a programmer dreams that he commands Eclipse, is it not Eclipse dreaming it is a programmer? (after 庄子)

 is part of the real world TM object-orientation can be used for representing object-orientation An object meta-model a UML model modelling the entities of object-orientation, i.e. classes, associations, attributes, methods, ... with classes, associations, attributes, methods, ... inherently ambiguous plays on words programming languages, although formal, are ambiguous, too because they serve as man-machine interfaces through various names compilers don't joke! Foundation requirement in the modelled program, each occurrence of the name of a modelled entity must denote a single instance of the metamodel inherently ambiguous plays on words programming languages, although formal, are ambiguous, too because they serve as man-machine interfaces through various names compilers don't joke! Foundation requirement in the modelled program, each occurrence of the name of a modelled entity must denote a single instance of the metamodel named A a method named foo(), defined in A class B extends A { foo() {...} bar() {...} } a class named B, subclass of A a method named foo(), defined in B redefining foo() of A a method named bar(), defined in B with class A a type annotation with class B a message foo() introduced in A sent to x with late binding a message bar() introduced in B class A { foo() {...} } a class, named A a method named foo(), defined in A class B extends A { foo() {...} bar() {...} } a class named B, subclass of A a method named foo(), defined in B redefining foo() of A a method named bar(), defined in B with class A a type annotation with class B a message foo() introduced in A sent to x with late binding a message bar() introduced in B class A { foo() {...} } a class, named A a method named foo(), defined in A class B extends A { foo() {...} bar() {...} } a class named B, subclass of A a method named foo(), defined in B redefining foo() of A a method named bar(), defined in B with class A a type annotation with class B a message foo() introduced in A sent to x with late binding a message bar() introduced in B An object model of the object model (3/3) A single class for classes for all usages: declarations, type annotations and new Two classes for properties a class for local properties, implementations defined in a class a class for global properties, messages invoked from the code What are properties? methods, attributes formal type parameters, virtual types, ... by substituting an instance of local/global property to each property name, even when it seems ambiguous Actual ambiguities = compiler errors When this substitution is not possible (several candidates) by substituting an instance of local/global property to each property name, even when it seems ambiguous Actual ambiguities = compiler errors When this substitution is not possible (several candidates) A providing a service foo and a class B providing a service bar both developped independently of each other (apart from common superclasses) define a common subclass C providing both services A providing a service foo and a class B providing a service bar both developped independently of each other (apart from common superclasses) define a common subclass C providing both services Motivation for multiple inheritance (2/2) In static typing There is no language without full multiple inheritance (C++, Eiffel), or mixins (Scala), or at least multiple subtyping (Java, C , Ada 2005) between two global properties with the same name between two local properties of the same global property plus the method combination case conflict between two global properties with the same name Solution: Fully Qualified Names short names are used in most situations names qualified with the introduction class used when a conflict occurs a global property is introduced by a single class static typing required local properties of the same global property none more specific than the other Solution redefinition in the class where the conflict occurs a Human must behave like a Mortal Redefinition is non-monotonic redefining a method yields non-monotonicity Method combination = Call to super a way to recover monotonicity a Human behaves like a Mortal, with extra behaviour Monotonicity vs redefinition Aristotelian logic is monotonic a Human must behave like a Mortal Redefinition is non-monotonic redefining a method yields non-monotonicity Method combination = Call to super a way to recover monotonicity a Human behaves like a Mortal, with extra behaviour no problem with local property conflicts, nor method combination except with default methods in Java 8 ad hoc solution for global property conflicts in C no solution for global property conflicts in Java no problem with local property conflicts, nor method combination except with default methods in Java 8 ad hoc solution for global property conflicts in C no solution for global property conflicts in Java the answer, what was the question? just add unnecessary asymmetry between classes and traits right