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Abstract. Object-oriented Application Programing Interfaces (APIs)
support software reuse by providing pre-implemented functionalities. Due
to the huge number of included classes, reusing and understanding large
APIs is a complex task. Otherwise, software components are admitted to
be more reusable and understandable entities than object-oriented ones.
Thus, in this paper, we propose an approach for reengineering object-
oriented APIs into component-based ones. We mine components as a
group of classes based on the frequency they are used together and their
ability to form a quality-centric component. To validate our approach,
we experimented on 100 Java applications that used Android APIs.
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1 Introduction
Nowadays, the development of large and complex software applications is based
on reusing pre-existing functionalities instead of developing them from scratch
[1, 2]. Application Programming Interfaces (APIs) are recognized as the most
commonly used repositories supporting software reuse [1]. APIs provide a pre-
implemented, tested and high quality set of functionalities [2, 3]. Consequently,
they increase software quality and reduce the effort spent on coding, testing and
maintenance activities [2].

In the case of object-oriented APIs, e.g., Standard Template Libraries in C++
or Java SDK, the functionalities are encapsulated as object-oriented classes. It is
well known that reusing and understanding large APIs such as Java SDK, which
contains more than 7.000 classes, is not an easy task [4, 5]. Consequently, several
approaches have been proposed, such as [6–8], in order to facilitate the under-
standability and the reusability of APIs by discovering frequent usage patterns
of APIs. This is based on the API usage history of software applications (i.e. API
clients). Despite the value of frequent usage patterns, these are not sufficient to
provide a high degree of API reusability and understandability. These are used
as guides for reusing API classes and are not themselves reusable entities [9].

Otherwise, software components are admitted to be more reusable and under-
standable entities than Object-Oriented (OO) ones [10]. This is because com-
ponents are considered coarse-grained software entities, while OO classes are
considered fine-grained ones. In addition, components define their required and
provided interfaces. This means that the component dependencies are more un-
derstandable compared to the dependencies among objects. Consequently many
approaches have been proposed to identify components from OO software appli-
cations such as [11, 12]. Nevertheless, no approach has been proposed to identify
components from object-oriented APIs. Thus, in this paper, we propose an ap-
proach to mine components from object-oriented APIs. This does not only im-
prove the reusability of APIs themselves, but also supporting component-based



reuse techniques by providing component based APIs. The approach exploits
specificities of API entities. We statically analyze the source code of both APIs
and their software clients to identify groups of API classes that are able to form
OO components. This is based on two criteria. The first one is the probability
of classes to be reused together by API clients. The second one is related to the
structural and behavioral dependencies among classes and thus their ability to
form a quality-centric component. In order to validate the proposed approach,
we experimented on a set of 100 Java applications that use three Android APIs.
The evaluation shows that structuring object-oriented APIs as component-based
ones improves the reusability and the understandability of these APIs.

The rest of this paper is organized as follows. The subsequent section, Section
2 puts in context the problem of component identification from APIs. It presents
the goal of the proposed approach, the background needed to understand our
proposal and the problem analysis. Section 3 presents the foundation of our
approach. Then, in Section 4 we present the identification of component interface
classes. Section 5 presents how APIs are organized as component-based libraries.
Experimentation and results of our approach are discussed through three APIs
case studies in section 6. Next, the related work is discussed in Section 7. Finally,
concluding remarks and future directions are presented in section 8.

2 Putting Problem in Context

2.1 The Goal: Object to Component

Our goal is to reengineer object-oriented APIs into component based ones. Based
on [10, 13, 14], we consider a component as, “a software element that (a) can be
composed without modification, (b) can be distributed in an autonomous way,
(c) encapsulates the implementation of one or many closed functionalities, and
(d) adheres to a component model”. According to this definition, we derive three
quality characteristics that should be satisfied by a component; Composability,
Autonomy and Specificity. Composability of a component refers to its ability to
be composed through its interfaces without any modification. Autonomy refers to
that a component can be reused in an autonomous way because it encapsulates
the strongly dependent functionalities. Specificity refers to that a component
implements a limited number of closed functionalities, which makes it a coarse-
grained entity. Based on that, we consider as OO components those implemented
as a group of OO classes.

