
Recovering Architectural Variability of a Family
of Product Variants

Anas Shatnawi1, Abdelhak Seriai1, and Houari Sahraoui2

1 UMR CNRS 5506, LIRMM, University of Montpellier II, Montpellier, France
shatnawi, seriai@lirmm.fr

2 DIRO, University of Montreal, Montreal, Canada
sahraoui@iro.umontreal.ca

Abstract. A Software Product Line (SPL) aims at applying a pre-
planned systematic reuse of large-grained software artifacts to increase
the software productivity and reduce the development cost. The idea of
SPL is to analyze the business domain of a family of products to identify
the common and the variable parts between the products. However, it
is common for companies to develop, in an ad-hoc manner (e.g. clone
and own), a set of products that share common functionalities and differ
in terms of others. Thus, many recent research contributions are pro-
posed to re-engineer existing product variants to a SPL. Nevertheless,
these contributions are mostly focused on managing the variability at
the requirement level. Very few contributions address the variability at
the architectural level despite its major importance. Starting from this
observation, we propose, in this paper, an approach to reverse engineer
the architecture of a set of product variants. Our goal is to identify the
variability and dependencies among architectural-element variants at the
architectural level. Our work relies on Formal Concept Analysis (FCA)
to analyze the variability. To validate the proposed approach, we exper-
imented on two families of open-source product variants; Mobile Media
and Health Watcher. The results show that our approach is able to iden-
tify the architectural variability and the dependencies.

Keywords: Product line architecture· architecture variability· architecture recovery·
product variants· reverse engineering· source code· object-oriented.

1 Introduction

A Software Product Line (SPL) aims at applying a pre-planned systematic reuse
of large-grained software artifacts (e.g. components) to increase the software pro-
ductivity and reduce the development cost [1–3]. The main idea behind SPL is
to analyze the business domain of a family of products in order to identify the
common and the variable parts between these products [1, 2]. In SPL, the vari-
ability is realized at different levels of abstraction (e.g. requirement and design).
At the requirement level, it is originated starting from the differences in users’
wishes, and does not carry any technical sense [2] (e.g. the user needs camera and
WIFI features in the phone). At the design level, the variability starts to have
more details related to technical senses to form the product architectures. These
technical senses are described via Software Product Line Architecture (SPLA).
Such technical senses are related to which components compose the product (e.g.

video recorder, and photo capture components), how these components interact
through their interfaces (e.g. video recorder provides a video stream interface to
media store), and what topology forms the architectural configuration (i.e. how
components are composited and linked) [2].

Developing a SPL from scratch is a highly costly task since this means the
development of the domain software artifacts [1]. In addition, it is common for
companies to develop a set of software product variants that share common
functionalities and differ in terms of other ones. These products are usually
developed in an ad-hoc manner (e.g. clone and own) by adding or/and removing
some functionalities to an existing software product to meet the requirement
of a new need [4]. Nevertheless, when the number of product variants grows,
managing the reuse and maintenance processes becomes a severe problem [4].
As a consequence, it is necessary to identify and manage variability between
product variants as a SPL. The goal is to reduce the cost of SPL development by
first starting it from existing products and then being able to manage the reuse
and maintenance tasks in product variants using a SPL. Thus, many research
contributions have been proposed to re-engineer existing product variants into
a SPL [5, 6]. Nevertheless, existing works are mostly focused on recovering the
variability in terms of features defined at the requirement level. Despite the
major importance of the SPLA, there is only two works aiming at recovering
the variability at the architectural level [7, 8]. These approaches are not fully-
automated and rely on the domain knowledge which is not always available. Also,
they do not identify dependencies among the architectural elements. To address
this limitation, we propose in this paper an approach to automatically recover the
architecture of a set of software product variants by capturing the variability at
the architectural level and the dependencies between the architectural elements.
We rely on Formal Concept Analysis (FCA) to analyze the variability. In order to
validate the proposed approach, we experimented on two families of open-source
product variants; Mobile Media and Health Watcher. The evaluation shows that
our approach is able to identify the architectural variability and the dependencies
as well.

The rest of this paper is organized as follows. Section 2 presents the back-
ground needed to understand our proposal. Then, in Section 3, we present the
recovery process of SPLA. Section 4 presents the identification of architecture
variability. Then, Section 5 presents the identification of dependencies among
architectural-element variants. Experimental evaluation of our approach is dis-
cussed in section 6. Then, the related work is discussed in Section 7. Finally,
concluding remarks and future directions are presented in section 8.

