of measurements for which less attention has been paid to define criteria
allowing to compare experimental practices that are central.
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The Signal-to-Noise Ratio (SNR) is a simple, intuitive and relevant metric
to characterize any analog phenomena, such as side channel measurements in
order to gauge the quality of acquisition campaign. However the first definition
of SNR [10] in the SCA context has some drawbacks making its practical use
difficult given that the signal and its characteristics are a priori not known.
Some workarounds have been proposed in the literature but most of them rely
in converting the problem into leakage quantification or Points of Interest (PoI)
detection rather than focusing the quality of the acquisition campaigns. Among
these works, one may include the approach proposed in 2011 [7] that offers a
method for estimating the SNR which is based on a linear model of the leak-
age but also on empirical considerations related to the use of Digital Sampling
Oscilloscopes (DSO). However, the SNR definition considered in this work is rel-
atively far from the standard electrical engineering definition and finally closer
to that of a Leakage to Noise Ratio (LNR) concept.

This latter concept appears explicitly in [17] with an estimation method based
on a modeling of the leakage in the frequency domain. Alongside the introduction
of the LNR, authors in [1] propose the Normalized Inter-Class Variance (NICV).
This approach based on a clever and effective use of the statistical tool of ANOVA
(ANalysis Of VAriance) where the F-test allows to identify the PoI thanks to the
knowledge of public information (plaintext or ciphertext) (i.e. allows to detect
interesting time samples carrying potential leakage based on the manipulation
of the inputs). Besides this important application, it is also suggested that the
NICV provides an estimate of the SNR. However, again the SNR definition
considered in this paper is more an estimate of the relative amount of leakage
in the samples of traces that an estimate of the SNR of a measurement set.

In this context, the main contribution of this paper to the State of the Art is
a method, based on signal collisions, to estimate the SNR. This method requires
a small amount of measures to be applied: two in theory and up to few tens for
convenient practice.
The second contribution is to show that this SNR estimate is also an effective
way to gauge the quality of traces in view of the application of SCA. Additionally,
it is then shown how to exploit the above technique to:

– analyze the temporal behavior of a circuit from a small amount of measures,
– distinguish the frequencies carrying information related to the signal from

the frequencies essentially made up of noise.

The distinction of frequencies carrying information is crucial. Indeed, it enables,
without any a priori knowledge about the characteristics of the signal, to ratio-
nally and adaptively guide the filtering procedures.

This paper is organized as follows: in section 2, the meaning of the term
signal considered in this paper, and related SNR is defined. Section 3 recalls the
standard electrical engineering definition of the SNR and the corollary defini-
tion thereof in the case of zero mean signals. These definitions recalled, section
4 demonstrates theoretically how to get an estimate of the SNR from signal
collisions and more particularly from a bounded collision detection criterion in-
troduced in [8]. It is then experimentally demonstrated in section 5 that the
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obtained SNR estimate is actually a figure of merit for gauging the quality of
traces in a SCA context. Similarly, section 6 shows how this fast estimate method
of the SNR allows analyzing SCA traces in a simple, effective and complemen-
tary way to the approaches introduced in [1] and [17]. Section 7 shows how to
accurately distinguish with a small amount of traces the harmonics of the sig-
nal from harmonics mainly related to noise. Finally, a conclusion is drawn in
section 8.

2 Preamble

In this paper, the term signal is devoted to the deterministic evolution (repeated
and measured n times with perfect equipments in the absence of any noise source,
the signal is unique) of a physical quantity over time, evolving in response to
an unique stimulus. For example the evolution of the magnetic field at the co-
ordinate (X,Y, Z) above a given IC computing the cipher of a given text with a
given key is a signal. The changing of one of these parameters by solely one bit
gives a new signal.