solution for global attribute conflicts no solution for global method conflicts two distinct attributes for a single accessor! method combination with static calls and repeated inheritance linearization used for constructor/destructor combination but not C3 C++ non-virtual inheritance repeated inheritance for non-conflicting global attributes an abomination right solution for global attribute conflicts no solution for global method conflicts two distinct attributes for a single accessor! method combination with static calls and repeated inheritance linearization used for constructor/destructor combination but not C3 C++ non-virtual inheritance repeated inheritance for non-conflicting global attributes an abomination for global property conflicts, with renaming method combination with static calls and repeated inheritance With dynamic typing (CLOS, Python) no solution for global property conflicts linearization-based method combination C3 default linearization only in Python possibility to define metaclasses using C3 in CLOS classes and traits the same for methods, attributes, virtual types, type parameters metamodeling semantics with fully qualified names for global properties without any repetition local property conflicts solved by redefinition method combination using the C3 linearization declare properties and create instances types serve as annotations in the code allow the compiler to ensure the code is type safe Nominal vs structural types a nominal type is a symbol with explicit subtyping a structural type is a record of named signatures, with implicit subtyping When parameter types are invariant, there is room for static overloading Principle a name denoting different entities in a common context disambiguated with static types originates in pre-object languages like PL/1 and C Static overloading (1/3) When parameter types are invariant, there is room for static overloading Principle a name denoting different entities in a common context disambiguated with static types originates in pre-object languages like PL/1 and C Mal nommer les choses, c'est ajouter au malheur du monde Misnaming things adds to the world's misfortunes (Albert Camus) Albert Camus a French writer and philosopher (1913-60) Peyo a Belgian author of comic strips (1928-92) creator of the Schtroumpfs Schtroumpfs small characters whose language has a single noun and verb: "schtroumpf" Mal nommer les choses, c'est ajouter au malheur du monde Misnaming things adds to the world's misfortunes (Albert Camus) Albert Camus a French writer and philosopher (1913-60) Peyo a Belgian author of comic strips (1928-92) creator of the Schtroumpfs Schtroumpfs small characters whose language has a single noun and verb: "schtroumpf" Misnaming things adds to the world's misfortunes in the context of a picture, even small children can understand! to the schtroumpf's schtroumpfs in the context of a picture, even small children can understand! object-oriented languages are now generic (Eiffel, C++, Java, C , ...) generic languages (Ada) are now object-oriented object-oriented languages are now generic (Eiffel, C++, Java, C , ...) generic languages (Ada) are now object-oriented heterogeneous pure textual substitution (C++) no recursive types + code explosion homogeneous type erasure and code sharing (Java 1.5, Scala) limited expressivity, unsafe casts, inefficient boxing mixed code shared or specialized, with runtime types (C) best tradeoff expressivity-efficiency-safety Stack<? extends Animal> s = new Stack<Cat>(); Animal a = s.pop(); // OK s.push(a); // KO interface restricted to methods where the type parameter is not in a contravariant position useful for exporting "almost read-only" collections Stack<? extends Animal> s = new Stack<Cat>(); Animal a = s.pop(); // OK s.push(a); // KO interface restricted to methods where the type parameter is not in a contravariant position useful for exporting "almost read-only" collections Stack<? super Cat> s = new Stack<Animal>(); Animal a = s.pop(); // KO Object o = s.pop(); // OK s.push(new Cat()); // OK interface restricted to methods where the type parameter is not in a covariant position or is replaced by the parameter bound counter-intuitive and rarely used, apart from Comparable Stack<? super Cat> s = new Stack<Animal>(); Animal a = s.pop(); // KO Object o = s.pop(); // OK s.push(new Cat()); // OK interface restricted to methods where the type parameter is not in a covariant position or is replaced by the parameter bound counter-intuitive and rarely used, apart from Comparable class ImmutableContainer<+ T> { T get() ;} class Container<T> inherit ImmutableContainer<T> { put(T) ;} with + the type parameter is covariant and cannot be used in a contravariant position useful for exporting "actual read-only" collections class ImmutableContainer<+ T> { T get() ;} class Container<T> inherit ImmutableContainer<T> { put(T) ;} with -the type parameter is contravariant and cannot be used in a covariant position counter-intuitive and rarely used

R. Ducournau (LIRMM)Ideal Classes and Types 沈阳市, 2016