2 Background
2.1 Component-Based Architecture Recovery from Single Software:

ROMANTIC Approach
In our previous work [9, 10], ROMANTIC 3 approach has been proposed to au-
tomatically recover a component-based architecture from the source code of
3 ROMANTIC : Re-engineering of Object-oriented systeMs by Architecture extractioN
and migraTIon to Component based ones.

an existing object-oriented software. Components are obtained by partitioning
classes of the software. Thus each class is assigned to a unique subset forming a
component. ROMANTIC is based on two main models. The first concerns the
object-to-component mapping model which allows to link object-oriented con-
cepts (e.g. package, class) to component-based ones (e.g. component, interface).
A component consists of two parts; internal and external structures. The internal
structure is implemented by a set of classes that have direct links only to classes
that belong to the component itself. The external structure is implemented by
the set of classes that have direct links to other components’ classes. Classes
that form the external structure of a component define the component inter-
face. Fig. 1 shows the object-to-component mapping model. The second main
model proposed in ROMANTIC is used to evaluate the quality of recovered ar-
chitectures and their architectural-element. For example, the quality-model of
recovered components is based on three characteristics; composability, autonomy
and specificity. These refer respectively to the ability of the component to be
composed without any modification, to the possibility to reuse the component
in an autonomous way, and to the fact that the component implements a limited
number of closed functionalities. Based on these models, ROMANTIC defines a
fitness function applied in a hierarchical clustering algorithm [9, 10] as well as in
search-based algorithms [11] to partition the object-oriented classes into groups,
where each group represents a component. In this paper, ROMANTIC is used
to recover the architecture of a single object oriented software product.

Fig. 1. Object-to-component mapping model

2.2 Formal Concept Analysis

Formal Concept Analysis (FCA) is a mathematical data analysis technique de-
veloped based on lattice theory [12]. It allows the analysis of the relationships
between a set of objects described by a set of attributes. In this context, maximal
groups of objects sharing the same attributes are called formal concepts. These
are extracted and then hierarchically organized into a graph called a concept
lattice. Each formal concept consists of two parts. The first allows the represen-
tation of the objects covered by the concepts called the extent of the concept.
The second allows the representation of the set of attributes shared by the ob-
jects belonging to the extent. This is called the intent of the concept. Concepts
can be linked through sub-concept and super-concept relationship [12] where
the lattice defines a partially ordered structure. A concept A is a sub-concept of
the super-concept B, if the extent of the concept B includes the extent of the
concept A and the intent of the concept A includes the intent of the concept B.

N
atural

A
rtificial

Stagnant
R
unning

Inland
M
aritim

e
C
onstant

River X X X X
Sea X X X X

Reservoir X X X X
Channel X X X
Lake X X X X

Table 1. Formal context Fig. 2. Lattice of formal context in Table 1

The input of FCA is called a formal context. A formal context is defined as a
triple K = (O,A,R) where O refers to a set of objects, A refers to a set of
attributes and R is a binary relation between objects and attributes. This bi-
nary relation indicates to a set of attributes that are held by each object (i.e.
R ⊆ OXA). Table 1 shows an example of a formal context for a set of bodies of
waters and their attributes. An X refers to that an object holds an attribute.

As stated before, a formal concept consists of extent E and intent I, with E
a subset of objects O (E ⊆ O) and I a subset of attributes A (I ⊆ A). A pair of
extent and intent (E, I) is considered a formal concept, if and only, if E consists
of only objects that shared all attributes in I and I consists of only attributes
that are shared by all objects in E. The pair ("river, lake", "inland, natural,
constant") is an example of a formal concept of the formal context in Table 1.
Fig. 2 shows the concept lattice of the formal context presented in Table 1.

3 Process of Recovering Architectural Variability

The goal of our approach is at recovering the architectural variability of a set of
product variants by statically analyzing their object-oriented source code. This
is obtained by identifying variability among architectures respectively recovered
from each single product. We rely on ROMANTIC approach to extract the ar-
chitecture of a single product. This constitutes the first step of the recovery
process. Architecture variability is related to architectural-elements variability,
i.e. component, connector and configuration variability. In our approach, we fo-
cus only on component and configuration variability4. Fig. 3 shows an example
of architecture variability based on component and configuration variability. In
this example, there are three product variants, where each one diverges in the
set of component constituting its architecture as well as the links between the
components. Component variability refers to the existence of many variants of
one component. CD Reader and CD Reader / Writer represent variants of one
component. We identify component variants based on the identification of com-
ponents providing similar functionalities. This is the role of the second step of