In the classical literature such as [11], [1], [10], [17], the power consumption
of a measure (trace) is defined as the sum of the exploitable power consumption
from an SCA point of view (Pexp), the power of the noise ( considered in [11] as
the sum of the electronic noise Pel.noise and of the switching noise Psw.noise) and
a constant power consumption (Pconst). In the present paper, we consider the
power consumption of a measure as the sum of the power consumptions of the
signal (PS) to be measured and of the noise (PN). PS is considered regardless
the power consumption of signal is exploitable or not. As a result, PS includes
but is not reduced to Pexp. This choice is done in order to evaluate the quality
of the measurement protocol independently from the fact that traces contain
exploitable information.

None of these meanings is preferable. They are adopted for different pur-
poses. In our case, a paradigm shift is investigated to assess the quality of a
measurement. This also allows to assess the quality of the related experimental
protocol, as an alternative of quantifying the amount of leakage present in a set
of SCA traces. However we make a parallel with our approach and this point
later in the paper.

3 SNR definition and the related problem

With the definition of the signal adopted in this paper, the SNR is an objective
figure of merit for gauging the quality of the measurement M(t) = [m1, ...,mq]
of a signal S(t) = [s1, ..., sq], which depends on the surrounding noise, but also
of the quality of the equipments used to collect it. The standard electrical engi-
neering definition of the SNR is the ratio between the power PS of the signal to
be measured and the power PN of noise N(t) = [η1, ..., ηq]:
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SNR =
PS
PN

=

1
q ·

∑q
i=1(si)

2

1
q ·

∑q
i=1(ηi)2

(1)

If the signal and the noise are zero mean, the numerator and the denominator of
Equation 1 are the signal and noise variances, respectively. This leads, consid-
ering S(t) and N(t) as random variables over time (horizontal random variables
or random processes), to the following compact expression of the SNR:

SNR =
σ2
S

σ2
N

=

1
q ·

∑q
i=1(si − 0)2

1
q ·

∑q
i=1(ηi − 0)2

(2)

with σS and σN denoting the standard deviations (measured horizontally and
not vertically) of the signal S(t) and noise N(t), respectively. It should be noted
that even if the SNR takes the form of a variance ratio, this is really a power
ratio and must be perceived as it.

This SNR definition is particularly interesting in the context of SCA exploit-
ing the Electro-Magnetic (EM) channel. Indeed, the means of the EM signals
are always very close to zero, or can even be fixed to zero by forcing the usual
voltage amplifiers to work in small signals or by compensating their input offset
voltage. This definition is therefore considered in the rest of this paper. However,
given that in the context of SCA, the signal characteristics are not known, this
definition is extremely difficult to apply in this form. A solution must therefore
be found to extract from measures the SNR values ( Equation 2).

4 From Collisions to SNR estimations

If in the context of SCA the signal S(t) is not known, other degrees of freedom
are available to adversaries. One of these degrees of freedom is the capability
to stimulate the circuit n times in the same manner to collect n measures of a
same execution or calculus. However, this degree of freedom is not unlimited.
Indeed, some security protocols limit to few units the possibility to repeat a same
execution. In addition, if this is not the case, repeating the same execution is
theoretically possible but often tedious because of misalignment of traces which
implies the use of some more or less costly realignment techniques. However, it
seems possible to generate few colliding traces and exploit them to estimate the
SNR as explained below.

4.1 From Bounded Collision Detection Criterion to SNR

The use of signal collisions is a recognized technique to attack the implementa-
tions of symmetric [15] or asymmetric [5], [18] algorithms. For this purpose, a
choice of plaintexts is done in order to induce a collision between intermediate
values according to the targeted secret. The adversary finally derives the secret
from the occurrence or the absence of the collision. However, because in practice
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SCA traces are noisy, detection is not straightforward and some signal processing
techniques are necessary to exploit collisions. Recently in [8], a criterion that au-
tomates the detection of collisions was proposed. This criterion, called Bounded
Collision Detection Criterion (BCDC), takes values in [0,1] and is defined by:

BCDC(M1,M2) =
1√
2
×
σ(M1−M2)

σ(M1)
(3)

where Mi = [mi
1, · · · ,mi

q] is a measurement, collected with a Digital Sampling

Oscilloscope (DSO), representing a measure of the signal S(t)i characterized by
a (horizontal) standard deviation σ(Mi). The idea behind this criterion is that in
case of collision the numerator is close to zero, while in the absence of collision
the BCDC is close to one.

