
HAL Id: lirmm-01321762
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01321762v1

Submitted on 26 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Classes and Types in an Ideal Object-Oriented
Programming Language

Roland Ducournau

To cite this version:
Roland Ducournau. Classes and Types in an Ideal Object-Oriented Programming Language. 2016.
�lirmm-01321762�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01321762v1
https://hal.archives-ouvertes.fr

Classes and Types in an Ideal
Object-Oriented Programming Language

Roland Ducournau

LIRMM – Université de Montpellier & CNRS

东北大学, 沈阳市 – April 2016

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 1 / 88

Motivation: the good news

Object-orientation
is now universal for programming, modelling, ..

Mature theory and technology
≈ 24 centuries after Aristotle (350 BC),
≈ half a century after Simula (1967),
≈ 3 decades ago: first mainstream languages (Eiffel, C++)
≈ 2 decades ago: Java, then C] and Scala

* Likely the greatest success of the last century!

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 2 / 88

Motivation: the good news

Object-orientation
is now universal for programming, modelling, ..

Mature theory and technology
≈ 24 centuries after Aristotle (350 BC),
≈ half a century after Simula (1967),
≈ 3 decades ago: first mainstream languages (Eiffel, C++)
≈ 2 decades ago: Java, then C] and Scala

* Likely the greatest success of the last century!

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 2 / 88

Motivation: the good news

Object-orientation
is now universal for programming, modelling, ..

Mature theory and technology
≈ 24 centuries after Aristotle (350 BC),
≈ half a century after Simula (1967),
≈ 3 decades ago: first mainstream languages (Eiffel, C++)
≈ 2 decades ago: Java, then C] and Scala

* Likely the greatest success of the last century!

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 2 / 88

Motivation: the bad news

The greatest failure of the last century?
The object-oriented programming languages!

Each one, individually!
All together!

The same features
are specified differently,
as if programming languages were works of art!

* The Babel Tower!

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 3 / 88

Motivation: the bad news

The greatest failure of the last century?
The object-oriented programming languages!

Each one, individually!
All together!

The same features
are specified differently,
as if programming languages were works of art!

* The Babel Tower!

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 3 / 88

Motivation: the bad news

The greatest failure of the last century?
The object-oriented programming languages!

Each one, individually!
All together!

The same features
are specified differently,
as if programming languages were works of art!

* The Babel Tower!

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 3 / 88

My thesis

Plato’s ideals
apply to Circle, Tree, ..
apply to Programming Languages, too

* The ideal Object-Oriented Programming Language exists

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 4 / 88

My thesis

Plato’s ideals
apply to Circle, Tree, ..
apply to Programming Languages, too

* The ideal Object-Oriented Programming Language exists

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 4 / 88

My thesis

Arguments taken from ...
philosophy (Aristotle)
ontology (object metamodel)
necessity (Occam’s razor)
mathematics (type and set theory, logic)
empiricism
common sense

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 5 / 88

Plan

Plan

1 Classes and inheritance

2 Types and subtyping

3 Genericity

4 Conclusions and propects

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 6 / 88

Classes and inheritance

Plan

1 Classes and inheritance
Aristotelian semantics
Class and property metamodel
Multiple inheritance conflicts
Method combination
About existing languages

2 Types and subtyping

3 Genericity

4 Conclusions and propects

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 7 / 88

Classes and inheritance Aristotelian semantics

Object-orientation vs knowledge
representation

* an object-oriented model is a representation of the real-worldTM

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 8 / 88

Classes and inheritance Aristotelian semantics

OO vs KR: Philosophers
Mortal

Human

Greek Philosopher Chinese

Greek
philosopher philosopher

Chinese

Aristotle Plato Kongfuzi Lao Tseu

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 9 / 88

Classes and inheritance Aristotelian semantics

OO vs KR: Philosophers

classes

instances

Mortal

Human

Greek Philosopher Chinese

Greek
philosopher philosopher

Chinese

Aristotle Plato Kongfuzi Lao Tseu

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 9 / 88

Classes and inheritance Aristotelian semantics

OO vs KR: Philosophers

instance of

subclass of
classes

instances

Mortal

Human

Greek Philosopher Chinese

Greek
philosopher philosopher

Chinese

Aristotle Plato Kongfuzi Lao Tseu

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 9 / 88

Classes and inheritance Aristotelian semantics

Philosophers

Aristotle (Ἀριστοτέλης , 384-322 BC) founded logic
Plato (Πλάτων , 427-348 BC) promoted the existence of ideas
孔子 (Kongfuzi, 551-479 BC)
老子 (Lao Tseu)
庄子 (Zhuangzi) a butterfly dream

* in the XX◦ century jargon, ideas are first-class objects

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 10 / 88

Classes and inheritance Aristotelian semantics

Philosophers

Aristotle (Ἀριστοτέλης , 384-322 BC) founded logic
Plato (Πλάτων , 427-348 BC) promoted the existence of ideas
孔子 (Kongfuzi, 551-479 BC)
老子 (Lao Tseu)
庄子 (Zhuangzi) a butterfly dream

* in the XX◦ century jargon, ideas are first-class objects

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 10 / 88

Classes and inheritance Aristotelian semantics

Aristotelian semantics (1/3)

The extension of a class is the set of its instances

Foundation syllogism

Humans are Mortals
孔子 is a Human
孔子 is a Mortal

Human ≺ Mortal
孔子 ∈ Ext(Human)
孔子 ∈ Ext(Mortal)

Subclassing = specialization = inclusion of extensions
* Instances of the subclass are instances of the superclass

B ≺ A⇒ Ext(B) ⊂ Ext(A)

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 11 / 88

Classes and inheritance Aristotelian semantics

Aristotelian semantics (1/3)

The extension of a class is the set of its instances

Foundation syllogism

Humans are Mortals
孔子 is a Human
孔子 is a Mortal

Human ≺ Mortal
孔子 ∈ Ext(Human)
孔子 ∈ Ext(Mortal)

Subclassing = specialization = inclusion of extensions
* Instances of the subclass are instances of the superclass

B ≺ A⇒ Ext(B) ⊂ Ext(A)

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 11 / 88

Classes and inheritance Aristotelian semantics

Aristotelian semantics (2/3)

The intension of a class is a set of properties declared for its instances

Inheritance of properties
an instance of a class has all the properties declared by the class
as a Human, 孔子 is a Mortal

* 孔子 has all the properties declared by Mortal

Inheritance is implied by specialization
* The subclass inherits the properties declared in the superclass

B ≺ A⇒ Int(A) ⊂ Int(B)