4 Most of architectural description languages do not consider connector as a first class
concept.

the recovery process. Configuration variability is represented in terms of pres-
ence/absence of components on the one hand (e.g. Purchase Reminder), and
presence/absence of component-to-component links on the other hand (e.g. the
link between MP3 Decoder / Encoder and CD Reader / Writer). We identify
configuration variability based on both the identification of core (e.g. Sound
Source) and optional components (e.g. Purchase Reminder) and links between
these components. In addition, we capture the dependencies and constraints
among components. This includes, for example, require constraints between op-
tional components. We rely on FCA to identify these dependencies. These are
mined in the fourth step of the recovery process. Fig. 4 shows these steps.

4 Identifying the Architecture Variability

The architecture variability is mainly materialized either through the existence
of variants of the same architectural element (i.e. component variants) or through
the configuration variability. In this section, we show how component variants
and configuration variability are identified.

4.1 Identifying Component Variants

The selection of a component to be used in an architecture is based on its pro-
vided and required services. The provided services define the role of the compo-
nent. However, other components may provide the same, or similar, core services.
Each may also provide other specific services in addition to the core ones. Con-
sidering these components, either as completely different or as the same, does not
allow the variability related to components to be captured. Thus, we consider
them as component variants. We define component variants as a set of compo-
nents providing the same core services and differ concerning few secondary ones.
In Fig. 3, MP3 Decoder and MP3 Decoder / Encoder are component variants.

Fig. 3. An example of archi-
tecture variability

Fig. 4. The process of architectural variabil-
ity recovery

We identify component variants based on their similarity. Similar compo-
nents are those sharing the majority of their classes and differing in relation to
some others. Components are identified as similar based on the strength of sim-
ilarity links between their implementing classes. For this purpose, we use cosine
similarity metric [13] where each component is considered as a text document
composed of the names of its classes. We use a hierarchical clustering algorithm
[13] to gather similar components into clusters. It starts by considering compo-
nents as initial leaf nodes in a binary tree. Next, the two most similar nodes
are grouped into a new one that forms their parent. This grouping process is
repeated until all nodes are grouped into a binary tree. All nodes in this tree
are considered as candidates to be selected as groups of similar components. To
identify the best nodes, we use a depth first search algorithm. Starting from
the tree root to find the cut-off points, we compare the similarity of the current
node with its children. If the current node has a similarity value exceeding the
average similarity value of its children, then the cut-off point is in the current
node. Otherwise, the algorithm continues through its children. The results of this
algorithm are clusters where each one is composed of a set of similar components
that represent variants of one component.

4.2 Identifying Configuration Variants

The architectural configuration is defined based on the list of components com-
posing the architecture, as well as the topology of the links existing between
these components. Thus the configuration variability is related to these two as-
pects; the lists of core (mandatory) and optional components and the list of core
and optional links between the selected components.

Identification of component variability: To identify mandatory and op-
tional components, we use Formal Concept Analysis (FCA) to analyze archi-
tecture configurations. We present each software architecture as an object and
each member component as an attribute in the formal context. In the concept
lattice, common attributes are grouped into the root while the variable ones are
hierarchically distributed among the non-root concepts.

Fig. 5. A lattice example of similar configurations

Fig. 5 shows an example of a lattice for three similar architecture configura-
tions. The common components (the core ones) are grouped together at the root

concept of the lattice (the top). In Fig. 5 Com1 and Com4 are the core compo-
nents present in the three architectures. By contrast, optional components are
represented in all lattice concepts except the root. e.g., according to the lattice
of Fig. 5,Com2 and Com5 present in Arch1 and Arch2 but not in Arch3.
Identification of component-link variability: A component-link is defined
as a connection between two components where each connection is the abstrac-
tion of a group of method invocation, access attribute or inheritance links be-
tween classes composing these components. In the context of configuration vari-
ability, a component may be linked with different sets of components. A com-
ponent may have links with a set of components in one product, and it may
have other links with a different set of components in another product. Thus the
component-link variability is related to the component variability. This means
that the identification of the link variability is based on the identified component
variability. For instance, the existence of a link A-B is related to the selection
of a component A and a component B in the architecture. Thus considering a
core link (mandatory link) is based on the occurrence of the linked components,
but not on the occurrence in the architecture of products. According to that,
a core link is defined as a link occurring in the architecture configuration as
well the linked components are selected. To identify the component-link vari-
ability, we proceed as follows. For each architectural component, we collect the
set of components that are connected to it in each product. The intersection of
the sets extracted from all the products determines all core links for the given
component. The other links are optional ones.