In the context of our approach, the identification3 of a component means
identifying OO classes that can be considered as the implementation of this
component. Thus we consider that a component can be identified from a cluster
of classes that may belong to different packages. Classes that have direct links
(e.g. method call, attribute access) with classes implementing other components
compose the interfaces of the component. Provided Interfaces of a component are
defined as a group of methods implemented by classes composing these interfaces.
Required interfaces of a component are defined as a group of methods invoked
by the component and provided by other components. Figure 1 shows our object
to component mapping model.

3 Component identification is the first step of the migration process of object-to-
component



Fig. 1. Mapping object to component

2.2 Background
Identifying Components in Software Applications : Synthesis of Pre-
vious Work We have proposed in our previous works related to ROMANTIC4

approach [11, 15] a set of metrics to measure the ability of a group of classes
in a software application to form a component. These metrics are defined based
on the main characteristics of a component (i.e. Composability, Autonomy and
Specificity). Similar to the software quality model ISO 9126 [16], we proposed
to refine the characteristics of the component into sub-characteristics. Next, the
sub-characteristics are refined into the properties of the component (e.g. number
of required interfaces). Then, these properties are mapped to the properties of
the group of classes from which the component is identified (e.g. group of classes
coupling). Lastly, these properties are refined into OO metrics (e.g. coupling
metric). This quality refinement model is shown in Figure 2. According to this
model, a quality function has been proposed to measure the component quality.
This quality function is used as a similarity metric for a hierarchal clustering
algorithm [11, 15] as well as in search-based algorithms [17] to partition the OO
classes into groups; where each group represents a component.

Fig. 2. From component characteristics to object-oriented metrics

Frequent Usage Patterns In the domain of data mining, a Frequent Usage
Pattern (FUP) is defined as a set of items, subsequences or substructures that
4 ROMANTIC: Re-engineering of Object-oriented systeMs by Architecture extractioN
and migraTIon to Component based ones



are frequently used together by customers [18]. It provides information that helps
decision makers (e.g. customer shopping behavior) by mining associations and
correlations among a set of items in a huge data set. An example of FUP mining
is a market basket analysis. In this example, the customer buying habits are
analyzed to identify items that are frequently bought together in the customer
shopping baskets, for instance, milk and bread form a FUP when they bought
frequently together. The identification of FUP is based on Support quality metric
that is used to measure the interestingness of a set of items. Support refers to
the probability of finding a set of items in the transactions. For example, the
value of 0.30 Support, means that 30% of all the transactions contain the target
item set. The following equation refers to Support :

S(E1, E2) = P (E1 ∪ E2) (1)

Where E1, E2 are sets of items; S refers to Support ; P refers to the probability.

2.3 Component and Frequent Usage Pattern
FUPs are observations made based on the analysis of previous uses of APIs.
They aim to help users of APIs by identifying recurring patterns, composed of
classes frequently used together.

FUPs and components serve the reuse needs in two different ways. Com-
ponents are entities that can be directly reused and integrated into software
applications, while FUPs are guides for reuse and not entities for reuse. In ad-
dition, components and FUPs are structurally different. Related to Specificity
characteristic, classes composing a component serve a coherent body of services,
while classes composing a FUP may be related to different services. Concerning
Autonomy characteristic, dependencies of component’s classes are mostly inter-
nal, which forms an autonomous entity. FUP’s classes can be very dependent on
other classes that are not directly used by clients of APIs. Concerning Compos-
ability characteristic, a component is structured and reused via interfaces, while
FUPs are not directly reusable entities.

3 The Proposed Solution Foundations
Based on the observations made in the previous sections, we consider that:
– In object-oriented APIs, a component is identified as a group of classes.
– To reengineer the entire object-oriented API into component-based one, each

class of the API is mapped to be part of at least one component. Each class
is mapped either as a class of the component interfaces or as a part of the
internal classes of the component.

– Classes directly accessed by the software clients represent the end-users’
services. These classes compose FUPs. These ones are the candidate to form
the provided interface of the components mined from the API.

– As a FUP can be composed of classes providing multiple services, its classes
can be mapped to be a part of different component interfaces.

– A class of an API can be a part of several FUPs and can participate to im-
plement multiple services. Consequently a class can be mapped into multiple
component interfaces.

