N

N

Classes and Types in an Ideal Object-Oriented
Programming Language

Roland Ducournau

» To cite this version:

Roland Ducournau. Classes and Types in an Ideal Object-Oriented Programming Language. 2016.
lirmm-01321762

HAL Id: lirmm-01321762
https://hal-lirmm.ccsd.cnrs.fr /lirmm-01321762
Submitted on 26 May 2016

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal-lirmm.ccsd.cnrs.fr/lirmm-01321762
https://hal.archives-ouvertes.fr

Classes and Types in an ldeal
Object-Oriented Programming Language

Roland Ducournau

LIRMM — Université de Montpellier & CNRS

ZRALKZE, VEFHTE — April 2016

&

LIRMM

Ideal Classes and Types VRRHT, 2016 1/88



|
Motivation: the good news
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|
Motivation: the good news

Object-orientation

is now universal for programming, modelling, ..

Mature theory and technology
~ 24 centuries after Aristotle (350 BC),
~ half a century after Simula (1967),
~ 3 decades ago: first mainstream languages (Eiffel, C++4)

~ 2 decades ago: Java, then Cf and Scala
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|
Motivation: the good news

Object-orientation

is now universal for programming, modelling, ..

Mature theory and technology
~ 24 centuries after Aristotle (350 BC),
~ half a century after Simula (1967),
~ 3 decades ago: first mainstream languages (Eiffel, C++4)

~ 2 decades ago: Java, then Cf and Scala

@& Likely the greatest success of the last century! ]
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Motivation: the bad news
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N
Motivation: the bad news

The greatest failure of the last century?
The object-oriented programming languages!
@ Each one, individually!
o All together!
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N
Motivation: the bad news

The greatest failure of the last century?
The object-oriented programming languages!
@ Each one, individually!
o All together!

The same features
@ are specified differently,

@ as if programming languages were works of art!

@ The Babel Tower! )
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-
My thesis

Plato’s ideals
@ apply to Circle, Tree, ..

@ apply to Programming Languages, too
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o
My thesis ](

Plato’s ideals
@ apply to Circle, Tree, ..
@ apply to Programming Languages, too

@ The ideal Object-Oriented Programming Language exists J
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-
My thesis

Arguments taken from ...
@ philosophy (Aristotle)
ontology (object metamodel)
necessity (Occam's razor)
mathematics (type and set theory, logic)

empiricism

common sense
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Plan

@ Classes and inheritance

e Types and subtyping
© Genericity

@ Conclusions and propects
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Classes and inheritance

@ Classes and inheritance
@ Aristotelian semantics
@ Class and property metamodel
@ Multiple inheritance conflicts
@ Method combination
@ About existing languages
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Object-orientation vs knowledge
representation

@ an object-oriented model is a representation of the real-world™ J
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0O vs KR: Philosophers

Classes and inher
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i
Philosophers

Aristotle (ApiototéAng , 384-322 BC) founded logic
Plato (MA&twv , 427-348 BC) promoted the existence of ideas
(Kongfuzi, 551-479 BC)
(Lao Tseu)
(Zhuangzi) a butterfly dream

fLF
ET
FEF
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i
Philosophers

Aristotle (ApiototéAng , 384-322 BC) founded logic
Plato (MA&twv , 427-348 BC) promoted the existence of ideas
%L? (Kongfuzi, 551-479 BC)
+ (Lao Tseu)
 (Zhuangzi) a butterfly dream

@ in the XX° century jargon, ideas are first-class objects ]
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Aristotelian semantics (1/3)

o

LIRMM

The extension of a class is the set of its instances J
Foundation syllogism
Humans are Mortals Human < Mortal
FLF is a Human FLF € Ext(Human)
fLF is a Mortal fLF € Ext(Mortal)
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Aristotelian semantics (1/3)

The extension of a class is the set of its instances J

Foundation syllogism

Humans are Mortals Human < Mortal
FLF is a Human FLF € Ext(Human)
fLF is a Mortal fLF € Ext(Mortal)

Subclassing = specialization = inclusion of extensions
@ |nstances of the subclass are instances of the superclass

B < A = Ext(B) C Ext(A)
< )
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Aristotelian semantics (2/3)

The intension of a class is a set of properties declared for its instancesJ

Inheritance of properties
@ an instance of a class has all the properties declared by the class
@ as a Human, fLF is a Mortal
@ fLF has all the properties declared by Mortal
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Classes and inheritance Aristotelian semantics

Aristotelian semantics (2/3)

The intension of a class is a set of properties declared for its instancesJ

Inheritance of properties

@ an instance of a class has all the properties declared by the class
@ as a Human, fL¥ is a Mortal

@ fLT has all the properties declared by Mortal

Inheritance is implied by specialization

@ The subclass inherits the properties declared in the superclass

B < A= Int(A) C Int(B)
o )
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Aristotelian semantics (3/3)

My answers to objections

@ in Logo, a Turtle is a Point
there is no specialization in the real world™

@ but specialization is in the artefact
@ so-called implementation inheritance

@ a bad practice resulting from an erroneous model
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An object model of the object model (1/3)

Object-orientation is part of the real world™

@ object-orientation can be used for representing object-orientation

4

An object meta-model
@ a UML model

@ modelling the entities of object-orientation,
i.e. classes, associations, attributes, methods, ...