5 Identifying Architecture Dependencies
The identification of component and component-link variability is not enough
to define a valid architectural configuration. This also depends on the set of
dependencies (i.e. constraints) that may exist between all the elements of the
architecture. For instance, components providing antagonism functionalities have
an exclude relationship. Furthermore, a component may need other components
to perform its services. Dependencies can be of five kinds: alternative, OR, AND,
require, and exclude dependencies. To identify them we rely on the same concept
lattice generated in the previous section.

In the lattice, each node groups a set of components representing the intent
and a set of architectural configurations representing the extent. The configura-
tions are represented by paths starting from their concepts to the lattice concept
root. The idea is that each object is generated starting from its node up going
to the top. This is based on sub-concept to super-concept relationships (c.f. Sec-
tion 2.2). This process generates a path for each object. A path contains an
ordered list of nodes based on their hierarchical distribution; i.e. sub-concept
to super-concept relationships). According to that, we propose extracting the
dependencies between each pair of nodes as follows:

– Required dependency. This constraint refers to the obligation selection
of a component to select another one; i.e. component B is required to select
component A. Based on the generated lattice, we analyze all its nodes by

identifying parent-to-child relation (i.e. top to down). Thus node A requires
node B if node B appears before node A in the lattice, i.e., node A is a sub-
concept of the super-concept corresponding to node B. In other words, to
reach node A in the lattice, it is necessary to traverse node B. For example,
if we consider lattice of the Fig. 5, Com6 requires Com2 and Com5 since
Com2 and Com5 are traversed before Com6 in all paths including Com6
and linking root node to object nodes.

– Exclude and alternative dependencies. Exclude dependency refers to
the antagonistic relationship; i.e. components A and B cannot occur in the
same architecture. This relation is extracted by checking all paths linking
root to all leaf nodes in the lattice. A node is excluded with respect to another
node if they never appear together in any of the existing paths; i.e. there
is no sub-concept to super-concept relationship between them. This means
that there exists no object exists containing both nodes. For example, if we
consider lattice of Fig. 5, Com6 and Com7 are exclusives since they never
appear together in any of the lattice paths.
Alternative dependency generalizes the exclude one by exclusively selecting
only one component from a set of components. It can be identified based on
the exclude dependencies. Indeed, a set of nodes in the lattice having each
an exclude constraint with all other nodes forms an alternative situation.

– AND dependency. This is the bidirectional version of the REQUIRE con-
straint; i.e. component A requires component B and vice versa. More gen-
erally, the selection of one component among a set of components requires
the selection of all the other components. According to the built lattice, this
relation is found when a group of components is grouped in the same con-
cept node in the lattice; i.e. the whole node should be selected and not only
a part of its components. For example if we consider lattice of the Fig. 5,
Com2 and Com5 are concerned with an AND dependency.

– OR dependency. When some components are concerned by an OR de-
pendency, this means that at least one of them should be selected; i.e. the
configuration may contain any combination of the components. Thus, in the
case of absence of other constraints any pair of components is concerned by
an OR dependency. Thus pairs concerned by required, exclude, alternative,
or AND dependencies are ignored as well as those concerned by transitive re-
quire constraints; e.g. Com6 and Com7 are ignored since they are exclusives.
Algorithm 1 shows the procedure of identifying groups of OR dependency.

6 Experimentation and Results
Our experimentation aims at showing how the proposed approach is applied to
identify the architectural variability and validating the obtained results. To this
end, we applied it on two case studies. We select two sets of product variants.
These sets are Mobile Media5 (MM) and Health Watcher6 (HW). We select these
products because they were used in many research papers aiming at addressing
5 Available at: http://ptolemy.cs.iastate.edu/design-study/#mobilemedia.
6 Available at: http://ptolemy.cs.iastate.edu/design-study/#healthwatcher.