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 12 / 88

Classes and inheritance Aristotelian semantics

Aristotelian semantics (2/3)

The intension of a class is a set of properties declared for its instances

Inheritance of properties
an instance of a class has all the properties declared by the class
as a Human, 孔子 is a Mortal

* 孔子 has all the properties declared by Mortal

Inheritance is implied by specialization
* The subclass inherits the properties declared in the superclass

B ≺ A⇒ Int(A) ⊂ Int(B)

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 12 / 88

Classes and inheritance Aristotelian semantics

Aristotelian semantics (3/3)

My answers to objections
in Logo, a Turtle is a Point
there is no specialization in the real worldTM

* but specialization is in the artefact
so-called implementation inheritance

* a bad practice resulting from an erroneous model

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 13 / 88

Classes and inheritance Class and property metamodel

An object model of the object model (1/3)

Object-orientation is part of the real worldTM

* object-orientation can be used for representing object-orientation

An object meta-model
a UML model
modelling the entities of object-orientation,
i.e. classes, associations, attributes, methods, ...
with classes, associations, attributes, methods, ...

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 14 / 88

Classes and inheritance Class and property metamodel

An object model of the object model (2/3)

Motivations
mandatory for all metaprograms
(e.g. compilers, VMs, IDEs)
provides an ontology of object orientation
with unambiguous specifications
by getting rid of names

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 15 / 88

Classes and inheritance Class and property metamodel

An object model of the object model (3/3)

Language ambiguities
natural languages are inherently ambiguous
* plays on words
programming languages, although formal, are ambiguous, too

because they serve as man-machine interfaces
through various names

* compilers don’t joke!

Foundation requirement
* in the modelled program, each occurrence of the name of a
modelled entity must denote a single instance of the metamodel

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 16 / 88

Classes and inheritance Class and property metamodel

An object model of the object model (3/3)

Language ambiguities
natural languages are inherently ambiguous
* plays on words
programming languages, although formal, are ambiguous, too

because they serve as man-machine interfaces
through various names

* compilers don’t joke!

Foundation requirement
* in the modelled program, each occurrence of the name of a
modelled entity must denote a single instance of the metamodel

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 16 / 88

Classes and inheritance Class and property metamodel

1
2

class A {
foo() {...}

}

a class, named A
a method named foo(), defined in A

3
4

5

class B extends A {
foo() {...}

bar() {...}
}

a class named B, subclass of A
a method named foo(), defined in B

redefining foo() of A
a method named bar(), defined in B

1
3
6

7

A x;
B y;
x.foo();

y.bar();

a type annotation with class A
a type annotation with class B
a message foo() introduced in A

sent to x with late binding
a message bar() introduced in B

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 17 / 88

Classes and inheritance Class and property metamodel

1
2

class A {
foo() {...}

}

a class, named A
a method named foo(), defined in A

3
4

5

class B extends A {
foo() {...}

bar() {...}
}

a class named B, subclass of A
a method named foo(), defined in B

redefining foo() of A
a method named bar(), defined in B

1
3
6

7

A x;
B y;
x.foo();

y.bar();

a type annotation with class A
a type annotation with class B
a message foo() introduced in A

sent to x with late binding
a message bar() introduced in B

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 17 / 88

Classes and inheritance Class and property metamodel

1
2

class A {
foo() {...}

}

a class, named A
a method named foo(), defined in A

3
4

5

class B extends A {
foo() {...}

bar() {...}
}

a class named B, subclass of A
a method named foo(), defined in B

redefining foo() of A
a method named bar(), defined in B

1
3
6

7

A x;
B y;
x.foo();

y.bar();

a type annotation with class A
a type annotation with class B
a message foo() introduced in A

sent to x with late binding
a message bar() introduced in B

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 17 / 88

Classes and inheritance Class and property metamodel

An object model of the object model (3/3)

A single class for classes
for all usages: declarations, type annotations and new

Two classes for properties
a class for local properties, implementations defined in a class
a class for global properties, messages invoked from the code

What are properties?
methods, attributes
formal type parameters, virtual types, ...

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 18 / 88

Classes and inheritance Class and property metamodel

*

*

re
def

in
es

*

1

nam
ed nam

ed

1

*

*

*

specializes

1

*

*

1

*

*

belongs to

*

1

kn
ow

s

in
tr
oduce

s
defines

Property
Global Local

Property

name : String
type : Type

Name

Class

name : String

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 19 / 88

Classes and inheritance Class and property metamodel

1
2

3
4
5

1
3
6
7

class A {
foo() {...}

}

class B extends A {
foo() {...}
bar() {...}

}

A x;
B y;
x.foo();
y.bar();

A : Class

name=A

1

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 20 / 88

Classes and inheritance Class and property metamodel

1
2

3
4
5

1
3
6
7

class A {
foo() {...}

}

class B extends A {
foo() {...}
bar() {...}

}

A x;
B y;
x.foo();
y.bar();

name = foo

A:foo::A :LocalP

defin
es

2

A : Class

name=A

1

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 20 / 88

Classes and inheritance Class and property metamodel

1
2

3
4
5

1
3
6
7

class A {
foo() {...}

}

class B extends A {
foo() {...}
bar() {...}

}

A x;
B y;
x.foo();
y.bar();

name = foo

A:foo :GlobalP

6

knows

introduces be
lo

ng
s

to

name = foo

A:foo::A :LocalP

defines

2

A : Class

name=A

1

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 20 / 88

Classes and inheritance Class and property metamodel

1
2

3
4
5

1
3
6
7

class A {
foo() {...}

}

class B extends A {
foo() {...}
bar() {...}

}

A x;
B y;
x.foo();
y.bar();