@ with classes, associations, attributes, methods, ...
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An object model of the object model (2/3)

Motivations

@ mandatory for all metaprograms
(e.g. compilers, VMs, IDEs)

@ provides an ontology of object orientation

@ with unambiguous specifications

@ by getting rid of names
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An object model of the object model (3/3)

Language ambiguities
@ natural languages are inherently ambiguous
@ plays on words
@ programming languages, although formal, are ambiguous, too

@ because they serve as man-machine interfaces
e through various names

@ compilers don't joke!
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An object model of the object model (3/3)

Language ambiguities
@ natural languages are inherently ambiguous
@ plays on words
@ programming languages, although formal, are ambiguous, too

@ because they serve as man-machine interfaces
e through various names

@ compilers don't joke!

Foundation requirement
@ in the modelled program, each occurrence of the name of a

modelled entity must denote a single instance of the metamodel
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Classes and inheritance Class and property metamodel

1 class A { a class, named A
2 foo() {...} a method named foo(), defined in A

O
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Classes and inheritance Class and property metamodel

1 class A { a class, named A
2 foo() {...} a method named foo(), defined in A
}
3 class B extends A { a class named B, subclass of A
4 foo() {...} a method named foo(), defined in B
redefining foo() of A
5 bar() {...} a method named bar(), defined in B

O

LIRMM

Ideal Classes and Types VEFHT, 2016 17 / 88



Classes and inheritance Class and property metamodel

1 class A { a class, named A
2 foo() {...} a method named foo(), defined in A
}
3 class B extends A { a class named B, subclass of A
4 foo() {...} a method named foo(), defined in B
redefining foo() of A
5 bar() {...} a method named bar(), defined in B

1 A x; a type annotation with class A

3 By; a type annotation with class B

6 x.foo(); a message foo() introduced in A
sent to x with late binding

7 y.bar(); a message bar() introduced in B

O
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An object model of the object model (3/3)

A single class for classes

o for all usages: declarations, type annotations and new

Two classes for properties
@ a class for local properties, implementations defined in a class

@ a class for global properties, messages invoked from the code

What are properties?
@ methods, attributes
o formal type parameters, virtual types, ...

&
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Classes and inheritance Class and property metamodel

. Class

~| hame : String

2P 7
2
AW %,
N < %,
QO S
, A
Global Local
Property Property [+
1 <belongs to *
%
&
* A X
N
)
2% Ce S
N &
O" »
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Classes and inheritance Class and property metamodel

1 class A {

2 foo() {...}
}

A : Class
3 class B extends A { name=A
4 foo() {...}
5 bar() {...}
}
1 A x;
3 By;
6 x.foo();
7 y.bar();

O
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Classes and inheritance Class and property metamodel

—_

class A {

2 } foo() {...} ) %
gt
3 class B extends A { name=A
4 foo() {...}
5 bar() {...}
}
1 A x;
3 By;
6 x.foo();
7 y.bar();
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Classes and inheritance Class and property metamodel

—_

class A {
2 foo() {...}

3 class B extends A {
4 foo() {...}
5 bar() {...}
}
1 A x;
3 By;
6 x.foo();
7 y.bar();

O
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A : Class

name=A introduces

de"\“es

6
A:foo :GlobalP

knows B

Ideal Classes and Types

name = foo

name = foo

2
A:foo::A :LocalP

VEFAT, 2016
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Classes and inheritance Class and property metamodel

—_

class A {
2 foo() {...}

3 class B extends A {
4 foo() {...}
5 bar() {...}
}
1 A x;
3 By;
6 x.foo();
7 y.bar();

O
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de"\“es

6
A:foo :GlobalP

1
A : Class
name:A introduces
knows B~
A
0 6(
o o
N <
= 5>
G
8
3 o
B : Class
name=B

Ideal Classes and Types

name = foo

name = foo

2
A:foo::A :LocalP

VEFAT, 2016
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Classes and inheritance Class and property metamodel

1 class A { 2
2 foo() {} A:foo::A :LocalP
} e name = foo

1 ¢ 2
6 & A
A : Class ° 3
————— = introduces » A:foo :GlobalP| ¢ 2
3 class B extends A { name=A e . | HAMB=160 3
be/o i 4
&
4 foo() {...} A v Y % [A:foo::B :LocalP
5 bar() {} s @6» name = foo
} H gotnee 7
3 o
B : Class
1 A X; name=B
3 By;
6 x.foo();
7 y.bar();

O
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Classes and inheritance Class and property metamodel

1 class A { 2
2 foo() {... AdoosA LocalP
() { } v name = foo
} de\'me5 o
1 s
6 & A
A : Class ° [
——= "= ntroduces » |A:f00 :GlobalP[ 2
3 class B extends A { name=A knows » | Name = foo 3
be =
4 foo() {... on a
04 : R/ ¥ %4 [Aifoo::B :LocalP
5 bar() {...} g & Erron
8 R
} 2 aefin®
3 o
B : Class
1 A X; name=B
3 By,
6 x.foo(); ey X
7 ybar(); B
name = bar

O
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Classes and inheritance Class and property metamodel

1 class A { 2
2 foo . A:foo::A :LocalP
} () { } oo v name = foo
etV °
1 S
6 & A
M o' 0
ALCSS| i auces w [Ai00 1GloBaIP/ & g
3 class B extends A { = oous » | Name=fo0 3
4 foo() {... %on a
()4} : R/ Y % [A:foo::B :LocalP
5 bar() {} 8 @6» name = foo
s
} 3 H qaves
@ 7
B:Class| -  ocw|Bibar :GlobalP
1 A x; name=B [ 45 » | Name = bar .
3 By; %,
Sz
6 x.foo(); by o .
7 .bar . B:bar::B :LocalP
y ()' name = bar
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Class and property metamodel
Metamodeling semantics