Assuming that all samples mi
j of these measurements (with j ∈ [1, q]) can be

expressed by mi
j = sij + ηij , i.e. is the sum of:

• a deterministic value (sij) which is a sample of S(t) emitted by the Device
Under Test (DUT), at time t, during its operation,

• and of the realization of the noise (ηij), which is a random variable, drawn in
a normal distribution with zero mean and an unknown standard deviation,

it is then possible to express the difference between M1 and M2:

∆M = M1 −M2 = [δm1 , · · · , δmq ] (4)

with
δmj = m1

j −m2
j = s1j + η1j − (s2j + η2j ). (5)

Considering that all terms of Equation 5 are independent, it appears that the
denominator of the BCDC, Equation 3, can be expressed as:

σ(M1−M2) =
√
σ2([s11 − s21, · · · , s1q − s2q]) + σ2([η11 − η21 , · · · , η1q − η2q ]), (6)

expression that can be re-written:

σ(M1−M2) =
√

2 ·σ2
S + 2 ·σ2

N =
√

2 ·
√
σ2
S + σ2

N (7)

Starting from this expression, one can calculate the asymptotic BCDC value
when M1 and M2 are two measures of the same signal, i.e. in case of a collision.
Indeed, in that case, because s1j = s2j and thus because:

σ(M1−M2) =
√

2 ·
√
σ2
N , (8)

equation 3 becomes:

BCDC(M1,M2) =
1√
2

√
2 ·σN√
σ2
S + σ2

N

=
1√

1 +
σ2
s

σ2
N

=
1√

1 + SNR(M1,M2)
. (9)
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As a result, the quick and pragmatic estimate of the SNR becomes possible in
the context of SCA. To do this, simply collect n (> 1) traces corresponding to
the execution of the same calculus by the DUT; then calculate the 1

2 ·n · (n− 1)
BCDC values and finally deduce as much values SNR(Mi,Mj):

SNR(Mi,Mj) =
1

BCDC2(Mi,Mj)
− 1 (10)

Finally, the SNR of a set of traces is estimated by averaging these 1
2 ·n · (n− 1)

SNR(Mi,Mj) values (see Equation 11). In the remainder of the paper this

estimation is denoted ŜNR.

ŜNR =
2

n · (n− 1)

n∑
i=1

n∑
j=i+1

(
1

BCDC2(Mi,Mj)
− 1) (11)

This mean value as well as the shape of the SNR(Mi,Mj) distribution constitute
figures of merit for gauging the quality of a SCA measures and that of the

experimental protocol that has been followed to collect them: the higher ŜNR is,
the better the experimental protocol is. As an illustration, typical SNR(Mi,Mj)
distributions are given Figure 2c and Figure 2d in section 5. Next paragraphs
give an illustration in a school book case.

4.2 Example

To provide practical and convincing elements about the accuracy and the sim-
plicity of this fast SNR estimation method, which is applicable when the signal
and the data are not known, simulated traces were generated. They relate to the
measure of a sinusoidal signal of amplitude equal to 1 and with an horizontal
variance over a period of 2 (σS =

√
2 on a period) in an environment producing

a normal measurement noise with zero mean and standard deviation σN .
Table 2 gives the exact SNR value wrt σN as well as ŜNR wrt the number of

measurements (n = {2, ..., 50}) used to estimate it with the proposed method.
One may observe that with only five colliding measures (i.e. 10 BCDC and

SNR(Mi,Mj) estimates) ŜNRn=5 is really close to the exact SNR value. Indeed,
the relative absolute value is lower than 5%. This result appears even more
accurate when σSNR is low. For n = 50 measures (i.e. 1275 BCDC values) and

for σN = 1.9, ŜNRn=50 is equal to 0.1385 and σSNR is equal to 0.0048 i.e. 3.45%
of the exact SNR value. These results demonstrate the practicability as well the
accuracy of the proposed method.