B : Class

name=B

kn
ow

s

3 s
p

e
c
ia

li
z
e
s

name = foo

A:foo :GlobalP

6

knows

introduces be
lo

ng
s

to

name = foo

A:foo::A :LocalP

defines

2

A : Class

name=A

1

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 20 / 88

Classes and inheritance Class and property metamodel

1
2

3
4
5

1
3
6
7

class A {
foo() {...}

}

class B extends A {
foo() {...}
bar() {...}

}

A x;
B y;
x.foo();
y.bar();

name = foo

A:foo::B :LocalP

re
d

e
fi

n
e
s

belongs to

4

defines

B : Class

name=B

kn
ow

s

3 s
p

e
c
ia

li
z
e
s

name = foo

A:foo :GlobalP

6

knows

introduces be
lo

ng
s

to

name = foo

A:foo::A :LocalP

defines

2

A : Class

name=A

1

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 20 / 88

Classes and inheritance Class and property metamodel

1
2

3
4
5

1
3
6
7

class A {
foo() {...}

}

class B extends A {
foo() {...}
bar() {...}

}

A x;
B y;
x.foo();
y.bar();

name = bar

B:bar::B :LocalP

defines 5

name = foo

A:foo::B :LocalP

re
d

e
fi

n
e
s

belongs to

4

defines

B : Class

name=B

kn
ow

s

3 s
p

e
c
ia

li
z
e
s

name = foo

A:foo :GlobalP

6

knows

introduces be
lo

ng
s

to

name = foo

A:foo::A :LocalP

defines

2

A : Class

name=A

1

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 20 / 88

Classes and inheritance Class and property metamodel

1
2

3
4
5

1
3
6
7

class A {
foo() {...}

}

class B extends A {
foo() {...}
bar() {...}

}

A x;
B y;
x.foo();
y.bar();

name = bar

B:bar :GlobalP

knows

introduces

7

belongs to

name = bar

B:bar::B :LocalP

defines 5

name = foo

A:foo::B :LocalP

re
d

e
fi

n
e
s

belongs to

4

defines

B : Class

name=B

kn
ow

s

3 s
p

e
c
ia

li
z
e
s

name = foo

A:foo :GlobalP

6

knows

introduces be
lo

ng
s

to

name = foo

A:foo::A :LocalP

defines

2

A : Class

name=A

1

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 20 / 88

Classes and inheritance Class and property metamodel

Metamodeling semantics

Disambiguating name conflicts
In two situations

with multiple inheritance
with static overloading

* by substituting an instance of local/global property
to each property name, even when it seems ambiguous

Actual ambiguities = compiler errors
When this substitution is not possible (several candidates)

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 21 / 88

Classes and inheritance Class and property metamodel

Metamodeling semantics

Disambiguating name conflicts
In two situations

with multiple inheritance
with static overloading

* by substituting an instance of local/global property
to each property name, even when it seems ambiguous

Actual ambiguities = compiler errors
When this substitution is not possible (several candidates)

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 21 / 88

Classes and inheritance Multiple inheritance conflicts

Motivation for multiple inheritance (1/2)

Multiple inheritance provides
increased expressivity
improved reuse

given a class A providing a service foo
and a class B providing a service bar
both developped independently of each other
(apart from common superclasses)

* define a common subclass C providing both services

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 22 / 88

Classes and inheritance Multiple inheritance conflicts

Motivation for multiple inheritance (1/2)

Multiple inheritance provides
increased expressivity
improved reuse

given a class A providing a service foo
and a class B providing a service bar
both developped independently of each other
(apart from common superclasses)

* define a common subclass C providing both services

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 22 / 88

Classes and inheritance Multiple inheritance conflicts

Motivation for multiple inheritance (2/2)

In static typing
There is no language without

full multiple inheritance (C++, Eiffel),
or mixins (Scala),
or at least multiple subtyping (Java, C], Ada 2005)

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 23 / 88

Classes and inheritance Multiple inheritance conflicts

Multiple inheritance conflicts (1/5)

Conflicts of two kinds
between two global properties with the same name
between two local properties of the same global property

* plus the method combination case

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 24 / 88

Classes and inheritance Multiple inheritance conflicts

Multiple inheritance conflicts (2/5)

Researcher

laboratory
department department

university

Teacher

Person

name
address

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 25 / 88

Classes and inheritance Multiple inheritance conflicts

Multiple inheritance conflicts (2/5)

Researcher

laboratory
department department

university

Teacher

Person

name
address Researcher x;

x.department; // OK

Teacher y;
y.department // OK

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 25 / 88

Classes and inheritance Multiple inheritance conflicts

Multiple inheritance conflicts (2/5)

Teacher−Researcher

Researcher

laboratory
department department

university

Teacher

Person

name
address Researcher x;

x.department; // OK

Teacher y;
y.department // OK

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 25 / 88

Classes and inheritance Multiple inheritance conflicts

Multiple inheritance conflicts (2/5)

Teacher−Researcher

Researcher

laboratory
department department

university

Teacher

Person

name
address

Teacher-Researcher z;

Researcher x=z;
x.department; // OK

Teacher y=z;
y.department // OK

z.department // KO

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 25 / 88

Classes and inheritance Multiple inheritance conflicts

name=Person

P : Class

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 26 / 88

Classes and inheritance Multiple inheritance conflicts

name = department

R:dpt : GlobalP

name = department

R:dpt::R : LocalP

R : Class

name=Researcher

intro
duces

knows

defines

b
e

lo
n

g
s

 t
o

specia
liz

es
name=Person

P : Class

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 26 / 88

Classes and inheritance Multiple inheritance conflicts

T:dpt::T : LocalP

name = department

name = department

T:dpt : GlobalP

specializes

knows

defin
es

b
e

lo
n

g
s

 t
o name=Teacher

T : Class

introduces

name=Person

P : Class

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 26 / 88

Classes and inheritance Multiple inheritance conflicts

T:dpt::T : LocalP

name = department

name = department

T:dpt : GlobalP

specializes

knows

defin
es

b
e

lo
n

g
s

 t
o name=Teacher

T : Class

introducesname = department

R:dpt : GlobalP

name = department

R:dpt::R : LocalP

R : Class

name=Researcher

intro
duces

knows

defines

b
e

lo
n

g
s

 t
o

specia
liz

es
name=Person

P : Class

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 26 / 88

Classes and inheritance Multiple inheritance conflicts

name=TR

TR : Class

specializes specializ
es

k
n

o
w

s

T:dpt::T : LocalP

name = department

name = department

T:dpt : GlobalP

specializes

knows

defin
es

b
e

lo
n

g
s

 t
o name=Teacher

T : Class

introducesname = department

R:dpt : GlobalP

name = department

R:dpt::R : LocalP

R : Class

name=Researcher

intro
duces

knows

defines

b
e

lo
n

g
s

 t
o

specia
liz

es
name=Person

P : Class

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 26 / 88

Classes and inheritance Multiple inheritance conflicts

Multiple inheritance conflicts (3/5)

Diagnosis
conflict between two global properties with the same name

Solution: Fully Qualified Names
short names are used in most situations
names qualified with the introduction class
used when a conflict occurs

* a global property is introduced by a single class
static typing required

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 27 / 88

Classes and inheritance Multiple inheritance conflicts

short names

Teacher-Researcher z;

Researcher x=z;
x.department; // OK

Teacher y=z;
y.department // OK

z.department // KO

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 28 / 88

Classes and inheritance Multiple inheritance conflicts

short names fully qualified names

Teacher-Researcher z;

Researcher x=z;
x.department; // OK

Teacher y=z;
y.department // OK

z.department // KO

means x.Researcher:department

means y.Teacher:department

must be disambiguated with
z.Teacher:department

or z.Researcher:department
the programmer should know!