Disambiguating name conflicts
In two situations

@ with multiple inheritance

@ with static overloading

@ by substituting an instance of local/global property
to each property name, even when it seems ambiguous

&
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Class and property metamodel
Metamodeling semantics

Disambiguating name conflicts
In two situations

@ with multiple inheritance

@ with static overloading

@ by substituting an instance of local/global property
to each property name, even when it seems ambiguous

Actual ambiguities = compiler errors

When this substitution is not possible (several candidates)
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Multiple inheritance conflicts
Motivation for multiple inheritance (1/2)

Multiple inheritance provides
@ increased expressivity

@ improved reuse

&
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Multiple inheritance conflicts
Motivation for multiple inheritance (1/2)

Multiple inheritance provides
@ increased expressivity

@ improved reuse

given a class A providing a service foo

and a class B providing a service bar

both developped independently of each other
(apart from common superclasses)

@ define a common subclass C providing both services

&
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Multiple inheritance conflicts
Motivation for multiple inheritance (2/2)

In static typing
There is no language without
o full multiple inheritance (C++, Eiffel),
@ or mixins (Scala),
@ or at least multiple subtyping (Java, C#, Ada2005)

&

LIRMM

Ideal Classes and Types VEFHT, 2016 23 /88



Multiple inheritance conflicts
Multiple inheritance conflicts (1/5)

Conflicts of two kinds
@ between two global properties with the same name

@ between two local properties of the same global property

@ plus the method combination case

&
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Multiple inheritance conflicts
Multiple inheritance conflicts (2/5)

Person

name
address

/

Researcher

laboratory
department

O
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Teacher

university
department

N

Ideal Classes and Types

VEFHT, 2016

25 / 88



Multiple inheritance conflicts
Multiple inheritance conflicts (2/5)

Person

name
address

/

Researcher

laboratory
department

O

LIRMM

N

Teacher

university
department

R. Ducournau (LIRMM) Ideal Classes and Types

Researcher x;
x.department; // OK

Teacher vy;
y.department // OK

VEFHT, 2016 25 / 88



Multiple inheritance conflicts
Multiple inheritance conflicts (2/5)

Person
name
address Researcher x;
/<l X x.department; // OK
Researcher Teacher
] Teacher vy;
laboratory university y.department // OK
department department

\_/

’ Teacher-Researcher

O
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Multiple inheritance conflicts
Multiple inheritance conflicts (2/5)

Person Teacher-Researcher z;
name
address Researcher x=z;
/<l X x.department; // OK
Researcher Teacher
] Teacher y=z;

laboratory university y.department // OK
department department

\ /] z.department // KO

’ Teacher-Researcher ‘

O

LIRMM

Ideal Classes and Types VEFHT, 2016 25 / 88



Classes and inheritance Multiple inheritance conflicts

P : Class
name=Person

O
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Classes and inheritance Multiple inheritance conflicts

P : Class
v name=Person
&
Q(.'\'b
R
o R:dpt : GlobalP
>y name = department
R : Class B
bt S [ v A
name=Researcher e
(]
de’"’e g
a 3
Qo

R:dpt::R : LocalP
name = department

O
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Classes and inheritance Multiple inheritance conflicts

P : Class
name=Person »
‘.‘o@o
73 A
Qéee&
T:dpt : GlobalP |
o 7 o
name = department~_ %o, T:Class
kn, . —
A s _
° name=Teacher
» s
[
o

°
=
-
r
[}

o

2
o

name = department

O
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Classes and inh

nce Multiple inheritance conflicts

P : Class
8/ name=Person »
A% %
c.'\'b\\‘l' el.‘/e//
B Ses
o R:dpt : GlobalP T:dpt : GlobalP |
O
>y name = department name = department Vd"oes
R: Class o Py T: Class
— oy, —_—
name=Researcher é .A_ °® “Iname=Teacher
e, % ? o
a 3 3
Q2 o
R:dpt::R : LocalP T:dp : LocalP
name = department name = department

O

LIRMM

R. Ducournau (LIRMM) Ideal Classes and Types VEFAT, 2016 26 / 88



Classes and inh

nce Multiple inheritance conflicts

P : Class
8/ name=Person »
D,
\&\19 'oeo/e .
& &
& S
o R:dpt : GlobalP T:dpt : GlobalP |
O
>y name = department name = department Vd"oes
R: Class o Py T: Class
— oy, —_—
name=Researcher é .A_ °® “Iname=Teacher
e, % ? o
a 3 3
Q2 o
R:dpt::R : LocalP T:dp : LocalP

name = department name = department

A
% 4
< ed\‘b\“iee
o0
TR : Class
name=TR

O
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Multiple inheritance conflicts
Multiple inheritance conflicts (3/5)

Diagnosis

@ conflict between two global properties with the same name

Solution: Fully Qualified Names
@ short names are used in most situations

@ names qualified with the introduction class
used when a conflict occurs

@ 3 global property is introduced by a single class
static typing required

&
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Classes and inheritance Multiple inheritance conflicts

short names

Teacher-Researcher z;

Researcher x=z;
x.department; // OK

Teacher y=z;
y.department // OK

z.department // KO

O
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Classes and inheritance Multiple inheritance conflicts

short names fully qualified names

Teacher-Researcher z;

Researcher x=z;
x.department; // OK means  x.Researcher:department

Teacher y=z;
y.department // OK means  y.Teacher:department

must be disambiguated with
z.department // KO z.Teacher:department

or z.Researcher:department
the programmer should know!
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Classes and inheritance Multiple inheritance conflicts

Multiple inheritance conflicts (4/5)

Quadrilateral
area = ...
Rectangle Rhombus
length diagonali
width diagonal2
area = length area = (diagonall
* width * i
\ diagonal2)/2
Square

O
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Classes and inheritance Multiple inheritance conflicts

Q: Class

name=Q

-4
S,
4 ?‘2,,
Q:area::Q : LocalP

name = area

-4 knows
-4_introduces

Q:area : GlobalP
name = area

O
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Classes and inheritance Multiple inheritance conflicts

Q: Class

name=Q

%

.

