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Abstract. General-Purpose Computing on Graphics Units (GPGPU) is
today recognized as a practical and efficient way of accelerating software
procedures that require a lot of computing resources. However, using this
technology in the context of Multi-Agent Based Simulation (MABS) ap-
pears to be difficult because GPGPU relies on a very specific program-
ming approach for which MABS models are not naturally adapted. This
paper discusses practical results from several works we have done on
adapting and developing different MABS models using GPU program-
ming. Especially, studying how GPGPU could be used in the scope of
MABS, our main motivation is not only to speed up MABS but also
to provide the MABS community with a general approach to GPU pro-
gramming, which could be used on a wide variety of agent-based models.
So, this paper first summarizes all the use cases that we have considered
so far and then focuses on identifying which parts of the development
process could be generalized.
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1 Introduction

Multi-Agent Based Simulation (MABS) rely on directly modeling and simulating
the interactions of micro-level entities, namely agents [15]. In this scope, when a
large number of agents have to be modeled, the simulation process may require
a lot of computing resources, which often represents a major issue with respect
to the experimentation [17].

Considering this issue, General-Purpose Computing on Graphics Units (GPGPU)
is a High Performance Computing (HPC) solution which is interesting because
it allows to use the massively parallel architecture of the graphics cards of usual
computers for accelerating general-purpose computations in a very efficient way1

[6, 5]. However, GPGPU is strongly related with the highly specialized architec-
ture of Graphics Processing Units (GPU) and thus implies a specific program-
ming approach to be used efficiently. In particular, a MABS model cannot take
advantage of the GPU power without being adapted to the GPU programming
paradigm.

1 e.g. https://developer.nvidia.com/about-cuda
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Still, it turns out that adapting a MABS model to GPU programming is a
difficult task which is generally done only for the sake of efficiency, in an adhoc
way, and especially without considering the accessibility nor the reusability of
the produced software [20]. Indeed, to be GPU compliant, the problem must
be represented by distributed and independent data structures and usual object
oriented features, which are common in MABS, are no longer available using
GPGPU [16]. Therefore, most of the works that use GPGPU for developing
MABS are hardly accessible and thus not reusable outside of the context for
which they have been designed. So, a lot of development efforts are lost and
the use of GPGPU still represents a marginal approach in the scope of MABS
despite its increasing success as an HPC solution.

Among the research works that tackle the use of GPGPU for MABS from
a software engineering perspective, most of them propose solutions that hide
GPU programming, thus making its use completely transparent (e.g. [25, 12]).
However, because of the heterogeneity of multi-agent models, such solutions only
focus on some particular type of MAS models and cannot be easily generalized.

Instead of tackling accessibility and reusability by means of transparency,
[14] proposes a design guideline which promotes and eases the direct use of
GPU programming when adapting and developing MABS models in a GPGPU
context, namely the GPU environmental delegation principle. More specifically,
this approach relies on identifying which parts of the MAS model could be im-
plemented using GPU programming. So far, we have used this approach on six
different use cases ([14, 9, 10] and obtained interesting results both from a perfor-
mance point of view and from a software engineering perspective. This paper first
summarizes these different works and their results before discussing the practical
lessons learned from these experiments. Especially, based on the idea that there
is a need for a methodology for adapting MABS to GPU programming, we show
that we have been able to identify a recurrent development pattern which could
be generalized.

The paper is organized as follows. Section 2 presents GPGPU basics and the
evolution of the use of GPGPU in MABS. Section 3 describes and summarizes
all the experiments done with the GPU delegation principle. Section 4 presents
a first generalization of the approach toward the creation of a methodology
dedicated to GPGPU for MABS. Section 5 concludes the paper and outlines
some related perspectives.

2 Related Works and Motivations

2.1 GPGPU-based MABS

Initially designed for graphics rendering, GPU are now composed of hundreds
of ALU (Arithmetic Logic Units) forming a highly parallel structure able to
perform general-purpose computations. The programming paradigm associated
consists in executing simultaneously a series of operations on a dataset. When
the data structure is suitable (and only if), the massively parallel architecture
of the GPU provides very high performance gains (thousands of times faster).
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In the context of MABS, empirical results from various experiments show that
high simulation speeds can be achieved with very large agents populations (e.g.
[7]). Nonetheless, this excellent speedup comes at the expense of modularity,
ease of programmability and reusability [20]. This was especially true at the
beginning of GPGPU because there was no specialized programming interface
and one had to hack the GPU graphical functions to achieve GPGPU-based
simulations [23].

Still, despite the evolution of GPGPU, and especially the release of spe-
cialized programming frameworks such as CUDA2 and OpenCL3, the current
GPGPU-based MABS solutions remain difficult to use and it is worth noting
that the majority of the new works start from scratch and still put all the fo-
cus on acquiring the best computational gains without considering accessibility,
reusability nor modularity (e.g. for the study of flocking [8], crowd [24], traffic
simulations [27] or autonomous navigation and path planning algorithms [4]).