Input: all pairs (ap), require dependencies (rd), exclude dependencies (ed) and
alternative dependencies (ad)

Output: sets of nodes having OR dependencies (orGroups)
OrDep = ap.exclusionPairs(rd, ed, ad);
OrDep = orDep.removeTransitiveRequire(rd);
ORPairsSharingNode = orDep.getPairsSharingNode();
for each pairs p in ORPairsSharingNode do

if otherNodes.getDependency() == require then
orDep.removePair(childNode);

else if otherNodes.getDependency()= exclude || alternative then
orDep.removeAllPairs(p);

end
orGroups = orDep.getpairssharingOrDep();
return orGroups

Algorithm 1: Identifying OR-Groups

the problem of migrating product variants into a SPL. Our study considers 8
variants of MM and 10 variants of HW. MM variants manipulate music, video
and photo on mobile phones. They are developed starting from the core imple-
mentation of MM. Then, the other features are added incrementally for each
variant. HW variants are web-based applications that aim at managing health
records and customer complaints. The size of each variant of MM and HW, in
terms of classes, is shown in Table 2. We utilize ROMANTIC approach [9] to
extract architectural components from each variant independently. Then, the
components derived from all variants are the input of the clustering algorithm
to identify component variants. Next, we identify the architecture configurations
of the products. These are used as a formal context to extract a concept lattice.
Then, we extract the core (mandatory) and optional components as well as the
dependencies among optional-component.

In order to evaluate the resulted architecture variability, we study the fol-
lowing research questions:

– RQ1: Are the identified dependencies correct? This research question
goals at measuring the correctness of the identified component dependencies.

– RQ2: What is the precision of the recovered architectural vari-
ability? This research question focuses on measuring the precision of the
resulting architecture variability. This is done by comparing it with a pre-
existed architecture variability model.

Table 2. Size of MM variants and HW ones

Name 1 2 3 4 5 6 7 8 9 10 Avg.
MM 25 34 36 36 41 50 60 64 X X 43.25
HW 115 120 132 134 136 140 144 148 160 167 136.9

6.1 Results
Table 3 shows the results of component extraction from each variant indepen-
dently, in terms of the number of components, for each variant of MM and HW.

Fig. 6. The concept lattice of HW architecture configurations

The results show that classes related to the same functionality are grouped into
the same component. The difference in the numbers of the identified compo-
nents in each variant has resulted from the fact that each variant has a different
set of user’s requirements. On average, a variant contains 6.25 and 7.7 main
functionalities respectively for MM and HW.

Table 3. Comp. extraction results

Name 1 2 3 4 5 6 7 8 9 10 Avg. Total
MM 3 5 5 5 7 7 9 9 X X 6.25 50
HW 6 7 9 10 7 9 8 8 7 6 7.7 77

Table 4. Comp. variants identification

Name NOCV ANVC MXCV MNCV
MM 14 3.57 8 1
HW 18 4.72 10 1

Table 4 summarizes the results of component variants in terms of the number
of components having variants (NOCV), the average number of variants of a
component (ANVC), the maximum number of component variants (MXCV)
and the minimum number of component variants (MNCS). The results show
that there are many sets of components sharing the most of their classes. Each
set of components mostly provides the same functionality. Thus, they represent
variants of the same architectural component. Table 5 presents an instance of 6
component variants identified from HW, where X means that the corresponding
class is a member in the variant. By analyzing these variants, it is clear that
these components represent the same architectural component. In addition to
that, we noticed that there are some component variants having the same set of
classes in multiple product variants.

The architecture configurations are identified based on the above results.
Table 6 shows the configuration of MM variants, where X means that the com-
ponent is a part of the product variants. The results show that the products are
similar in their architectural configurations and differ considering other ones. The
reason behind the similarity and the difference is the fact that these products are
common in some of their user’s requirements and variable in some others. These
architecture configurations are used as a formal context to extract the concept

Table 5. Instance of 6 component variants

Class Name Variant 1 Variant 2 Variant 3 Variant 4 Variant 5 Variant 6
BufferedReader X X X X X X

ComplaintRepositoryArray X X X X X X
ConcreteIterator X X X X X X
DiseaseRecord X

IIteratorRMITargetAdapter X X X X X X
IteratorRMITargetAdapter X X X X X X

DiseaseType X
InputStreamReader X X X X X X

Employee X X
InvalidDateException X X X X

IteratorDsk X X X X X X
PrintWriter X X X X X

ObjectNotValidException X X X
RemoteException X X X

PrintStream X X X
RepositoryException X X

Statement X X X X X X
Throwable X X X
HWServlet X
Connection X X

lattice. We use the Concept Explorer7 tool to generate the concept lattice. Due
to limited space, we only give the concept lattice of HW (c.f. Fig. 6). In Table
7, the numbers of core (mandatory) and optional components are given for MM
and HW. The results show that there are some components that represent the
core architecture, while some others represent delta (optional) components.
Table 6. Arch. configuration for all
MM variants