42
Q)

Q:area::Q : LocalP
name = area

-4 introduces

Q:area : GlobalP
name = area
4
g
S
9
Q@
Q:area::Re : LocalP
name = area

Re:Class| | ' » 4

name=Re

redefines

O'e,;be
$

O
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Classes and tance Multiple inheritance conflicts

Q: Class
name=Q
5 \% N
3 % So,
3 & %,
£ %o
£| |Q:area::Q: LocalP N
\J name = area
Re : Class 4/ |Q:area:GlobalP | Rh : Class
- knowsp- — < knows |——
name=Re @ IEDSERE] » name=Rh
2 <4 H £
%y, ) 4 4, 3 o
Des B & %, 8 o
P )
$ °
Q:area::Re : LocalP Q:area::Rh : LocalP
name = area name = area

LIRMM
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Classes and tance Multiple inheritance conflicts

Q: Class
name=Q
5 \% N
S, s
3 4% Lo,
g ® 5,
€ 8,
£| |Q:area::Q : LocalP $
\J name = area
Re : Class 4/ |Q:area:GlobalP | Rh : Class
- knowsp- _— < knows
name = area
name=Re @ » name=Rh
2 <4 £
%y, 5 © g %
Doy B & %, 8 o
P )
<& %
Q:area::Re : LocalP A Q:area::Rh : LocalP
name = area g name = area
2 <
» £ o)
R\
S T
Sciay; _ Y
Reg S : Class
name=S
LIRMM
VEFAT, 2016
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Multiple inheritance conflicts
Multiple inheritance conflicts (5/5)

Diagnosis
@ conflict between two local properties of the same global property

@ none more specific than the other

Solution

@ redefinition in the class where the conflict occurs

&
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Classes and inheritance Multiple inheritance conflicts

Multiple inheritance conflicts (5/5)

Quadrilateral
area = ...
Rectangle Rhombus
length diagonali
width diagonal2
area = length area = (diagonall
* width * i
\ diagonal2)/2
Square

area = side 2

O
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Method combination
Monotonicity vs redefinition

Aristotelian logic is monotonic
@ 3 Human must behave like a Mortal

Redefinition is non-monotonic
@ redefining a method yields non-monotonicity

&

LIRMM

VLI, 2016

33/ 88



Method combination
Monotonicity vs redefinition

Aristotelian logic is monotonic
@ 3 Human must behave like a Mortal

Redefinition is non-monotonic
@ redefining a method yields non-monotonicity

Method combination = Call to super
@ a way to recover monotonicity

@ 3 Human behaves like a Mortal, with extra behaviour

&
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Classes and inheritance Method combination

Method combination conflicts

Quadrilateral
area = ...
Rectangle Rhombus
length diagonali
width diagonal2
area = length area = (diagonall
* width * i
\ diagonal2)/2
Square

area = super

O
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Classes and inheritance Method combination

Method combination conflicts

Quadrilateral
area = ...
Rectangle Rhombus
length diagonali
width diagonal2
area = length area = (diagonall
* width * i
L 9 diagonal2)/2
[ | /

Sq}\re

N

area = super

O
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Classes and inheritance

Method combination

Method combination conflicts

Quadrilateral

area = ...

AN

N

Square /

7
area = super

O
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Rectangle Rhombus
length diagonali
width diagonal2
area = length area = (diagonall
* width

* diagonal2)/2

VEFHT, 2016
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Method combination
A wrong solution: static super calls

o like C4+ or Eiffel

O
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foo ={.. A::foo ..}

A
foo={...}
C
foo ={.. A::foo ..}
D
foo = {.. B::foo
C::foo ..}
YRR, 2016
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Method combination
A wrong solution: static super calls

foo={...}

B / \C
foo ={.. A::foo ..} foo ={.. A::foo ..}
o like C++ or Eiffel . D
@ A::foo evaluated twice foo = {__‘B;;foo
repeated inheritance C::foo ..}

&
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Classes and inheritance Method combination

The right solution: linearization (1/2)

foo = {.. super

@ Specialization = a partial order

O
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A
foo={...}
C
.} foo ={.. super ..}
D
foo = {.. super ..}
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The right solution: linearization (1/2)

A
foo={...}

NS

B N\.C
-
foo = {.. super —}-—) foo = {.. super ..}

@ Linearization = a total order
\‘D
@& A::foo evaluated once foo = {.. super ..}
non-repeated inheritance

&

LIRMM

Ideal Classes and Types VEFHT, 2016 36 / 88



The right solution: linearization (2/2)

Principle
@ linear extension of the specialization partial order
@ monotonic
@ order preserved by specialization

@ an algorithm called C3 (used in Python)

&
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With restricted multiple inheritance (1/3)

Multiple subtyping (Java, Ct)
@ no problem with local property conflicts, nor method combination
@& except with default methods in Java 8

@ ad hoc solution for global property conflicts in Cf

@ no solution for global property conflicts in Java

&
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With restricted multiple inheritance (1/3)

Multiple subtyping (Java, Ct)
@ no problem with local property conflicts, nor method combination
@& except with default methods in Java 8

@ ad hoc solution for global property conflicts in Cf

@ no solution for global property conflicts in Java

Multiple subtyping could be well-specified J

&
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Classes and inheritance About existing languages

With restricted multiple inheritance (2/3)

Mixins/ Traits
@ same problems as with full multiple inheritance

o global property conflicts
e method combination

@ if mixins were the answer, what was the question?