Before 2011, most of those works were based on an approach that consists
in executing completely the model on the GPU (called all-in-GPU here). This
approach is useful when the main objective is only to accelerate the simulation’s
execution but, from a software engineering point of view, this approach is not
satisfying because all the development efforts are lost due to the specificities of
GPU programming: The optimization which is required eventually produces code
that cannot be easily understood nor reused outside of the scope of a particular
experiment.

That is the reason why hybrid approaches, that is sharing the execution of
the MABS between the CPU and the GPU, begin to appear in 2011. Even if they
are by design less efficient than all-in-GPU implementations, they exhibit two
main advantages [9]: (1) They allow to implement more complex MABS because
they do not longer need to be entirely compliant with GPGPU (see e.g. [13]) and
(2) they naturally promote modularity and thus ease the development process
thanks to a more concrete separation of concerns, for instance by enforcing the
distinction between the agent model and the environment model (see e.g. [14,
18]).

2.2 The Need for a Methodology for Porting MABS on GPU

Not surprisingly, research works that address software engineering issues in the
scope of GPGPU-based MABS are now all based on an hybrid approach. How-
ever, it is worth noting that most of them rely on hiding the use of GPGPU
through predefined programming languages or interfaces which are based on
specific agent and environment models (e.g. [22]). Even though they represent
concrete solutions for easing the use of GPGPU for MABS, such approaches can-
not take into account the wide variety of MABS which can be conceived because
they rely on predefined software structures and conceptual models.

2 Compute Unified Device Architecture, https://developer.nvidia.com/what-cuda
3 Open Computing Language, http://www.khronos.org/opencl
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Consequently, instead of hiding GPGPU, we here argue on the idea that it
would be interesting to provide the MABS community with a methodology that
would concretely help to adapt and implement a MABS model using directly
GPU programming. This would allow to take into account a largest number of
models because such an approach would not rely on a predefined agent model
and implementation. Therefore defining such a methodology is one of our main
long-term goals.

3 Experimenting GPU Environmental Delegation

In this section, the GPU environmental delegation principle (GPU delegation
for short) is introduced. Then, all the works we have done using this approach
are described and their outcomes presented from both a performance and a
practical perspective. Then, we show that the design guideline promoted by
GPU delegation can be a starting point for the definition of a methodology
dedicated to the modeling and the developing of MABS models in a GPGPU
context.

3.1 The GPU Environmental Delegation Principle

Proposed in [14], the GPU environmental delegation principle is based on the
fact that it is very difficult to deport the entire MABS model on graphics cards.

Inspired by an Agent-Oriented Software Engineering (AOSE) trend which
consists in using the environment as a first class abstraction in MAS [28, 1],
GPU delegation has to be related to other research works that reify parts of the
agents’ computations in external structures. Examples of this trend are EASS
(Environment As Active Support for Simulation) [2], IODA (Interaction Ori-
ented Design of Agent simulations) [11], the environment-centered approach for
MABS proposed in [19] and artifact approach [21].

GPU delegation thus relies on an hybrid approach which divides the execu-
tion of the MAS model between the CPU and the GPU. Especially, this principle
consists in making a clear separation between the agent behaviors, managed by
the CPU, and environmental dynamics, handled by the GPU. To this end, one
major idea underlying this principle is to identify agent computations which can
be transformed into environmental dynamics and thus implemented into GPU
modules (called kernel, these modules contain the computations executed on the
GPU). Originally, the GPU Environmental Delegation Principle was first stated
as follows [14]: Any agent perception computation not involving the agent’s state
could be translated to an endogenous dynamic of the environment, and thus con-
sidered as a potential GPU environment module.

So, the two main design guidelines underlying this principle are: (1) Com-
pliant environmental dynamics must be transformed into GPU modules and (2)
agent computations which are compliant with the previously stated criterion
should be translated in environmental dynamics and thus implemented as GPU
modules.
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3.2 GPU Delegation Case Studies

Multi-Level Emergence [14] GPU delegation was first used for developing a
model of Multi-Level Emergence (MLE) of complex structures inspired by [3].
This very simple model relies on a unique behavior which allows to generate
complex structures which repeat in a fractal way4. The corresponding agent
behavior is extremely simple and based on the reaction of agents to pheromones.
So, in this work, two GPU modules dedicated to the perception and the spread
of pheromones were proposed.

From a performance point of view, this experimentation shows that the use of
GPU modules have decreased the overall execution time for each time step of the
simulation. So, an acceleration gain up to x5 have been achieved, according to
the hardware configuration. Figure 1 summarizes the coefficient gains obtained
for three size of environment5: 500, 1000 and 1600.