Variant No. C
om

1
C
om

2
C
om

3
C
om

4
C
om

5
C
om

6
C
om

7
C
om

8
C
om

9
C
om

10
C
om

11
C
om

12
C
om

13
C
om

14

1 X X X
2 X X X X X
3 X X X X X
4 X X X X X
5 X X X X X X X
6 X X X X X X X
7 X X X X X X X X X
8 X X X X X X X X X

Table 7. Mandatory and optional
components

Product Name MM HW
Mandatory 1 2
Optional 13 16

The results of the identification of optional-component dependencies are
given in Table 8 (Com 5 is excluded since it is a mandatory component). For
conciseness, the detailed dependencies among components are only shown for
MM only. The dependencies are represented between all pairs of components in
MM (where R= Require, E= Exclude, O= OR, RB = Required By, TR = Tran-
sitive Require, TRB = Transitive Require By, and A = AND). Table 9 shows a
summary of MM and HW dependencies between all pairs of components. This
includes the number of direct require constrains (NRC), the number of exclude
ones (NE), the number of AND groups (NOA), and the number of OR groups
(NO). Alternative constrains is represented as exclude ones. The results show
that there are dependencies among components that help the architect to avoid
7 Presentation of the Concept Explorer tool is available in [14].

creating invalid configuration. For instance, a design decision of AND compo-
nents indicates that these components depend on each other, thus, they should
be selected all together.
Table 8. Component dependencies

C1 C2 C3 C4 C6 C7 C8 C9 C10 C11 C12 C13 C14
Com1 X R E E O E E E
Com2 X E A RB R TR A RB RB
Com3 RB E X E E O E E E
Com4 A E X RB R TR A RB RB
Com6 E R E R X TR TR E R E E A A
Com7 E RB RB TRB X R O RB TRB TRB
Com8 TRB O TRB TRB RB X RB TRB TRB TRB TRB TRB
Com9 E O R X RB TRB E E
Com10 A E A RB R TR X RB RB
Com11 O E TR R X RB E E
Com12 E E TR TR R X E E
Com13 E R E R A TR TR E R E E X A
Com14 E R E R A TR TR E R E E A X

Table 9. Summarization of
MM and HW dependencies

Name NDR NE NA NO
MM 17 20 6 3
HW 18 62 3 11

To the best our knowledge, there is no architecture description language sup-
porting all kinds of the identified variability. The existing languages are mainly
focused on modeling component variants, links and interfaces, while they do not
support dependencies among components such as AND-group, OR-group, and
require. Thus, on the first hand, we use some notation presented in [15] to repre-
sent the concept of component variants and links variability. On the other hand,
we propose some notation inspired from feature modeling languages to model the
dependencies among components. For the purpose of understandability, we doc-
ument the resulting components by assigning a name based on the most frequent
tokens in their classes’ names. Figure 7 shows the architectural variability model
identified for MM variants, where the large boxes denote to design decisions
(constraints). For instance, core architecture refers to components that should
be selected to create any concrete product architecture. In MM, there is one core
components manipulating the base controller of the product. This component
has two variants. A group of Multi Media Stream, Video Screen Controller, and
Multi Screen Music components represents an AND design decision.

RQ1: Are the identified dependencies correct? The identification of com-
ponent dependencies is based on the occurrence of components. e.g., if two com-
ponents never selected to be included in a concrete product architecture, we
consider that they hold an exclude relation. However, this method could provide
correct or incorrect dependencies. To evaluate the accuracy of this method, we
manually validate the identified dependencies. This is based on the function-
alities provided by the components. For instance, we check if the component
functionality requires the functionality of the required component and so on.
The results show that 79% of the required dependencies are correct. As an ex-
ample of a correct relation is that SMS Controller requires Invalid Exception as
it performs an input/output operations. On the other hand, it seems that Image
Util does not require Image Album Vector Stream. Also, 63% of the exclude con-
strains are correct. For AND and OR dependencies, we find that 88% of AND
groups are correct, while 42% of OR groups are correct. Thus, the precision of
identifying dependencies is 68% in average.