@ just add unnecessary asymmetry between classes and traits

&
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With restricted multiple inheritance (3/3)

The Scala case
@ no solution for global property conflicts (like in Java)

@ linearization-based method combination, but not C3

&
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With restricted multiple inheritance (3/3)

The Scala case

@ no solution for global property conflicts (like in Java)
@ linearization-based method combination, but not C3

The question

How to easily implement “multiple inheritance” in multiple-subtyping
runtime systems?

&
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With full multiple inheritance (1/2)

C++ virtual inheritance
@ right solution for global attribute conflicts
@ no solution for global method conflicts
@ two distinct attributes for a single accessor!
@ method combination with static calls and repeated inheritance

@ linearization used for constructor/destructor combination
but not C3

&
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With full multiple inheritance (1/2)

C++ virtual inheritance
@ right solution for global attribute conflicts

@ no solution for global method conflicts
@ two distinct attributes for a single accessor!
@ method combination with static calls and repeated inheritance

@ linearization used for constructor/destructor combination
but not C3

C++ non-virtual inheritance
@ repeated inheritance for non-conflicting global attributes

@ an abomination

&
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With full multiple inheritance (2/2)

Eiffel
@ ad hoc solution for global property conflicts, with renaming

@ method combination with static calls and repeated inheritance

v

With dynamic typing (CLOS, Python)
@ no solution for global property conflicts
@ linearization-based method combination
@ (3 default linearization only in Python

@ possibility to define metaclasses using C3 in CLOS

&
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G
The ideal of multiple inheritance

o fully symmetric
e no distinction between classes and traits

o the same for methods, attributes, virtual types, type parameters

@ metamodeling semantics

e with fully qualified names for global properties
e without any repetition

@ local property conflicts solved by redefinition

@ method combination using the C3 linearization
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G
References on multiple inheritance

@ with Jean Privat: Meta-Modeling Semantics of Multiple Inheritance
Science of Computing Programming, 2011.

@ with Michel Habib, Marianne Huchard and Marie-Laure Mugnier:
Proposal for a monotonic multiple inheritance linearization.
In Proc. OOPSLA’'94. 1994.

@ Monotonic conflict resolution mechanisms for inheritance.
In Proc. OOPSLA’92, 1992
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Types and subtyping

Plan

9 Types and subtyping
@ Classes vs types

@ Specialization vs subtyping
@ Static overloading

&
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Classes vs types (1/2)

Different roles
@ classes declare properties and create instances

@ types serve as annotations in the code

@ allow the compiler to ensure the code is type safe

Nominal vs structural types
@ a nominal type is a symbol with explicit subtyping
@ a structural type is a record of named signatures, with implicit
subtyping

&
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Classes vs types (2/2)

Mainstream position (C++, Java, Ct, Scala, Eiffel, ..)
Besides higher-order types:
@ classes are nominal types

@ subtyping is implied by class specialization

The OCAML exception
@& types are purely structural

&
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Specialization vs subtyping (1/5)

Subtyping is substitutability (B. Liskov)

Specialization implies subtyping
IFF redefinition satisfies the contravariance rule
@ return type must be redefined covariantly

@ parameter types must be redefined contravariantly

@& type safe

&
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Specialization vs subtyping (2/5)

Mainstream position (C++, Java, Scala, ...)
@ return types are covariant

@ parameter types are invariant

Exceptions

o Cf & Java 1.4: return types are invariant
@ no reason at all

o Eiffel: parameter types are covariant
@& type unsafe

@ OCAML: parameter types are contravariant

&
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Specialization vs subtyping (3/5)

Motivations of the choice
@ covariance because of the mad cow example
@ invariance because

e contravariance is useless in practice
o static overloading was preexisting object-orientation

@ contravariance because of structural types

&
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Specialization vs subtyping (4/5)

Animal
eat(Food)

Cow

eat(Grass)

Food

Grass

Animal x ;

Food y ;
x.eat(y);

O
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Types and subtyping Specialization vs subtyping

Specialization vs subtyping (4/5)

Animal Food
eat(Food) / \
Cow Grass
eat(Grass)
Animal x = new Cow();

Food y = new MeatMeal();

MeatMeal

x.eat(y); // runtime type error

@ don't panic, but type errors are in the real world ™

&
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Specialization vs subtyping (5/5)

What is my ideal?
@ invariance of both parameter and return types

@ covariance through virtual types

&
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ety
Static overloading (1/3)

When parameter types are invariant,
@ there is room for static overloading

&
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ety
Static overloading (1/3)

When parameter types are invariant,
@ there is room for static overloading

Principle
@ a name denoting different entities in a common context
@ disambiguated with static types
@ originates in pre-object languages like PL/1 and C

&
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Types and subtyping Static overloading

Mal nommer les choses,
c'est ajouter au malheur du monde

Misnaming things adds to the world’s misfortunes
(Albert Camus)

O
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Types and subtyping Static overloading

Mal nommer les choses,
c'est ajouter au malheur du monde

Misnaming things adds to the world’s misfortunes
(Albert Camus)