From a practical perspective, this work had two objectives which were suc-
cessfully fulfilled [14]: (1) Keeping the programming accessibility of the agent
model in a GPU context (the original agent model was not modified) and (2)
being able to scale up both the number of agents and the size of the environment.
Moreover, this experiment showed that GPU delegation suggests a fine grained
and modular approach for designing and integrating GPU modules which eases
the development and maintenance tasks. Especially, this experiment shows that
GPU delegation allows to tackle the genericness issue by promoting the reusabil-
ity of the created GPU modules because, as they represent endogenous environ-
mental dynamics, they deal with computations which are entirely independent
from agent behavioral models. So, they could be easily reused in other contexts.
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Fig. 1. Performance gains between CPU and CPU+GPU versions

4 See http://www.lirmm.fr/~fmichel/mle for some videos of this experiment
5 In all these experiments, the environment is as a 2D square grid discretized in cells.
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Reynolds’s Boids [9] To further trial GPU delegation, a second experimen-
tation was proposed in [9] and described how the principle has been used and
eventually modified to implement a classic MABS, namely Reynolds’s Boids 6.
In this model, each agent moves by taking into account the orientation and the
speed of the others. So, applying GPU delegation, a GPU module dedicated to
the computation of average orientations in each part of the environment was
proposed, thus freeing the agents from doing the computation related to this
perception.

To achieve this, it is worth noting that the original GPU delegation criterion
had to be modified and extended so that it can be applied on this use case.
Indeed, there was no agent computation fulfilling the original criterion but this
experiment showed that it was in fact possible to apply GPU delegation after a
slight modification of the underlying criterion. So, this latter evolved and is now
stated as follows: Any agent perception computation not modifying the agent’s
state could be translated into an environmental dynamics computed by the GPU.

From a performance point of view, the experiment confirmed that, using GPU
delegation, it is possible to increase both the size of the environment and the
number of agents while obtaining an interesting speedup (up to 25% according to
the chosen parameters: Size of the environment and population density). Figure
2 summarizes the coefficient gains obtained for two size of environment: 256 and
512.

Apart from the extension of the GPU delegation criterion, from a practical
perspective, this experiment also shows that the resulting agent implementation
was easier to understand, thanks to the delegation of computations which are
not part of the agents’ deliberation.
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Fig. 2. Performance gains between CPU and CPU+GPU versions

Game of Life, Schelling’s segregation, Fire and DLA [10] To gain more
experience on the benefits and limits of GPU delegation, it has been used to

6 See www.lirmm.fr/~hermellin/Website/Reynolds_Boids_With_TurtleKit.html
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develop four different MABS simultaneously. So, [10] describes the adaption and
implementation of four models: Conway’s Game of Life, Schelling’s segregation,
Fire and DLA (diffusion-limited aggregation), the last two being taken from the
NetLogo library [26]7.

In this work, three GPU modules have been created. The first one, for the
Game of Life model, consists in computing for each cell of the environment its
state for the next step of the simulation, according to the Game of Life rules. The
second one, for Schelling’s segregation, computes the happiness of each agent at
each time step. The third one, for the Fire model, computes the heat diffusion in
the environment. Finally, the DLA model reuses the GPU module from Game
of Life (only the data structure sent to the GPU have been adapted to fit with
this module) to search for the nearest neighbors in the vicinity of each agent.

From a performance point of view, Figure 3 shows that performance gains
vary significantly depending on the simulated model and the size of the environ-
ment: The gain can reach x14 but is more likely between x2 and x5.

From a practical perspective, this experiment highlighted again that GPU
delegation promotes reusability by producing generic GPU modules which could
be used across different MABS. Moreover, thanks to its modularity, the simplicity
of the defined GPU modules shows that this approach offers a good accessibility
to GPGPU because GPU delegation eventually produces simple kernels (a few
lines of code are required in most cases).

Overall, beyond performance gains, this last experiment has confirmed the
advantages of the approach considering software engineering aspects such as ac-
cessibility, reusability and genericity. Still, it also highlights some open questions
such as the difficulty of implementation for a new GPGPU user or the types of
models on which GPU delegation could be applied.
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Fig. 3. Performance gains between CPU and CPU+GPU versions

7 Detailed descriptions and computation kernels are available online: http://www.

lirmm.fr/~hermellin/Website/GPGPU_MABS_Methodology.html
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4 Highlighting a Recurrent Development Pattern

From a software engineering perspective, the main objective of GPU delegation
is to offer a generic approach which can be applied on a wide variety of MABS
models and eases the use of GPGPU. Especially, as previously mentioned, our
goal is to capitalize on our experiments to eventually produce a methodology
which could be used on any kind of MABS. So, in this section, we present
the different parts of the development process which we have been found as
recurrent during our experiments. This enumeration is thus a first step toward
a comprehensive methodology relying on GPU delegation.