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 28 / 88

Classes and inheritance Multiple inheritance conflicts

Multiple inheritance conflicts (4/5)

area = (diagonal1

* diagonal2)/2

Rhombus

diagonal2

diagonal1

Quadrilateral

area = ...

length
* width

area =

Square

length

Rectangle

width

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 29 / 88

Classes and inheritance Multiple inheritance conflicts

name = area

Q:area::Q : LocalP

Q : Class

name=Q

k
n

o
w

s

in
tr

o
d

u
c

e
s

name = area

Q:area : GlobalP

d
e
fin

e
s

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 30 / 88

Classes and inheritance Multiple inheritance conflicts

Re : Class

name=Re

name = area

Q:area::Re : LocalP

specia
liz

es

knows

defines
b
el

o
n
g
s

to

re
d

e
fi

n
e
s

name = area

Q:area::Q : LocalP

Q : Class

name=Q

k
n

o
w

s

in
tr

o
d

u
c

e
s

name = area

Q:area : GlobalP

d
efin

es

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 30 / 88

Classes and inheritance Multiple inheritance conflicts

name = area

Q:area::Rh : LocalP

defin
es

Rh : Class

name=Rh

specializes

knows

re
d

e
fi

n
e

s

b
elo

n
g
s to

re
d

e
fi

n
e
s

Re : Class

name=Re

name = area

Q:area::Re : LocalP

specia
liz

es

knows

defines
b
el

o
n
g
s

to

name = area

Q:area::Q : LocalP

Q : Class

name=Q

k
n

o
w

s

in
tr

o
d

u
c

e
s

name = area

Q:area : GlobalP

d
efin

es

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 30 / 88

Classes and inheritance Multiple inheritance conflicts

name=S

S : Class

specializes

k
n

o
w

s

specializ
es

name = area

Q:area::Rh : LocalP

defin
es

Rh : Class

name=Rh

specializes

knows

re
d

e
fi

n
e

s

b
elo

n
g
s to

re
d

e
fi

n
e
s

Re : Class

name=Re

name = area

Q:area::Re : LocalP

specia
liz

es

knows

defines
b
el

o
n
g
s

to

name = area

Q:area::Q : LocalP

Q : Class

name=Q

k
n

o
w

s

in
tr

o
d

u
c

e
s

name = area

Q:area : GlobalP

d
efin

es

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 30 / 88

Classes and inheritance Multiple inheritance conflicts

Multiple inheritance conflicts (5/5)

Diagnosis
conflict between two local properties of the same global property
none more specific than the other

Solution
* redefinition in the class where the conflict occurs

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 31 / 88

Classes and inheritance Multiple inheritance conflicts

Multiple inheritance conflicts (5/5)

2sidearea =

area = (diagonal1

* diagonal2)/2

Rhombus

diagonal2

diagonal1

Quadrilateral

area = ...

length
* width

area =

Square

length

Rectangle

width

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 32 / 88

Classes and inheritance Method combination

Monotonicity vs redefinition

Aristotelian logic is monotonic
* a Human must behave like a Mortal

Redefinition is non-monotonic
* redefining a method yields non-monotonicity

Method combination = Call to super
a way to recover monotonicity

* a Human behaves like a Mortal, with extra behaviour

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 33 / 88

Classes and inheritance Method combination

Monotonicity vs redefinition

Aristotelian logic is monotonic
* a Human must behave like a Mortal

Redefinition is non-monotonic
* redefining a method yields non-monotonicity

Method combination = Call to super
a way to recover monotonicity

* a Human behaves like a Mortal, with extra behaviour

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 33 / 88

Classes and inheritance Method combination

Method combination conflicts

area = super

area = (diagonal1

* diagonal2)/2

Rhombus

diagonal2

diagonal1

Quadrilateral

area = ...

length
* width

area =

Square

length

Rectangle

width

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 34 / 88

Classes and inheritance Method combination

Method combination conflicts

area = super

area = (diagonal1

* diagonal2)/2

Rhombus

diagonal2

diagonal1

Quadrilateral

area = ...

length
* width

area =

Square

length

Rectangle

width

?

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 34 / 88

Classes and inheritance Method combination

Method combination conflicts

area = super

area = (diagonal1

* diagonal2)/2

Rhombus

diagonal2

diagonal1

Quadrilateral

area = ...

length
* width

area =

Square

length

Rectangle

width

?

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 34 / 88

Classes and inheritance Method combination

A wrong solution: static super calls

B

A::foofoo = {.. ..}

A

foo = { ... }

A::foofoo = {.. ..}

C

D

B::foofoo = {..

C::foo ..}

like C++ or Eiffel

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 35 / 88

Classes and inheritance Method combination

A wrong solution: static super calls

B

A::foofoo = {.. ..}

A

foo = { ... }

A::foofoo = {.. ..}

C

D

B::foofoo = {..

C::foo ..}

like C++ or Eiffel
* A::foo evaluated twice

repeated inheritance

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 35 / 88

Classes and inheritance Method combination

The right solution: linearization (1/2)

B

foo = {.. ..}super

A

foo = { ... }

foo = {.. ..}

C

super

D

foo = {.. super ..}

Specialization = a partial order

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 36 / 88

Classes and inheritance Method combination

The right solution: linearization (1/2)

B

foo = {.. ..}super

A

foo = { ... }

foo = {.. ..}

C

super

D

foo = {.. super ..}

Linearization = a total order
* A::foo evaluated once

non-repeated inheritance

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 36 / 88

Classes and inheritance Method combination

The right solution: linearization (2/2)

Principle
linear extension of the specialization partial order
monotonic

* order preserved by specialization
an algorithm called C3 (used in Python)

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 37 / 88

Classes and inheritance About existing languages

With restricted multiple inheritance (1/3)

Multiple subtyping (Java, C])
no problem with local property conflicts, nor method combination

* except with default methods in Java 8
ad hoc solution for global property conflicts in C]

no solution for global property conflicts in Java

Multiple subtyping could be well-specified

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 38 / 88

Classes and inheritance About existing languages

With restricted multiple inheritance (1/3)

Multiple subtyping (Java, C])
no problem with local property conflicts, nor method combination

* except with default methods in Java 8
ad hoc solution for global property conflicts in C]

no solution for global property conflicts in Java

Multiple subtyping could be well-specified

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 38 / 88

Classes and inheritance About existing languages

With restricted multiple inheritance (2/3)

Mixins/Traits
same problems as with full multiple inheritance

global property conflicts
method combination

* if mixins were the answer, what was the question?
* just add unnecessary asymmetry between classes and traits

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 39 / 88

Classes and inheritance About existing languages

With restricted multiple inheritance (3/3)

The Scala case
no solution for global property conflicts (like in Java)
linearization-based method combination, but not C3

The question
How to easily implement “multiple inheritance” in multiple-subtyping
runtime systems?