Albert Camus a French writer and philosopher (1913-60)
Peyo a Belgian author of comic strips (1928-92)
creator of the Schtroumpfs

Schtroumpfs small characters whose language
has a single noun and verb: “schtroumpf”

&
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Types and subtyping Static overloading

Misnaming things adds
to the world’s misfortunes

O
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Types and subtyping Static overloading

Schtroumpfing schtroumpfs schtroumpfs
to the schtroumpf’s schtroumpfs

in the context of a picture, even small children can understand! J

&
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ety
Static overloading (2/3)

A

foo(U)

foo(T)

O
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Uu<T Uy
x.foo(y)
C++
Javali4
Javalb
Scala
Ct
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ety
Static overloading (2/3)

A
B x
foo(U) U<T Uy
x.foo(y)
C++ | foo(T)
B Javald | error
foo(T) Javal5 | foo(U)
Scala error
Ct foo(T)

O
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Types and subtyping Static overloading

Static overloading (2/3)

A
B x
foo(U) U<T Uy
bar(T) Tz=newU
x.foo(y) | x.bar(z)
C++ | foo(T) error
B Javalid | error bar(T)
foo(T) JaSva I1.5 foo(U) Earglg
cala error ar
bar(U) Ct foo(T) | bar(T)

O
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Types and subtyping Static overloading

Static overloading (2/3)

A
B x
foo(U) VT Uy
bar(T) Tz=new U
Confusion with covariance )ﬁ
contravariance or multiple selection
B | x.foo(y) | x.bar(z)
foo(T) Eiffel error error
OCAML | foo(T) error
bar(U) intuition — bar(U)

O
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ety
Static overloading (3/3)

6 languages
@ 6 different specifications + the intuition

&
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ety
Static overloading (3/3)

6 languages
@ 6 different specifications + the intuition

@ it cannot be a sane language feature

&
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Types and subtyping Static overloading

. Class

~| hame : String

2P 7
2
AW %
N < %,
QO S
’ A
Global Local
Property Property [+
1 <belongs to *
&)
e
* A X
N
)
2% & &
N &
O" »

&
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Static overloading in the metamodel

T : Class

name=T

specializes »

U : Class

name=U

&
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Static overloading in the metamodel

A : Class T : Class
name=A name=T
A
]
5
s
]
&
U : Class
name=U

&
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Static overloading in the metamodel

name=A

A : Class

defines

|

O
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A:bar(T)::A : LocalP

Ideal Classes and Types

T : Class

name=T

specializes »

U : Class

name=U
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Static overloading in the metamodel

A:Class | . A:bar(T)::A : LocalP T:Class
name=A name=T
A
]
8
s
]
&
U : Class
name=U

&
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Static overloading in the metamodel

A : Class o A:bar(T)::A : LocalP T:Class
efines »» — 77
name=A . name=T
2
g, o“’s belongs to
70,
d{,o
Q) N \
A:bar(T) : GlobalP A
- - @@ O @ @@ ]
[
s
]
&
U : Class
name=U

&
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iz Gyl
Static overloading in the metamodel

A : Class A:bar(T)::A : LocalP T:Class
- defines »» — 77
name=A name=T
4’[70
/}7,' Ws belongs to
odllo
Q) \
A & A
A:bar(T) : GlobalP
3 s
g v &
& «° @
e
B : Class U : Class
name=B name=U

&
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iz Gyl
Static overloading in the metamodel

A : Class A:bar(T)::A : LocalP T:Class
- defines »» — 77
name=A name=T
D W belongs to
odllo
Q) \
A & A
A:bar(T) : GlobalP
@ — 3
= N
5 s
g v &
& «° @
w©
B : Class B:bar(U)::B : LocalP U: Class
| defines > -
name=B name=U

&
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Static overloading in the metamodel

Aillass| e » |AbarT)A:LocalP T:Class
name=A
name=T
/477%
IO belongs to
od‘loe v
i SN p . A
A:bar(T) : GlobalP
P - 3
8 S
T s
g v &
& «° @
e
B : Class B:bar(U)::B : LocalP :
- defi > # name | type | m
name=B name=U

&
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iz Gyl
Static overloading in the metamodel

A : Class A:bar(T)::A : LocalP T:Class
- defines »» — 77
name=A name=T
hng -
/}7,' Ws belongs to
odllo
Q) \
A & A
A:bar(T) : GlobalP
3 s
] 3]
wo?
B : Class B:bar(U)::B : LocalP :
288 tnes  » |PiBONUNEEGLOcAR wpe - | YiClass
name=B name=U
."”O;,,
NG belongs to
W A <
Q) N v
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LR
The right semantics (1/2)

At compile-type

© select all the global methods, known by the receiver’s static type,
with parameter static types compatible with the call
say foo(T) and foo(U)
© select among them the single most specific
if U <: T, foo(U) is more specific than foo(T)
© compilation error when there are several most specific
eg baz(T,U) and baz(U,T)

At run-type = late binding

@ select in the global property the most specific local property
for the receiver’'s dynamic type
</ v
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LR
The right semantics (2/2)

That of Java 1.5

@ specificity does not involve the introduction or definition classes
(as in Java 1.4 or Scala)

@ a local property of a given global property doesn’t mask a local
property of another global property, as in C++ and Cf
eg foo(T) in B doesn't mask foo(U) in A

&
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LR
Avoid overloading by renaming