4.3 Discussion

At this stage, a fast SNR estimation method to be applied when the signal is
not known has been introduced and its accuracy demonstrated. It is based on
the SNR definition commonly used to assess the quality of analog measures or
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Table 1. Evolution of the mean ŜNR value wrt σN and the number n of measurements
used to estimate it

σN 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

SNR 50 5.56 2.00 1.02 0.62 0.41 0.30 0.22 0.17 0.14
̂SNRn=2 49.38 5.58 2.03 1.00 0.64 0.41 0.28 0.24 0.17 0.16
̂SNRn=5 49.76 5.51 1.99 1.03 0.60 0.41 0.29 0.21 0.17 0.14
̂SNRn=10 50.41 5.56 1.99 1.02 0.62 0.41 0.29 0.21 0.18 0.14
̂SNRn=20 49.91 5.52 2.00 1.03 0.62 0.41 0.30 0.22 0.17 0.14
̂SNRn=50 50.08 5.56 2.01 1.01 0.62 0.41 0.30 0.22 0.17 0.14

the quality of a communicating channel. This method is the main contribution
of this paper.

If the definition considered in this paper is different to that adopted in [10],
[11] and [1], in which the authors aim at quantifying the amount of exploitable
(with CPA) leakage in set of traces, nothing forbids to assess whether the defini-
tion considered in this paper is also an indirect measure of the amount of leakage
present in traces. After all, measures of high quality are they not susceptible to
convey more leakage than bad quality measurements?

This can be envisaged since the SNR definition adopted in this paper is the
ratio between the signal and noise powers, and thus because the signal power is
necessarily an upper bound of the exploitable leakage power QL, i.e. the power
consumed by the cryptographic operation targeted by the adversary:

σ2
S

σ2
N

≥
σ2
QL

σ2
N

≥ 0 (12)

If the SNR definition considered in this paper is indeed a figure of merit of SCA
trace quality, the idea we propose to quantify the quality of a set of SCA traces is
simple. It consists in acquiring a small amount of traces (2 to 50 for instance) of
a same computational activity (or pairs of the same activity) in order to evaluate

ŜNR and if necessary to draw the SNR(Mi,Mj) distribution. This value (or
the estimated distribution law) will be considered as a quality measure of SCA
traces but also of the experimental protocol applied to collect the traces.

5 Estimated SNR wrt CPA efficiency

To assess if the SNR definition considered in this paper, dedicated to the evalu-
ation of the quality of measures and of the experimental protocol used to obtain
it, is also an indicator of the amount of leakage in a set traces of SCA and more
precisely an upper bound, various experiments were conducted. One challenge
was to define an experiment allowing to vary the SNR.
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5.1 Experiments

In order to vary the SNR, different experimental campaigns were conducted, and
different sets of EM traces, characterized by different SNR values were collected.
These campaigns have consisted in measuring the EM radiations of an AES
mapped into an FPGA. The EM sensor was placed at different distances Z from
the IC surface and this without changing the settings of the DSO (the vertical
caliber and the time base) so that to reduce the amplitude (the power) of the
signal while increasing the noise. For each considered Z value, 50 EM traces of
20000 samples corresponding to ciphering of the same plaintext were acquired

to compute ŜNR; 5000 others traces corresponding each to the ciphering of
a random plaintext were also acquired with the intent to perform CPA. This
experimental procedure was defined to vary the SNR but also because measuring
the EM radiations so far from the IC (when it is possible at Z = 0) is a really
bad experimental protocol to collect EM traces.

