LIRMM

For Developing MABS using GPU Programming

Emmanuel Hermellin and Fabien Michel {hermeliin, fmichel}@lirmm.fr

- GPU Delegation: Toward a Generic Approach
A P

Laboratory of Informatics, Robotics and Microelectronics (LIRMM) - University of Montpellier

Objective

Considering the use of GPGPU for developing MABS, the conclusion
of Perumalla and Aaby’s work (P&A) [1] in 2008 was twofold:

« Data parallel execution capabilities of GPU can afford
excellent speedup on MABS models;

« But this comes at the expense of modularity, accessibility and
reusability.

Objective: Check if the conclusions outlined by Perumalla and Aaby
are still true despite the evolution of GPGPU and MABS.

Method: Applying GPU delegation on four models to compare CPU
and GPU implementations and analyze the results from both a con-
ceptual and a performance point of view.

GPU delegation for MABS

Motivation: Implementing MABS using GPGPU is very challenging.

« GPU programming relies on specialized hardware.
« It is very difficult to deport the entire MABS model on GPU.

Approach: GPU delegation [2] relies on an hybrid approach (Figure 1)
and consists in making a clear separation between:

« The agent behaviors, managed by the CPU:;
« Environmental dynamics, handled by the GPU.

GPU delegation principle: Any agent computation that does not
modify the agent’s states could be modeled as an endogenous dynamics
of the environment, and thus considered as a potential GPU environ-
ment module.

Source code
e ———— T
| T CPU
| = Sequential code

CPU
Sequential code

Figure 1: lllustration of an Hybrid approach

Performance perspective

= (Game of Life~Segregation+ Fire-DLA

14 4
g 12 o
% 10 .
= 8
)
ESEN ¢
% A R R
3 4 ﬁ
S o = : —~
0

256 512 1.024 2.048

Size of the environment

Results: Performance gains vary significantly depending on the simu-
lated model, the size of the environment and the density of agents (gains
can reach x14 but is more likely between x2 and x5).

References

1] Kalyan S. Perumalla and Brandon G. Aaby.
Data parallel execution challenges and runtime performance of agent simulations on

GPUs.
Proceedings of the 2008 Spring simulation multiconference, pages 116-123, 2008.

2] Fabien Michel.
Translating Agent Perception Computations into Environmental Processes in
MABS: A means for Integrating Graphics Processing Unit Programming within

Usual Agent-Based Simulation Platforms.
Systems Research and Behavioral Science, 30(6):703-715, 2013.

http://www.lirmm.fr/~hermellin/
http://www.lirmm.fr/~fmichel /

What is GPGPU

General-Purpose computing on Graphics Processing Units (GPGPU) consists in using
the highly parallel architecture of Graphics Processing Units (GPU) to do General-
Purpose computing and thus provide high performance gains.

CPU

<[Iniiif] @« »

Called Stream Processing, the programming model associated to GPGPU (SIMD) relies on
the execution of a series of operations on a dataset simultaneously.

Sequential execution: SISD Parallel execution: SIMD

Data Instructions Data Instructions
\—> PU [« | |—> PU [«
» PU [«
PU | Processing Unit > PU |«
» PU [«€—
[]
Experiments

Experience: Applying GPU Delegation on four models.

- Conway’s Game of Life and Schelling’s segregation (also conducted in P&A study).
= Fire and DLA model (taken from the Netlogo models library).

Design process: For each model, the purpose is to identify some computations that can be
modeled as environmental dynamics and then translated into GPU modules.

« 1. Find intensive computations that comply with GPU delegation.
« 2. Translate sequential computations into computations performed by the GPU.

« 3. Implement GPU modules.
Example: Fire model.

« 1. Intensive computation: The heat diffusion.
= 2. Translate computation: See Figure 2.

« 3. Figure 3 illustrates how this computation can be integrated into independent GPU
module and then used in the TurtleKit platform.

input: width, height, heatArray , evapCoef
output: resultArray (thequantityofheat)

i fori =1 to width do i i I = blockldx .x * blockDim.x + threadldx .x i
| for j = 1 to height do I 1 = blockldx .y * blockDim.y + threadldx .y !
l resultArray [il[j] = heatArray [il[j] * evapCoef | | ifi < width andj < height then !
| | |
I | | |
! | |

end for resultArray [i][j] = heatArray [i][j] * evapCoef
end for end if

__

Figure 2: Sequential vs Parallel implementation

One major characteristic of the GPU code: The parallelization of the loop is realized
by the hardware architecture.

(; , ;) T I T T T T T T T T T T T T T T T T T T,
Discre tized environmen t ! GPU modules ! i Global grid of threads |
k | i i computed byi """""" i
. sent to a kerne I | : o
Data array (that fit Kernel 1 l > : s
environmen t size) ? i ! (0.3)] (0. 4) : ¥
R . I | R -
. | EEE | = mEEL
[Agents fill esult array N | I Kernel 2 i ! ,
M e : : : I ! (e |
5 TEEEE o — ———
J]| e I s | N
"""""""""" ... ! o | (2,0)((2, 1) [(2,2)]]|(2,3)] [(2,4)
L % : I e I A A i AU B M B A AN
"""""""""""""""""""" BT e -
P Its are writt
]‘ L

Figure 3: Integration and use of GPU modules

Software engineering perspective

Improvements since P&A’s study:

« Genericness: May be used on a wide variety of MABS models;
« Reusability: Reusing created GPU modules;

« Accessibility: Promoting a modular design of the model, thus producing simple kernels
(little GPGPU knowledge).

GPU delegation benefits: Asa generic approach, GPU delegation allows to take advantage
of the computing power of GPGPU without changing the agent model.

Perspective: Formalizing the modeling process related to GPU delegation by defining a
methodology based on GPU delegation for developing MABS using GPGPU.

http://www.lirmm.fr/~hermellin/
http://www.lirmm.fr/~fmichel/