A : Class A:bar(T)::A : LocalP T:Class
- defines »» — 77
name=A name=T
hng -
/}7,' Ws belongs to
odllo
Q) \
A & A
A:bar(T) : GlobalP
3 s
] 3]
wo?
B : Class B:bar(U)::B : LocalP :
288 tnes  » |PiBONUNEEGLOcAR wpe - | YiClass
name=B name=U
."”O;,,
NG belongs to
W A <
Q) N v
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LR
Avoid overloading by renaming

AiClass| . o BT dLocalP T:Class
name=A name=T
o -
/}7,':“’& belongs to
9
SN N \
A AbarT(T) :GlobalP A
3 s
8 v g
& = @
"\
B:Class| B:barU(U)::B:LocalP U : Class
» | ——— | name type | i Pt
name=B name=U
."”o,,
/0,'0 s belongs to
d"es A 4
N v
B:barU(U):GlobalP o
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Static overloading
The right specifications

@ exclude overloading from the language specifications
(as in Eiffel or Nit),

@ otherwise, apply the right semantics (Java 1.5)
@ but don't use it

@ instead, rename!

&

LIRMM

Ideal Classes and Types VEFHT, 2016 63 / 88



The Schtroumpf project

Reductio ad absurdum
@ select some mainstream language with static overloading
o C—++, Java, Cf, Scala, not Eiffel

@ select some large-scale project written in this language
@ rename all methods in the project classes as either foo or bar

@ in case of conflict, add an extra, unused parameter

Variant

@ develop an Eclipse plugin that does this renaming, automatically

&
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Plan

© Genericity
@ Genericity vs subtyping
@ Variance annotations

O
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Generic vs object-oriented programmi )
Cup<T>

Genericity is not object-oriented
@ two almost orthogonal constructs J

&
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Generic vs object-oriented programmi )
Cup<T>

Genericity is not object-oriented
@ two almost orthogonal constructs

Genericity is now universal
In static typing

@ object-oriented languages are now generic
(Eiffel, C++, Java, Ct, ...)

@ generic languages (Ada) are now object-oriented

&
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Generic vs object-oriented programmirl )
Cup<T>

Genericity + subtyping = troubles
@ hard to specify
@ hard to understand and use

@ hard to implement efficiently

&
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Specifications by implementation ] )

At least 3 versions
heterogeneous pure textual substitution (C++)
@ no recursive types + code explosion
homogeneous type erasure and code sharing (Java 1.5, Scala)
@ |imited expressivity, unsafe casts, inefficient boxing
mixed code shared or specialized, with runtime types (Ct)

@ best tradeoff expressivity-efficiency-safety
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Constrained genericity )
Cup<T>

At least 3 specifications of contraints
@ none (C++)
@ no checking before instantiation
@ (recently) notion of concept
o formal type parameters bounded by subtyping
@ simple to understand and use
@ recursive bound (F-bounded) (Java, Ct, Scala, Eiffel, ...)

@ powerful but harder to understand
allows to clone isomorphic structures

O
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Genericity and (co)variance l )
Cup<T>

Principle

Cup< 75> is not a subtype of Cup<Drink> J

&

LIRMM

Ideal Classes and Types VEFHT, 2016 70 / 88



Genericity and (co)variance

Cup<T> )

Principle

Cup< 75> is not a subtype of Cup<Drink>

But many unsafeties ...
@ generalized covariance (Eiffel) g;

@ covariance of arrays (Java, Ct)

@ casts with type erasure (Java, Scala)

Safe variance annotations ;oo\
@ at definition-time (Scala, Ct only for interfaces)
@ at use-time (wildcards Java, Scala)
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Array covariance

Cup<T> )

Cats are not dogs
Cat[] x;

Animall] y;
y = X; // dangerous but compiled

y[i] = new Dog(); // compiled but runtime exception r&

v

&
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Type erasure = Alzheimer

Cup<T> )

Cats are not dogs (re)
Stack<Cat> x;

Stack<Dog> vy;
y = (Stack<Dog>)x; // stupid but compiled %
y.push(new Dog); // type is erased! Alzheimer

Cat z = x.pop(); // late exception #

v
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Type erasure = Alzheimer

Cup<T> )

Cats are not dogs (re)
Stack<Cat> x;

Stack<Dog> vy;
y = (Stack<Dog>)x; // stupid but compiled %
y.push(new Dog); // type is erased! Alzheimer

Cat z = x.pop(); // late exception r#

v

@ bad traceability of errors J
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- l
Variance )
Cup<T>

Variance positions
class Stack<T> {
T pop () {..} // covariant position
push(T t) {..} // contravariant position

@ more complex rules when T is nested

=
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- l
Variance )
Cup<T>

Variance positions
class Stack<T> {
T pop () {..} // covariant position
push(T t) {..} // contravariant position

@ more complex rules when T is nested

Variance
Co-variance can be considered
@ if T does not occur in a contra-variant position
@ if such occurrences are excluded from the type interface
e )
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- l
Variance )
Cup<T>

Variance positions
class Stack<T> {
T pop () {..} // covariant position
push(T t) {..} // contravariant position

@ more complex rules when T is nested

Variance
Contra-variance can be considered
@ if T does not occur in a co-variant position
@ if such occurrences are excluded from the type interface
e )
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Variance annotations (1/3) N )

Use-site covariance
Stack<? extends Animal> s = new Stack<Cat>();
Animal a = s.pop(); // OK
s.push(a); // KO
@ interface restricted to methods where
the type parameter is not in a contravariant position

&
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Variance annotations
Variance annotations (1/3) . )

Use-site covariance
Stack<? extends Animal> s = new Stack<Cat>();
Animal a = s.pop(); // OK
s.push(a); // KO
@ interface restricted to methods where
the type parameter is not in a contravariant position