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 40 / 88

Classes and inheritance About existing languages

With restricted multiple inheritance (3/3)

The Scala case
no solution for global property conflicts (like in Java)
linearization-based method combination, but not C3

The question
How to easily implement “multiple inheritance” in multiple-subtyping
runtime systems?

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 40 / 88

Classes and inheritance About existing languages

With full multiple inheritance (1/2)

C++ virtual inheritance
right solution for global attribute conflicts
no solution for global method conflicts

* two distinct attributes for a single accessor!
method combination with static calls and repeated inheritance
linearization used for constructor/destructor combination
but not C3

C++ non-virtual inheritance
repeated inheritance for non-conflicting global attributes

* an abomination

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 41 / 88

Classes and inheritance About existing languages

With full multiple inheritance (1/2)

C++ virtual inheritance
right solution for global attribute conflicts
no solution for global method conflicts

* two distinct attributes for a single accessor!
method combination with static calls and repeated inheritance
linearization used for constructor/destructor combination
but not C3

C++ non-virtual inheritance
repeated inheritance for non-conflicting global attributes

* an abomination

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 41 / 88

Classes and inheritance About existing languages

With full multiple inheritance (2/2)

Eiffel
ad hoc solution for global property conflicts, with renaming
method combination with static calls and repeated inheritance

With dynamic typing (CLOS, Python)
no solution for global property conflicts
linearization-based method combination
C3 default linearization only in Python
possibility to define metaclasses using C3 in CLOS

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 42 / 88

Classes and inheritance About existing languages

The ideal of multiple inheritance

fully symmetric
no distinction between classes and traits
the same for methods, attributes, virtual types, type parameters

metamodeling semantics
with fully qualified names for global properties
without any repetition

local property conflicts solved by redefinition
method combination using the C3 linearization

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 43 / 88

Classes and inheritance About existing languages

References on multiple inheritance

with Jean Privat: Meta-Modeling Semantics of Multiple Inheritance
Science of Computing Programming, 2011.
with Michel Habib, Marianne Huchard and Marie-Laure Mugnier:
Proposal for a monotonic multiple inheritance linearization.
In Proc. OOPSLA’94. 1994.
Monotonic conflict resolution mechanisms for inheritance.
In Proc. OOPSLA’92, 1992

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 44 / 88

Types and subtyping

Plan

1 Classes and inheritance

2 Types and subtyping
Classes vs types
Specialization vs subtyping
Static overloading

3 Genericity

4 Conclusions and propects

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 45 / 88

Types and subtyping Classes vs types

Classes vs types (1/2)

Different roles
classes declare properties and create instances
types serve as annotations in the code

* allow the compiler to ensure the code is type safe

Nominal vs structural types
a nominal type is a symbol with explicit subtyping
a structural type is a record of named signatures, with implicit
subtyping

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 46 / 88

Types and subtyping Classes vs types

Classes vs types (2/2)

Mainstream position (C++, Java, C], Scala, Eiffel, ..)
Besides higher-order types:

classes are nominal types
subtyping is implied by class specialization

The OCAML exception
* types are purely structural

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 47 / 88

Types and subtyping Specialization vs subtyping

Specialization vs subtyping (1/5)

Subtyping is substitutability (B. Liskov)

Specialization implies subtyping
IFF redefinition satisfies the contravariance rule

return type must be redefined covariantly
parameter types must be redefined contravariantly

* type safe

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 48 / 88

Types and subtyping Specialization vs subtyping

Specialization vs subtyping (2/5)

Mainstream position (C++, Java, Scala, ...)
return types are covariant
parameter types are invariant

Exceptions
C] & Java 1.4: return types are invariant
* no reason at all
Eiffel: parameter types are covariant
* type unsafe
OCAML: parameter types are contravariant

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 49 / 88

Types and subtyping Specialization vs subtyping

Specialization vs subtyping (3/5)

Motivations of the choice
covariance because of the mad cow example
invariance because

contravariance is useless in practice
static overloading was preexisting object-orientation

contravariance because of structural types

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 50 / 88

Types and subtyping Specialization vs subtyping

Specialization vs subtyping (4/5)

Animal

eat(Food)

Food

Cow

eat(Grass)

Grass

Animal x ;
Food y ;
x.eat(y);

* don’t panic, but type errors are in the real worldTM

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 51 / 88

Types and subtyping Specialization vs subtyping

Specialization vs subtyping (4/5)

Animal

eat(Food)

Food

Cow

eat(Grass)

Grass MeatMeal

Animal x = new Cow();
Food y = new MeatMeal();
x.eat(y); // runtime type error

* don’t panic, but type errors are in the real worldTM

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 51 / 88

Types and subtyping Specialization vs subtyping

Specialization vs subtyping (5/5)

What is my ideal?
invariance of both parameter and return types
covariance through virtual types

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 52 / 88

Types and subtyping Static overloading

Static overloading (1/3)

When parameter types are invariant,
* there is room for static overloading

Principle
a name denoting different entities in a common context
disambiguated with static types
originates in pre-object languages like PL/1 and C

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 53 / 88

Types and subtyping Static overloading

Static overloading (1/3)

When parameter types are invariant,
* there is room for static overloading

Principle
a name denoting different entities in a common context
disambiguated with static types
originates in pre-object languages like PL/1 and C

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 53 / 88

Types and subtyping Static overloading

Mal nommer les choses,
c’est ajouter au malheur du monde
Misnaming things adds to the world’s misfortunes
(Albert Camus)

Albert Camus a French writer and philosopher (1913-60)
Peyo a Belgian author of comic strips (1928-92)

creator of the Schtroumpfs
Schtroumpfs small characters whose language

has a single noun and verb: “schtroumpf”

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 54 / 88

Types and subtyping Static overloading

Mal nommer les choses,
c’est ajouter au malheur du monde
Misnaming things adds to the world’s misfortunes
(Albert Camus)

Albert Camus a French writer and philosopher (1913-60)
Peyo a Belgian author of comic strips (1928-92)

creator of the Schtroumpfs
Schtroumpfs small characters whose language

has a single noun and verb: “schtroumpf”

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 54 / 88

Types and subtyping Static overloading

Misnaming things adds
to the world’s misfortunes

in the context of a picture, even small children can understand!