Fig. 7. Architectural variability model for MM

RQ2: What is the precision of the recovered architectural variability?
In our case studies, MM is the only case study that has an available architecture
model containing some variability information. In [16], the authors presented the
aspect oriented architecture for MM variants. This contains information about
which products had added components, as well as in which product a component
implementation was changed (i.e. component variants). We manually compare
both models to validate the resulting model. Fig. 8 shows the comparison results
in terms of the total number of components in the architecture model (TNOC),
the number of components having variants (NCHV), the number of mapped
components in the other model (NC), the number of unmapped components in
the other model (NUMC), the number of optional components (NOC) and the
number of mandatory ones (NOM). The results show that there are some varia-
tion between the results of our approach and the pre-existed model. The reason
behind this variation is the idea of compositional components. For instance, our
approach identifies only one core component compared to 4 core components in
the other model. Our approach grouped all classes related to the controller com-
ponents together in one core components. On the other hand, the other model
divided the controller component into Abstract Controller, Album Data, Media

Controller, and Photo View Controller components. In addition, the component
related to handling exceptions is not mentioned in the pre-existed model at all.

Fig. 8. The results of the MM validation

7 Related Work
In this section, we discuss the contributions that have been proposed in two re-
search directions; recovering the software architecture of a set of product variants
and variability management.

In [7], an approach aiming at recovering SPLA was presented. It identifies
component variants based on the detection of cloned code among the products.
However, the limitation of this approach is that it is a semi-automated, while our
approach is fully automated. Also, it does not identify dependencies among the
components. In [8], the authors presented an approach to reconstruct Home Ser-
vice Robots (HSR) products into a SPL. Although this approach identifies some
architectural variability, but it has some limitation compared to our approach.
For instance, it is specialized on the domain of HSR as the authors classified,
at earlier step, the architectural units based on three categories related to HSR.
These categories guide the identification process. In addition, the use of fea-
ture modeling language (hierarchical trees) to realize the identified variability
is not efficient as it is not able to represent the configuration of architectures.
Domain knowledge plays the main role to identify the architecture of each sin-
gle product and the dependencies among components. In some cases, domain
knowledge is not always available. The authors in [6] proposed an approach to
reverse engineering architectural feature model. This is based on the software ar-
chitect’s knowledge, the architecture dependencies, and the feature model that
is extracted based on a reverse engineering approach presented in [5]. The idea,
in [6], is to take the software architect’s variability point of view in the extracted
feature model (i.e. still at the requirement level); this is why it is named ar-
chitecture feature model. However, the major limitations of this approach are
firstly that the software architect is not available in most cases of legacy soft-
ware, and secondly that the architecture dependencies are generally missing as
well. In [5], the authors proposed an approach to extract the feature model. The

input of the extraction process is feature names, feature descriptions and de-
pendencies among features. Based on this information, they recover ontological
constraints (e.g. feature groups) and cross tree constrains. A strong assumption
behind this approach is that feature names, feature descriptions, and depen-
dencies among features are available. In [17], the authors use FCA to generate
a feature model. The input of their approach is a set of feature configurations.
However, the extraction of the feature model elements is based on NP-hard prob-
lems (e.g. set cover to identify or groups). Furthermore, architecture variability
is not taken into account in this approach. In [18], an approach was presented
to visually analyze the distribution of variability and commonality among the
source code of product variants. The analysis includes multi-level of abstractions
(e.g. line of code, method, class, etc.). This aims to facilitate the interpretation
of variability distribution, to support identifying reusable entities. In [19], the
authors presented an approach to extract reusable software components from a
set of similar software products. This is based on identifying similarity between
components identified independently from each software. This approach can be
related only to the first step of our approach.

8 Conclusion

In SPLA, the variability is mainly represented in terms of components and con-
figurations. In the case of migrating product variants to a SPL, identifying the
architecture variability among the product variants is necessary to facilitate
the software architect’s tasks. Thus, in this paper, we proposed an approach
to recover the architecture variability of a set of product variants. The recov-
ered variability includes mandatory and optional components, the dependencies
among components (e.g. require, etc.), the variability of component-links, and
component variants. We rely on FCA to analyze the variability. Then, we pro-
pose two heuristics. The former is to identify the architecture variability. The
latter is to identify the architecture dependencies. The proposed approach is
validated through two sets of product variants derived from Mobile Media and
Health Watcher. The results show that our approach is able to identify the ar-
chitectural variability and the dependencies as well.