Figure 1 illustrates the principle of these experiments and reports 25 EM
measurements obtained at Z = 0 and Z = 500µm while the AES ciphers the
same plaintext. The black thick traces are the mean of the 25 measures. One
can observe that the amplitudes of the measurements performed at Z = 500µm
are lower than the ones at Z = 0, but above all, that some large amplitude
noises alter some traces. These spurious noises render the reading of traces less
intelligible. Indeed, contrarily to measures at Z = 0, the rounds of the AES are
less visible, and completely disappear in the noise at Z = 4000µm.

25 traces @ Z=0 25 traces @ Z=500µm 

Fig. 1. 25 EM Measures EM collected at Z = 0 and Z = 500µm above an AES mapped
into an FPGA

5.2 Analysis of the experimental results

A CPA was applied to each set of 5000 traces collected at Z values ranging

between 0 and 5mm. Figure 2 gives the evolution with Z of σS and
√
ŜNR. As

expected the ŜNR decreases rapidly when Z increases; the distributions of the

estimated ŜNR values (with Equation 2) for Z = 0 and Z = 2000µm are given
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Figures 2c and Figures 2d, respectively. For measures done at Z = 0,
√
ŜNR is

equal to 15.11 and σ√SNR is equal to 4.80 while at Z = 2000µm,
√
ŜNR is equal

to 7.31 and σ√SNR to 1.64. This demonstrates that the SNR is, as expected, a
measure of the quality of the experimental protocol.

Figure 2b gives the evolution of the global Guessing Entropy (gGE) with

respect to
√
ŜNR. One can observe that the lower the

√
ŜNR value is, the less

efficient the CPA is. In addition, as soon as
√
ŜNR is lower than 5, the CPA

does not succeed in disclosing the correct key with 5000 traces and more over
the gGE remains close to 128.

Nevertheless, Figure 2b highlights the existence of a link between gGE and
the SNR. The standard electrical engineering definition of the SNR (Equation
2) is therefore a figure of merit of the quality of EM traces from an adversary
point of view, as the SNR definition considered in [10] and [1]. The higher the

ŜNR associated to a set of traces is, the leakier it is expected to be. However, it
should be noticed that this figure of merit does not indicate possible problems
that can encounter adversaries to exploit this information. These difficulties are
for instance:

– the presence or the absence of countermeasures such as masking [3],
– the choice of the adequate distinguisher [6], [2],
– the identification of the accurate leakage model [11],

which are problems independent from the measurement quality.

6 Collision Criterion for analyzing leakage traces

At that stage, the BCDC has been used for estimating the SNR (Equation 2).
Then it has been experimentally shown that this criterion is also a figure of merit
to gauge the quality of a set of EM traces with the intent to apply an SCA on
it.

The BCDC can also be used to analyze the computational activity of a DUT
over time. Indeed, it is quite possible to calculate BCDC values for the different
time windows ([ti, · · · , tk] with i ≥ 1 and k ≤ q) constituting the traces:

SNR(ti, · · · , tk) =
1

BCDC2(ti, · · · , tk)
− 1 (13)

and to deduce ŜNR values so that to distinguish windows characterized by

different SNR values. This leads to draw the estimated ŜNR evolution over
time, considering that each type of electrical activity (or instruction) consumes
a specific amount of power and is thus characterized by a specific SNR value.

Figure 3 gives 25 EM traces related to the ciphering of 25 random plaintexts
(traces with no collision), the standard deviations of all the samples constituting
the traces (thus computed with only 25 values), and finally the evolution of√
ŜNR estimated from 25 colliding traces using windows of 250 consecutive
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40 

Z (in µm) 

𝝈𝑺 = 𝑽𝑺 

𝑺𝑵𝑹  

gGE 

(a) (b) 

𝑺𝑵𝑹  

0 30 15 
0 

𝑺𝑵𝑹  

# 𝒐𝒇 𝒐𝒄𝒄𝒖𝒓𝒆𝒏𝒄𝒆𝒔 # 𝒐𝒇 𝒐𝒄𝒄𝒖𝒓𝒆𝒏𝒄𝒆𝒔 

40 

0 30 15 
0 

(c) (d) 