Figure 3 shows our mapping model which maps class-to-component through
FUPs. According to this mapping model, we propose the following process to
mine components from APIs (c.f. Figure 4):



Fig. 3. Mapping class to component through FUP

– Identification of frequent usage patterns. FUPs are identified by ana-
lyzing the interactions between the API and its application clients.

– Identification of the interfaces of components. We partition the set
of classes of each FUP in subgroups, where each is considered as related to
the provided interfaces of one component (c.f. Figure 5). The partitioning
is based on criteria related to dependencies and lexical similarity of classes
and their frequency of simultaneous reuse.

– Identification of internal classes of components driven by their pro-
vided interfaces. Classes forming the provided interfaces of a component
form the starting point for identifying the rest of the component classes. To
identify these classes we rely on the analysis of structural and behavioral
dependencies between classes in the API with those forming the interfaces.
We check if these classes are able to form a quality-centric component.

– Organizing API as Layers of Components. As we previously men-
tioned, the API classes can be categorized according to whether they are
directly reused by the API clients or not. Classes that are not directly used
by API clients can also be organized into two categories. This is based on
whether they belong to components identified from the classes that are di-
rectly used by API clients or not. As each class of the API must be a part
of at least one component, we associate classes that do not compose any of
the already identified components to new ones. Based on that, we organize
component-based APIs as a set of layers describing how their components
are organized. This organization is used-driven. The first layer is composed
of components that are used by the software clients, while the second layer
is composed of components that provide services used by components of
the first layer, and so on. As a result, the API is structured in N layers of
components (c.f. Figure 6).

4 Identification of component interfaces
The identification of classes forming an API component is driven by the identi-
fication of classes composing the provided interfaces of this component. Classes
composing these interfaces are those directly accessed by the clients of the API.
Classes belonging to the same interface are those frequently used together. There-
fore they are identified from frequent usage patterns. Classes of the API com-
posing frequent usage patterns are identified based on the analysis of how API
classes were used by the API clients. API classes used together constitute trans-
actions of usage.



Fig. 4. The process of mining components from an object-oriented API

Fig. 5. From FUP to provided in-
terfaces

Fig. 6. Multi-layers component-
based API

4.1 Extracting Transactions of Usage
A transaction of usage is a set of interactions between an API and a client of
this API. These interactions consist of calling methods, accessing attributes,
inheritance or creating an instance object based on a class of the API. They
are identified by statically analyzing the source code of the API and its clients.
Transactions are different depending on the choice of API clients. Therefore the
choice of the API clients directly affects the type of the resulting patterns. A
client can be considered either a class, a group of classes or the whole software
application. We define a client as group of classes forming a functional component
in software applications. The idea behind that is to mine patterns related to
functionalities composing the applications. Thus, a transaction is a set of API
classes used by classes composing a client component (c.f. Figure 7). To this end,
we use ROMANTIC approach to identify client components composing software
applications. Algorithm 1 shows the process of transaction identification. It starts
by partitioning each software client into components. Then, for each component,
it identifies API classes that are reused by the component classes.

4.2 Mining Frequent Usage Patterns of Classes
In the previous step, the interactions of all client components with the API are
identified as transactions. Based on these transactions, we identify FUPs. A FUP
is a set of API classes that are frequently used together by client components. It



allows the detection of hidden correlations of usage among classes of the API. We
mine FUPs based on the FPGrowth algorithm [18]. In this algorithm, a pattern
is considered as frequent if it reaches a predefined threshold of interestingness
metric. This metric is known as Support. The Support refers to the probability
of finding a set of API classes in the transactions. The use of the Support metric
separates the classes of API into two groups according to whether they belong
to at least one FUP or not. Classes that do not belong to any of the identified
FUPs are the less commonly used classes. As each API class that belongs to a
transaction is a class that has been accessed by the clients of the API, therefore it
must be a part of the classes composing the interfaces of at least one component.
We propose assigning each class of the less commonly used classes to the pattern
holding the maximum Support value when they are merged together.