There are three aspects to be considered regarding the hypothesis of our
approach. Firstly, we identify component variants based on the similarity be-
tween the name of classes composing the components, i.e., classes that have
the same name should have the same implementation. While in some situa-
tions, components may have very similar set of classes, but they are completely
unrelated. Secondly, dependencies among components are identified based on
component occurrences in the product architectures. Thus, the identified de-
pendencies maybe correct or incorrect. Finally, the input of our approach is the
components independently identified form each product variants using ROMAN-
TIC approach. Thus. the accuracy of the obtained variability depends on the
accuracy of ROMANTIC approach.

Our future research will focus on migrating product variants into component
based software product line, the mapping between the requirements’ variability

(i.e. features) and the architectures’ variability, and mapping between compo-
nents’ variability and component-links’ variability.

References

1. Clements, P., Northrop, L.: Software product lines: practices and patterns. Addison-
Wesley Reading (2002)

2. Pohl, K. and Böckle, G. and Van Der Linden, F.: Software product line engineering.
Springer Berlin Heidelberg (2005)

3. Tan, L. and Lin, Y. and Ye, H.: Quality-oriented software product line architecture
design. Journal of Software Engineering & Applications. 5(7), 472–476 (2012)

4. Rubin, J., Chechik, M.: Locating distinguishing features using diff sets. In:
IEEE/ACM 27th Inter. Conf. on ASE, pp. 242–245. (2012)

5. She, S., Lotufo, R., Berger, T., Wasowski, A., Czarnecki, K.: Reverse engineering
feature models. In: Proc. of 33rd ICSE, pp. 461–470. (2011)

6. Acher, M., Cleve, A., Collet, P., Merle, P., Duchien, L., Lahire, P.: Reverse engi-
neering architectural feature models. In: Software Architecture. LNCS, vol. 6903,
pp. 220–235. Springer, Heidelberg (2011)

7. Koschke, R., Frenzel, P., Breu, A.P., Angstmann, K.: Extending the reflexion method
for consolidating software variants into product lines. Software Quality Journal.
17(4), 331–366 (2009)

8. Kang, K.C., Kim, M., Lee, J., Kim, B.: Feature-oriented re-engineering of legacy
systems into product line assets - a case study. In: Software Product Lines. LNCS,
vol. 3714, pp. 45–56. Springer, Heidelberg (2005)

9. Kebir, S., Seriai, A.D., Chardigny, S., Chaoui, A.: Quality-centric approach
for software component identification from object-oriented code. In: Proc. of
WICSA/ECSA, pp. 181–190. (2012)

10. Chardigny, S., Seriai, A., Oussalah, M., Tamzalit, D.: Extraction of component-
based architecture from object-oriented systems. In: Proc. of 7th WICSA, pp. 285–
288. (2008)

11. Chardigny, S., Seriai, A.D., Oussalah, M., Tamzalit, D.: Search-based extraction of
component-based architecture from object-oriented systems. In: 2nd ECSA. LNCS,
vol. 5292, pp. 322–325. Springer, Heidelberg (2008)

12. Ganter, B., Wille, R.: Formal concept analysis. WISSENSCHAFTLICHE
ZEITSCHRIFT-TECHNISCHEN UNIVERSITAT DRESDEN. 47, 8–13 (1996)

13. Han, J., Kamber, M., Pei, J.: Data mining: concepts and techniques. Morgan kauf-
mann (2006)

14. Yevtushenko, A.S.: System of data analysis "concept explorer". (In Russian) Proc.
of the 7th National Conf. on Artificial Intelligence (KII), vol. 79, pp. 127–134. (2000)

15. Hendrickson, S.A., van der Hoek, A.: Modeling product line architectures through
change sets and relationships. In: Proc. of the 29th ICSE, pp. 189–198. (2007)

16. Figueiredo, E. and Cacho, N. and Sant’Anna, C. and Monteiro, M. and Kulesza, U.
and Garcia, A. and Soares, S. and Ferrari, F. and Khan, S., et al.: Evolving software
product lines with aspects. In: Proc. of 30th ICSE, pp. 261–270. (2008)

17. Ryssel, U., Ploennigs, J., Kabitzsch, K.: Extraction of feature models from formal
contexts. In: Proc. of 15th SPLC, pp. 1–4. (2011)

18. Duszynski, S., Knodel, J., Becker, M.: Analyzing the source code of multiple soft-
ware variants for reuse potential. In: Proc. of WCRE, pp. 303–307. (2011)

19. Shatnawi, A., Seriai, A.D.: Mining reusable software components from objecto-
riented source code of a set of similar software. In: IEEE 14th Inter. Conf. on
Information Reuse and Integration (IRI), pp. 193–200. (2013)