With respect to the workflow that we have applied for adapting and devel-
oping the previous MABS, applying GPU delegation on a model can be divided
into four main phases. The first step consists in identifying in the model all the
computations which are required by the agents’ behaviors or the environmental
dynamics. Once these computations are referenced, the second step consists in
selecting which ones could be modeled and implemented as an environmental
dynamics according to the GPU delegation criterion. The third step relies on
analyzing the selected computations for choosing which ones could bring inter-
esting performance gains once translated into GPU modules. Finally, the fourth
step consists in applying GPU delegation on the identified computations for
developing the related GPU modules. Figure 4 summarizes this development
pattern.

Fig. 4. Recurrent steps for the implementation of the GPU delegation

Step 1: Identifying This phase of identification consists in decomposing the
agents’ behaviors to individualize as much as possible all the computations that
they require. For instance, each perception process should be linked with a rei-
fied computation. The same approach holds for the environmental dynamics
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which are present in the model. The more the model is decomposed in simple
computations, the more GPU delegation could be then successfully applied.

Step 2: Selecting the Compatible Computations The selection of compu-
tations is an essential step because it relies on deciding which ones could benefit
from GPGPU. If no part of the model is compliant with the principle, it is there-
fore useless to go further because, in such a case, the gains brought by GPGPU
could be insignificant or even negative [13].

So, for now, in our experiments the selection of computations has been made
according to the following workflow and specific criteria:

1. Considering the environment:

– If no computations or environmental dynamics have been identified in
step 1, proceed to the agents’ behaviors.

– If the environment is discretized into a 2D grid and contains computa-
tions or environmental dynamics which are applied on a large part of
the cells, the delegation of these computations to GPU modules could
be possible and highly relevant. Indeed, in those cases, the computations
are independent from the agent’s states and thus agree to the GPU del-
egation principle (see section 3.1).

2. Considering the agents’ behaviors:

– If computations made within the behavior of the agent do not involve nor
modify the agent’s states, they could be translated into environmental
dynamics.

Step 3: Analyzing the Selected Computations Before applying GPU dele-
gation on the selected computations, one must consider the performance benefits
that these computations can bring. So, it is necessary to verify that (1) compu-
tations are performed by a large number of agents or applied on a lot of cells (for
the environment). Because of the very high data transfer costs, if computations
are rarely used, triggering a GPU computation could be not efficient even if
their are compatible with the principle. Moreover, (2) the data structures used
by these computations must be independent and adapted to the GPU architec-
ture. If this is not the case, one has to check that the data can be adapted.
Indeed, if the data do not match the highly specialized GPU architecture, this
will impact the overall performance of the model (see [5] for more information
on this aspect).

Step 4: Applying GPU Delegation Implementing GPU delegation can be
divided into three parts for each selected computation:

1. Creating the GPU kernel;
2. Adapting the data structures;
3. Linking the agent API with the GPU module.
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(1) Applying GPU delegation starts with the creation of the GPU kernel, that is
the GPU programming version of the selected computation. Thanks to the de-
composition which have been done in the identifying step, little GPGPU knowl-
edge is required and the produced kernels are easy to implement through a few
lines of code (see e.g. [10]). (2) Then, the data structures need to be adapted
to the new GPU module. This adaptation is based on the nature of both the
computations and the environment model (arrays fitting the discretization of the
environment are mostly used). Finally, these new elements must be integrated
and linked with the CPU part of the model. So, new functions must be created
to allow the agents and the environment to collect and use the data computed
by the GPU module.

5 Summary and future works

Using GPGPU in the context of MABS remains difficult and the spreading
of this technology in the MABS community is still limited, mainly because of
accessibility and reusability issues.

In this context, this paper has proposed an overview of several case studies
on using the GPU delegation principle for adapting MABS models to GPU
programming and discussed related practical results. Especially, our experiments
showed that this approach is an original and relevant solution toward the direct
use of GPU programming for developing MABS. Notably, GPU delegation not
only allows to obtain performance gains but also embeds a software engineering
perspective that promotes GPGPU accessibility together with the resusability
and genericity of the produced software modules.

This paper has then presented how the workflow which has been used in our
experiments could be generalized. To this end, we described all the steps that we
followed for modeling and adapting the models used in our experiments so that
they can benefit from GPU programming. The underlying idea of this work is
to eventually define a comprehensive methodology relying on GPU delegation.
From a higher perspective, we argue on the idea that such a contribution would
be crucial because it would allow to handle a wider range of models and thus
contribute to the spreading of the GPGPU technology in the MABS community.

To this end, our next objective is thus to formalize the different steps and
criteria which have been identified and presented in this paper to define a first
version of such a methodology.
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