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 55 / 88

Types and subtyping Static overloading

Schtroumpfing schtroumpfs schtroumpfs
to the schtroumpf’s schtroumpfs

in the context of a picture, even small children can understand!

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 55 / 88

Types and subtyping Static overloading

Static overloading (2/3)

B

foo(T)

A

foo(U) U <: T
B x
U y

x.foo(y)
C++
Java 1.4
Java 1.5
Scala
C]

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 56 / 88

Types and subtyping Static overloading

Static overloading (2/3)

B

foo(T)

A

foo(U) U <: T
B x
U y

x.foo(y)
C++ foo(T)
Java 1.4 error
Java 1.5 foo(U)
Scala error
C] foo(T)

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 56 / 88

Types and subtyping Static overloading

Static overloading (2/3)

bar(U)

bar(T)

B

foo(T)

A

foo(U) U <: T
B x
U y
T z = new U

x.foo(y) x.bar(z)
C++ foo(T) error
Java 1.4 error bar(T)
Java 1.5 foo(U) bar(T)
Scala error bar(T)
C] foo(T) bar(T)

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 56 / 88

Types and subtyping Static overloading

Static overloading (2/3)

bar(U)

bar(T)

B

foo(T)

A

foo(U) U <: T
B x
U y
T z = new U

Confusion with covariance
contravariance or multiple selection

x.foo(y) x.bar(z)
Eiffel error error

OCAML foo(T) error
intuition — bar(U)

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 56 / 88

Types and subtyping Static overloading

Static overloading (3/3)

6 languages
* 6 different specifications + the intuition

* it cannot be a sane language feature

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 57 / 88

Types and subtyping Static overloading

Static overloading (3/3)

6 languages
* 6 different specifications + the intuition

* it cannot be a sane language feature

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 57 / 88

Types and subtyping Static overloading

*

*

re
def

in
es

*

1

nam
ed nam

ed

1

*

*

*

specializes

1

*

*

1

*

*

belongs to

*

1

kn
ow

s

in
tr
oduce

s
defines

Property
Global Local

Property

name : String
type : Type

Name

Class

name : String

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 58 / 88

Types and subtyping Static overloading

Static overloading in the metamodel

T : Class

name=T

U : Class

name=U

s
p

e
c
ia

li
z
e
s

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 59 / 88

Types and subtyping Static overloading

Static overloading in the metamodel

A : Class

name=A

T : Class

name=T

U : Class

name=U

s
p

e
c
ia

li
z
e
s

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 59 / 88

Types and subtyping Static overloading

Static overloading in the metamodel

defines
A:bar(T)::A : LocalPA : Class

name=A

T : Class

name=T

U : Class

name=U

s
p

e
c
ia

li
z
e
s

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 59 / 88

Types and subtyping Static overloading

Static overloading in the metamodel

name
bar(T) : Name

name=bar
typedefines

A:bar(T)::A : LocalPA : Class

name=A

T : Class

name=T

U : Class

name=U

s
p

e
c
ia

li
z
e
s

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 59 / 88

Types and subtyping Static overloading

Static overloading in the metamodel

introduces

A:bar(T) : GlobalP

knows

name

belongs to

name
bar(T) : Name

name=bar
typedefines

A:bar(T)::A : LocalPA : Class

name=A

T : Class

name=T

U : Class

name=U

s
p

e
c
ia

li
z
e
s

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 59 / 88

Types and subtyping Static overloading

Static overloading in the metamodel
s
p

e
c
ia

li
z
e
s

B : Class

name=B

knows

introduces

knows

A:bar(T) : GlobalP
name

belongs to

name type
bar(T) : Name

name=bar
defines

A:bar(T)::A : LocalPA : Class

name=A

s
p

e
c
ia

li
z
e
s

U : Class

name=U

T : Class

name=T

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 59 / 88

Types and subtyping Static overloading

Static overloading in the metamodel

defines
B:bar(U)::B : LocalP

s
p

e
c
ia

li
z
e
s

B : Class

name=B

knows

introduces

knows

A:bar(T) : GlobalP
name

belongs to

name type
bar(T) : Name

name=bar
defines

A:bar(T)::A : LocalPA : Class

name=A

s
p

e
c
ia

li
z
e
s

U : Class

name=U

T : Class

name=T

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 59 / 88

Types and subtyping Static overloading

Static overloading in the metamodel

name type
bar(U) : Name

name=bar
defines

B:bar(U)::B : LocalP

s
p

e
c
ia

li
z
e
s

B : Class

name=B

knows

introduces

knows

A:bar(T) : GlobalP
name

belongs to

name type
bar(T) : Name

name=bar
defines

A:bar(T)::A : LocalPA : Class

name=A

s
p

e
c
ia

li
z
e
s

U : Class

name=U

T : Class

name=T

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 59 / 88

Types and subtyping Static overloading

Static overloading in the metamodel

introduces

knows

B:bar(U) : GlobalP

belongs to

name

name type
bar(U) : Name

name=bar
defines

B:bar(U)::B : LocalP

s
p

e
c
ia

li
z
e
s

B : Class

name=B

knows

introduces

knows

A:bar(T) : GlobalP
name

belongs to

name type
bar(T) : Name

name=bar
defines

A:bar(T)::A : LocalPA : Class

name=A

s
p

e
c
ia

li
z
e
s

U : Class

name=U

T : Class

name=T

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 59 / 88

Types and subtyping Static overloading

The right semantics (1/2)

At compile-type
1 select all the global methods, known by the receiver’s static type,

with parameter static types compatible with the call
say foo(T) and foo(U)

2 select among them the single most specific
if U <: T, foo(U) is more specific than foo(T)

3 compilation error when there are several most specific
eg baz(T,U) and baz(U,T)

At run-type = late binding
select in the global property the most specific local property
for the receiver’s dynamic type

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 60 / 88

Types and subtyping Static overloading

The right semantics (2/2)

That of Java 1.5
specificity does not involve the introduction or definition classes
(as in Java 1.4 or Scala)
a local property of a given global property doesn’t mask a local
property of another global property, as in C++ and C]
eg foo(T) in B doesn’t mask foo(U) in A