Z=0 Z=2000µm 

𝑺𝑵𝑹  

𝑺𝑵𝑹 𝑺𝑵𝑹 

Fig. 2. (a) Evolutions with Z of σS and
√
ŜNR, (b) Evolution of the gGE wrt the√

ŜNR (c) histogram of the
√
SNR values estimated with traces collected at Z = 0,

(d) histogram of the
√
SNR values estimated with traces collected at Z = 2000µm

25 traces @ Z=0 

𝑺𝑵𝑹(𝒕𝒊 ) 

𝝈(𝑻 𝒕𝒊 ) 

AES rounds 

(a) 

(b) 

(c) 

Fig. 3. (a) 25 EM traces collected @ Z=0 over an AES (b) evolution σ(T (ti)) and (c)

evolution of
√
ŜNR
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samples, i.e. of duration equal to 0.625×TCK , with TCK the clock period of the
device.

One may observe that even if the
√
ŜNR is high, 25 traces do not allow to

clearly localize the AES rounds, nor to interpret the behavior of the device with
the vertical standard deviation. More traces are required.

By contrast, 25 traces are largely sufficient, by calculating the ŜNR, to locate
and identify different phases of activity (loading of the key and the text in the
registers, emissions of a trigger signal on an IO, AES computation) of the DUT
assuming that each activity phase is characterized by a specific SNR value. In

addition, the difference of
√
ŜNR values between active phases and inactive

phases is really high.

25 traces @ Z=3000µm 

𝑺𝑵𝑹(𝒕𝒊 ) 
AES rounds 

(a) 

(b) 

Fig. 4. (a) 25 EM traces collected @ Z = 3000µm over an AES (b) evolution of
√
ŜNR

This result may come from two main reasons. The first reason could be the
fact that the computation of BCDC values involves the calculus of standard
deviations which are performed on a set of 250 consecutive samples rather than
25 values in case of the use of the vertical variance as analysis criterion. This
limits the impact of noise. The second could also be related to the reduction
of the impact of noise, and more particularly of the effect of outliers. Indeed,

25 traces allows computing the mean of the SNR distribution, ŜNR, with 300
different estimates of the SNR.

Figure 4 shows the same results than Figure 3 for 25 traces collected at
Z = 3000µm i.e. for traces characterized by a lower SNR value. In this condition
the AES is no more visible on the mean trace (in black Figure 4a). In addition,
the transitions of a synchronization signal on an IO pad are much more visible;
the EM probe is now above the related bonding.

If the results presented above, obtained on an hardware AES embedded on an
FPGA, are interesting, the full effectiveness of the technique appears during the
analysis of the electrical activity of a micro-controller which executes a software
implementation of the AES. To illustrate this, Figure 5 gives 25 traces EM (and
their mean) corresponding to the computation of the two last rounds of the AES
by a 32-bits processor (cortex M4) designed in 90nm process technology and
clocked at 40MHz. As shown, neither the mean nor the variance of traces allow
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Round 9 Round 10 

25 traces 

(a) 

(b) 

(c) 

𝝈(𝒎𝒊) 

Fig. 5. (a) 25 EM traces (and their mean in black) collected above a 32bit micro-

controller processing an AES (b) evolution σ(mi) and (c) evolution of
√
ŜNR

to distinguish any pattern related to the two rounds. The vertical mean and
variance look like a really noisy trace. This is not the case with the evolution of

ŜNR on which two quite similar (but not exactly the same) patterns are visible.
One can even distinguish similar shapes in the two rounds.

7 Collision Criterion for adaptive filtering

In the preceding paragraphs, the BCDC has been exploited to analyze the evo-
lution of the electrical activity of two DUT, an FPGA and a micro-controller,
using a sliding windowing solution. Such an approach can be adopted to distin-
guish in the frequency domain, the frequencies carrying information related to
the signal from those that convey essentially noise.