@& useful for exporting “almost read-only™ collections J
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Variance annotations
Variance annotations (2/3)

Use-site contravariance
Stack<? super Cat> s = new Stack<Animal>();

Animal a = s.pop(); // KO
Object o = s.pop(); // OK
s.push(new Cat()); // OK

@ interface restricted to methods where
the type parameter is not in a covariant position
or is replaced by the parameter bound

Cup<T> )

&

LIRMM

VLI, 2016

75 / 88



Variance annotations
Variance annotations (2/3)

Use-site contravariance
Stack<? super Cat> s = new Stack<Animal>();

Animal a = s.pop(); // KO
Object o = s.pop(); // OK
s.push(new Cat()); // OK

@ interface restricted to methods where
the type parameter is not in a covariant position
or is replaced by the parameter bound

@ counter-intuitive and rarely used, apart from Comparable

Cup<T> )

O
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Variance annotations
Variance annotations (3/3) . )

Definition-site variance
@ class ImmutableContainer<+ T>
{ T get() :}
@ class Container<T> inherit ImmutableContainer<T >

{ put(T) ;}

@ with + the type parameter is covariant
and cannot be used in a contravariant position

useful for exporting “actual read-only” collections

O
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Variance annotations (3/3) N )

Definition-site variance
@ class ImmutableContainer<+ T>
{ T get() :}
@ class Container<T> inherit ImmutableContainer<T >

{ put(T) ;}

@ with — the type parameter is contravariant
and cannot be used in a covariant position

counter-intuitive and rarely used

&
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Contravariance and recursive bound

Cup<T> )

@ interface Comparable<T extends Comparable<T>>
@ class OrderedSet<T extends Comparable<T >>

@ class A implements Comparable<A>

@ OrderedSet<A> // OK

&
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Contravariance and recursive bound

interface Comparable<T extends Comparable<T>>
class OrderedSet<T extends Comparable<T>>
class A implements Comparable<A>
OrderedSet<A> // OK

Cup<T> )

@ class B extends A // OK
// B implements Comparable<A>

@ OrderedSet<B> // KO
// B doesn’t implement Comparable<B>

&
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Contravariance and recursive bound

interface Comparable<T extends Comparable<T>>
class OrderedSet<T extends Comparable<T>>
class A implements Comparable<A>
OrderedSet<A> // OK

Cup<T> )

@ class B extends A implements Comparable<B>  // KO
// B cannot implement both

@ OrderedSet<B> // KO

&
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Contravariance and recursive bound

Cup<T> )

interface Comparable<T extends Comparable<T>>

class OrderedSet<T extends Comparable<? super T>> Java
class A implements Comparable<A>

OrderedSet<A> // OK

@ class B extends A
// B implements Comparable<A> <: Comparable<? super B>

@ OrderedSet<B> // OK

&
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Contravariance and recursive bound l )
Cup<T>

interface Comparable<T extends Comparable<—T >> Scala
class OrderedSet<T extends Comparable<T>>

class A implements Comparable<A>

OrderedSet<A> // OK

@ class B extends A
// B implements Comparable<A> <: Comparable<B>

@ OrderedSet<B> // OK

&
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A programmer hierarchy Cupm)

language or library
implementer

an ingenious engineer

language designer
base programmer

a Pure Light of
programming

an obscure rower
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Variance annotations T )
Cup<T>

Use-site variance more general than definition-site
@ instead of defining A<+4+T> once,
@ use A<? extends T> everywhere!

@ |t's unfair to impose to the base programmer the difficulties that
could have been adressed by language designers or implementers

@ using classes, especially generics,
is easier that defining them

@ definition-site variance should be added to Java
and enlarged to all classes in Cf

@ most of the burden of use-site variance would be avoided

&
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Genericity (the end) )
Cup<T>

Ideal specifications

no type erasure

mixed implementation a la Cf

definition- and use-site variance (Scala)

array invariance

recursive bound (F-bounded)

no specialization of multiple generic instances
no static overloading on the formal type
better support of the IDEs
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Conclusions and propects

@ Conclusions and propects
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Conclusions and propects

Ideal specifications of OO languages'+,

In static typing
@ metamodeling semantics of multiple inheritance

@ generics with variance and runtime types

@ without overloading
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Ideal specifications of OO languages'+,

Why static typing?
because
@ dynamic typing is unsafe
@ dynamic typing is too difficult for most programmers
@ programming in dynamic typing is an art, not an industry

@ static typing allows for exoskeletons like Eclipse

Before boarding an aircraft,
be sure that all the avionics is statically typed!
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Conclusions and propects

a programmer dreams that he commands Eclipse,
is it not Eclipse dreaming it is a programmer? (after F=F)

O
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Ideal specifications for other feature«=

Constructors, i.e. initialization methods
@ an open problem

@ no satisfying specification
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Ideal specifications for other feature«=

Constructors, i.e. initialization methods
@ an open problem

@ no satisfying specification

Reflection
o first-class metaclasses, based on variant generics

@ as an extension of Java Class class

@ language-level UML associations

@ ... and certainly a few other object-oriented features
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What about existing languages?

Marginal evolution in Java and Cf
@ global property conflicts (Java)
@ covariant return types (Ct)

@ definition-site variance (both)

Too many backwards incompatibilities

@ type erasure seems to be definitive (Java, Scala)

@ a complete solution involves new languages )
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Conclusions and propects

Just do it!
@ the specifications are state-of-the-art

@ solutions exist for implementing it (another story...)
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Conclusions and propects
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