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 61 / 88

Types and subtyping Static overloading

Avoid overloading by renaming

introduces

knows

B:bar(U) : GlobalP

belongs to

name

name type
bar(U) : Name

name=bar
defines

B:bar(U)::B : LocalP

s
p

e
c
ia

li
z
e
s

B : Class

name=B

knows

introduces

knows

A:bar(T) : GlobalP
name

belongs to

name type
bar(T) : Name

name=bar
defines

A:bar(T)::A : LocalPA : Class

name=A

s
p

e
c
ia

li
z
e
s

U : Class

name=U

T : Class

name=T

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 62 / 88

Types and subtyping Static overloading

Avoid overloading by renaming

introduces

knows

B:bar(U) : GlobalP

belongs to

name

name type
bar(U) : Name

name=bar
defines

B:bar(U)::B : LocalP

s
p

e
c
ia

li
z
e
s

B : Class

name=B

knows

introduces

knows

A:bar(T) : GlobalP
name

belongs to

name type
bar(T) : Name

name=bar
defines

A:bar(T)::A : LocalPA : Class

name=A

name= barU

barU(U):NamebarU(U)B: ::B:LocalP

barU(U)B: :GlobalP

name= barT

barT(T) :NamebarT(T)A: ::A :LocalP

barT(T)A: :GlobalP

s
p

e
c
ia

li
z
e
s

U : Class

name=U

T : Class

name=T

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 62 / 88

Types and subtyping Static overloading

The right specifications

exclude overloading from the language specifications
(as in Eiffel or Nit),
otherwise, apply the right semantics (Java 1.5)
but don’t use it

* instead, rename!

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 63 / 88

Types and subtyping Static overloading

The Schtroumpf project

Reductio ad absurdum
select some mainstream language with static overloading

C++, Java, C], Scala, not Eiffel
select some large-scale project written in this language
rename all methods in the project classes as either foo or bar

* in case of conflict, add an extra, unused parameter

Variant
* develop an Eclipse plugin that does this renaming, automatically

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 64 / 88

Genericity

Plan

1 Classes and inheritance

2 Types and subtyping

3 Genericity
Genericity vs subtyping
Variance annotations

4 Conclusions and propects

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 65 / 88

Genericity Genericity vs subtyping

Generic vs object-oriented programming

Genericity is not object-oriented
two almost orthogonal constructs

Genericity is now universal
In static typing

object-oriented languages are now generic
(Eiffel, C++, Java, C], ...)
generic languages (Ada) are now object-oriented

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 66 / 88

Genericity Genericity vs subtyping

Generic vs object-oriented programming

Genericity is not object-oriented
two almost orthogonal constructs

Genericity is now universal
In static typing

object-oriented languages are now generic
(Eiffel, C++, Java, C], ...)
generic languages (Ada) are now object-oriented

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 66 / 88

Genericity Genericity vs subtyping

Generic vs object-oriented programming

Genericity + subtyping ⇒ troubles
hard to specify
hard to understand and use
hard to implement efficiently

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 67 / 88

Genericity Genericity vs subtyping

Specifications by implementation

At least 3 versions
heterogeneous pure textual substitution (C++)

* no recursive types + code explosion
homogeneous type erasure and code sharing (Java 1.5, Scala)

* limited expressivity, unsafe casts, inefficient boxing
mixed code shared or specialized, with runtime types (C])

* best tradeoff expressivity-efficiency-safety

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 68 / 88

Genericity Genericity vs subtyping

Constrained genericity

At least 3 specifications of contraints
none (C++)
* no checking before instantiation
* (recently) notion of concept
formal type parameters bounded by subtyping
* simple to understand and use
recursive bound (F-bounded) (Java, C], Scala, Eiffel, ...)
* powerful but harder to understand
allows to clone isomorphic structures

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 69 / 88

Genericity Genericity vs subtyping

Genericity and (co)variance

Principle
Cup<茶> is not a subtype of Cup<Drink>

But many unsafeties ...
generalized covariance (Eiffel)
covariance of arrays (Java, C])
casts with type erasure (Java, Scala)

Safe variance annotations
at definition-time (Scala, C] only for interfaces)
at use-time (wildcards Java, Scala)

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 70 / 88

Genericity Genericity vs subtyping

Genericity and (co)variance

Principle
Cup<茶> is not a subtype of Cup<Drink>

But many unsafeties ...
generalized covariance (Eiffel)
covariance of arrays (Java, C])
casts with type erasure (Java, Scala)

Safe variance annotations
at definition-time (Scala, C] only for interfaces)
at use-time (wildcards Java, Scala)

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 70 / 88

Genericity Genericity vs subtyping

Array covariance

Cats are not dogs
Cat[] x;
...
Animal[] y;
y = x; // dangerous but compiled
y[i] = new Dog(); // compiled but runtime exception

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 71 / 88

Genericity Genericity vs subtyping

Type erasure = Alzheimer

Cats are not dogs (re)
Stack<Cat> x;
...
Stack<Dog> y;
y = (Stack<Dog>)x; // stupid but compiled
y.push(new Dog); // type is erased! Alzheimer
...
Cat z = x.pop(); // late exception

* bad traceability of errors

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 72 / 88

Genericity Genericity vs subtyping

Type erasure = Alzheimer

Cats are not dogs (re)
Stack<Cat> x;
...
Stack<Dog> y;
y = (Stack<Dog>)x; // stupid but compiled
y.push(new Dog); // type is erased! Alzheimer
...
Cat z = x.pop(); // late exception

* bad traceability of errors

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 72 / 88

Genericity Variance annotations

Variance

Variance positions
class Stack<T> {

T pop () {..} // covariant position
push(T t) {..} // contravariant position

}
* more complex rules when T is nested

Variance
-variance can be considered

if T does not occur in a -variant position
if such occurrences are excluded from the type interface

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 73 / 88

Genericity Variance annotations

Variance

Variance positions
class Stack<T> {

T pop () {..} // covariant position
push(T t) {..} // contravariant position

}
* more complex rules when T is nested

Variance
Co-variance can be considered

if T does not occur in a contra-variant position
if such occurrences are excluded from the type interface

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 73 / 88

Genericity Variance annotations

Variance

Variance positions
class Stack<T> {

T pop () {..} // covariant position
push(T t) {..} // contravariant position

}
* more complex rules when T is nested

Variance
Contra-variance can be considered

if T does not occur in a co-variant position
if such occurrences are excluded from the type interface

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 73 / 88

Genericity Variance annotations

Variance annotations (1/3)

Use-site covariance
Stack<? extends Animal> s = new Stack<Cat>();
Animal a = s.pop(); // OK
s.push(a); // KO

* interface restricted to methods where
the type parameter is not in a contravariant position

* useful for exporting “almost read-only” collections

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 74 / 88

Genericity Variance annotations

Variance annotations (1/3)