At that end, a frequency bandwidth, δf , is chosen. The colliding traces are
then translated in the frequency domain using for example the FFT. This done,
for each frequency f of the spectrum, the harmonics falling out of the frequencies
bandwidth of interest (f±δf) are canceled before to translate back the traces in

the time domain and compute ̂SNR(f ± δ) at each frequency f of the spectrum,
as in the preceding sections.

It should be noticed that δf could be set to the spectral resolution of the FFT
which depends on the number of points constituting the traces. This approach
with the minimal possible δf value has a larger computational cost and returns

in computing ̂SNR(f) i.e. in keeping only one frequency in the bandwidth.
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Fig. 6. ̂SNR(f) and σN (f) computed with 8 EM traces

Figure 6 gives the evolution with f of ̂SNR(f ± δf) estimated with only
8 EM traces collected above the AES mapped into the FPGA, considering a
frequencies bandwidth δf = 2MHz. The quite flat evolution of σN (f ± δf) is
also drawn in this figure.

Contrarily to σN (f ± δf), ̂SNR(f ± δf) seems to decrease following a 1
f

function as indicated by the leakage model in the frequency domain introduced
in [17] and as formerly observed in [12]. However, it should be noticed that peaks

of ̂SNR(f ± δf) appear at several multiples of the frequencies (50MHz). This is
probably due to the influence of the clock tree circuit, one of the largest energy
consumers at these frequencies in IC.

More importantly, it should be observed that ̂SNR(f ± δf) remains high
(> 5) for f < 275MHz and particularly high for f < 52MHz. It therefore seems
wise to only keep harmonics below 275MHz or even 52MHz during SCA.

In order to validate that ̂SNR(f ± δf) is an interesting figure of merit allow-
ing to adapt at best the filtering steps usually applied prior any SCA, CPA were
first launched on the rough EM traces, then on these same traces after canceling
of harmonics higher than 52MHz and 275MHz, respectively. Figure 7 gives the
evolutions of the gGE for these three CPA in the case of traces collected at Z = 0
and at Z = 4200µm.

Figure 7 shows that the filtering of traces characterized by a high SNR value
(traces collected at Z = 0) has a really limited interest as it was expected. By

contrast, for traces collected at Z = 4200µm, characterized by a ŜNR value

lower than 3, keeping harmonics with the highest ̂SNR(f ± δf) values allows to
enhance significantly the efficiency of the CPA. Indeed, keeping only the f values
lower than 52MHz allows reaching a gGE lower than 20 after the processing of
3000 traces, value to be compared to 90 without application of any filtering
procedure.
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Fig. 7. Evolution of gGE with the number of processed traces (collected either at Z=0
or at Z = 4200µm when keeping respectively all harmonics (in blue), harmonics below
275MHz (in red) and harmonics below 52MHz (in black).

8 Conclusion

The SNR, as defined in engineering, is a key figure for gauging the quality of
analogue measurements or communication channels. However, its use requires
the knowledge of the signal to be measured. In the context of SCA, the nature
and characteristics of the measured signals are not known. The use of the SNR
is therefore particularly difficult.
In this context the paper proposes a method to estimate the SNR, when the
signal is not known. This method is based on a collision detection criterion. Its
advantages are its easiness of use, its accuracy, and its low computation time.
It has also been shown in this paper that the SNR is an interesting figure of
merit to gauge the quality of SCA traces, to analyze the behavior of IC, or to
guide rationally (and therefore in an efficient way) the filtering step commonly
used as pre-processing of traces. There are also other applications of this fast
SNR estimation method. Among them it use for the spatial analysis IC activity
has given interesting results not shown in this paper by lack of place.
However, we believe that the main interest of the proposed SNR estimation
technique is that it is a sufficiently simple, low cost and convenient technique
to establish the electrical engineering SNR as a standard measure for compar-
ing the various experimental practices of SCA of both academic and industrial
laboratories.
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