Use-site covariance
Stack<? extends Animal> s = new Stack<Cat>();
Animal a = s.pop(); // OK
s.push(a); // KO

* interface restricted to methods where
the type parameter is not in a contravariant position

* useful for exporting “almost read-only” collections

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 74 / 88

Genericity Variance annotations

Variance annotations (2/3)

Use-site contravariance
Stack<? super Cat> s = new Stack<Animal>();
Animal a = s.pop(); // KO
Object o = s.pop(); // OK
s.push(new Cat()); // OK

* interface restricted to methods where
the type parameter is not in a covariant position
or is replaced by the parameter bound

* counter-intuitive and rarely used, apart from Comparable

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 75 / 88

Genericity Variance annotations

Variance annotations (2/3)

Use-site contravariance
Stack<? super Cat> s = new Stack<Animal>();
Animal a = s.pop(); // KO
Object o = s.pop(); // OK
s.push(new Cat()); // OK

* interface restricted to methods where
the type parameter is not in a covariant position
or is replaced by the parameter bound

* counter-intuitive and rarely used, apart from Comparable

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 75 / 88

Genericity Variance annotations

Variance annotations (3/3)

Definition-site variance
class ImmutableContainer<+ T>

{ T get() ;}
class Container<T> inherit ImmutableContainer<T>

{ put(T) ;}

* with + the type parameter is covariant
and cannot be used in a contravariant position

useful for exporting “actual read-only” collections

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 76 / 88

Genericity Variance annotations

Variance annotations (3/3)

Definition-site variance
class ImmutableContainer<+ T>

{ T get() ;}
class Container<T> inherit ImmutableContainer<T>

{ put(T) ;}

* with – the type parameter is contravariant
and cannot be used in a covariant position

counter-intuitive and rarely used

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 76 / 88

Genericity Variance annotations

Contravariance and recursive bound

interface Comparable<T extends Comparable<T>>
class OrderedSet<T extends Comparable<T>>
class A implements Comparable<A>
OrderedSet<A> // OK

class B extends A
// B implements Comparable<A>

OrderedSet //
// B doesn’t implement Comparable

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 77 / 88

Genericity Variance annotations

Contravariance and recursive bound

interface Comparable<T extends Comparable<T>>
class OrderedSet<T extends Comparable<T>>
class A implements Comparable<A>
OrderedSet<A> // OK

class B extends A // OK
// B implements Comparable<A>

OrderedSet // KO
// B doesn’t implement Comparable

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 77 / 88

Genericity Variance annotations

Contravariance and recursive bound

interface Comparable<T extends Comparable<T>>
class OrderedSet<T extends Comparable<T>>
class A implements Comparable<A>
OrderedSet<A> // OK

class B extends A implements Comparable // KO
// B cannot implement both

OrderedSet // KO

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 77 / 88

Genericity Variance annotations

Contravariance and recursive bound

interface Comparable<T extends Comparable<T>>
class OrderedSet<T extends Comparable<? super T>> Java
class A implements Comparable<A>
OrderedSet<A> // OK

class B extends A
// B implements Comparable<A> <: Comparable<? super B>

OrderedSet // OK

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 77 / 88

Genericity Variance annotations

Contravariance and recursive bound

interface Comparable<T extends Comparable<–T>> Scala
class OrderedSet<T extends Comparable<T>>
class A implements Comparable<A>
OrderedSet<A> // OK

class B extends A
// B implements Comparable<A> <: Comparable

OrderedSet // OK

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 77 / 88

Genericity Variance annotations

A programmer hierarchy

language designer
a Pure Light of
programming

language or library
implementer
an ingenious engineer

base programmer
an obscure rower

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 78 / 88

Genericity Variance annotations

Variance annotations

Use-site variance more general than definition-site
instead of defining A<+T> once,
use A<? extends T> everywhere!

* It’s unfair to impose to the base programmer the difficulties that
could have been adressed by language designers or implementers

using classes, especially generics,
is easier that defining them
definition-site variance should be added to Java
and enlarged to all classes in C]

most of the burden of use-site variance would be avoided

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 79 / 88

Genericity Variance annotations

Genericity (the end)

Ideal specifications
no type erasure
mixed implementation à la C]

definition- and use-site variance (Scala)
array invariance
recursive bound (F-bounded)
no specialization of multiple generic instances
no static overloading on the formal type
better support of the IDEs

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 80 / 88

Conclusions and propects

Plan

1 Classes and inheritance

2 Types and subtyping

3 Genericity

4 Conclusions and propects

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 81 / 88

Conclusions and propects

Ideal specifications of OO languages

In static typing
metamodeling semantics of multiple inheritance
generics with variance and runtime types
without overloading

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 82 / 88

Conclusions and propects

Ideal specifications of OO languages

Why static typing?
because

dynamic typing is unsafe
dynamic typing is too difficult for most programmers
programming in dynamic typing is an art, not an industry

* static typing allows for exoskeletons like Eclipse

Before boarding an aircraft,
be sure that all the avionics is statically typed!

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 83 / 88

Conclusions and propects

a programmer dreams that he commands Eclipse,
is it not Eclipse dreaming it is a programmer? (after 庄子)

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 84 / 88

Conclusions and propects

Ideal specifications for other features

Constructors, i.e. initialization methods
an open problem
no satisfying specification

Reflection
first-class metaclasses, based on variant generics
as an extension of Java Class class

language-level UML associations
... and certainly a few other object-oriented features

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 85 / 88

Conclusions and propects

Ideal specifications for other features

Constructors, i.e. initialization methods
an open problem
no satisfying specification

Reflection
first-class metaclasses, based on variant generics
as an extension of Java Class class

language-level UML associations
... and certainly a few other object-oriented features

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 85 / 88

Conclusions and propects

What about existing languages?

Marginal evolution in Java and C]

global property conflicts (Java)
covariant return types (C])
definition-site variance (both)

Too many backwards incompatibilities
* type erasure seems to be definitive (Java, Scala)

* a complete solution involves new languages

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 86 / 88

Conclusions and propects

Just do it!
the specifications are state-of-the-art
solutions exist for implementing it (another story...)

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 87 / 88

Conclusions and propects

末 尾

R. Ducournau (LIRMM) Ideal Classes and Types 沈阳市, 2016 88 / 88

	Classes and inheritance
	Aristotelian semantics
	Class and property metamodel
	Multiple inheritance conflicts
	Method combination
	About existing languages

	Types and subtyping
	Classes vs types
	Specialization vs subtyping
	Static overloading

	Genericity
	Genericity vs subtyping
	Variance annotations

	Conclusions and propects