Fig. 7. Client components using
API

Fig. 8. Identifying classes compos-
ing components

4.3 Identifying Classes Composing Component Interfaces from
Frequent Usage Patterns

We identify classes composing component interfaces from those composing FUPs.
Each FUP is partitioned into a set of groups, where each group represents a
component interface. Classes are grouped together according to three heuristics
that measure the probability of a set of classes to be a part of the same interface.
The first is the frequency of simultaneous use of these classes by the same client.
The second is the cohesion of these classes. This measures the strength of sharing
data (e.g. attributes) between these classes. The third heuristic is the lexical
similarity between these classes based on the textual names of the classes, their
methods as well as their attributes. Based on the above heuristics, we propose a
fitness function, given below, measuring the ability of a group of classes to form
a component interface. We use LCC metric [19] to measure the cohesion of a set
of classes, Conceptual Coupling metric [20] to measure classes’ lexical similarity
and Support metric to measure the association frequency of a set of classes.
The partition of each pattern into groups of classes is based on a hierarchical
clustering algorithm which uses this function as a function of similarity.

I(E) =
1∑
i λi
· (λ1 · LCC(E) + λ2 · CC(E) + λ3 · S(E)) (2)



Where E is a set of OO classes; LCC(E) is the Cohesion of E ; CC(E) is Con-
ceptual Coupling of E ; S(E) is the Support of E ; and λ1, λ2, λ3 are weight values,
situated in [0-1]. These are used by the API expert to weight each characteristic
as needed.

Input: Source Code of a Set of Software Clients(clients), API Source Code(api)
Output: A Set of Transactions(trans)
for each c in clients do

components.add(ROMANTIC(c));
end
for each com in components do

transaction = ∅;
for each class in com do

transaction.add(class.getUsedClasses(api));
end
trans.add(transaction);

end
return trans

Algorithm 1: Identifying Transactions

5 API as Library of Components
5.1 Identifying Classes Composing Components
As we mentioned before, the component identification process is driven by the
identification of its provided interfaces. This means that API classes forming
a component are identified in relation to their direct or indirect structural and
behavioral dependencies with the classes forming provided interfaces of the com-
ponent. The selection of a class of the API to be a part of the component classes
is based on the measurement of the quality of this component, when this is in-
cluded. The identification of these classes is done gradually. In other words, we
start to form the group of classes composing the interface ones, and then we add
other classes to form a component based on the component quality measurement
model. Classes having either direct or indirect links with the interface ones rep-
resent the candidate classes to be added to them. At each step, we add a new
API class. This is selected based on the quality value of the component, formed
by adding this class to the ones already selected. The class that maximizes the
quality value is selected in this step. This is done until all API classes are in-
vestigated. Each time we add a class, we evaluate the component quality. Then,
we select the peak quality value to decide which classes form the component.
This means that we exclude classes added after the peak value. As an exam-
ple, Class7 and Class8 in Figure 8 are excluded from the resulting component
because they were added after the quality value reached the peak.

5.2 Organizing API as Layers of Components
As we previously mentioned, the API is structured in N layers of components.
To identify components of layer L, we rely on components of layer L − 1. We
proceed similarly to the identification of the components of the first layer. We use
required interfaces of the components already identified in layer L−1 to identify
the interfaces provided by components in layer L. This continues until reaching
a layer where its components either do not require any interface or they require
ones already identified. Each interface defined as a required for a component of
layer L − 1 is considered as a provided by a component of layer L except ones



provided by the already identified components. All interfaces provided in layer
L are grouped into clusters to identify those provided by the same component of
layer L. The clusters are obtained based on a hierarchical clustering algorithm.
This algorithm uses a similarity function that measures: (i) the cohesion of classes
composing a group of interfaces, (ii) the lexical similarity of these classes and (iii)
the frequency of their simultaneous use. Clusters that maximize this function are
selected. The interfaces composing each cluster are considered as provided by the
same component. Analogously to the identification of the components of the first
layer, the other classes composing each component are identified starting from
classes composed of its already identified provided interfaces.
6 Experimentation and Results
6.1 Experimental Design
Data Collection We collected a set of 100 Android− Java applications from
open-source repositories5. The average size of these applications in terms of num-
ber of classes is 90. The application names are listed in the Appendix. These
applications are developed based on classes of the android APIs6. In our ex-
perimentation, we focus on three of these APIs. The first is the android.view
composed of 491 classes. This API provides services related to the definition
and management of the user interfaces in android applications. The second API
is the android.app composed of 361 classes. This API provides services related
to creating and managing android applications. The last API is the android
composed of 5790 classes. This API includes all of the android services.

Research Questions and Evaluation Method The approach is evaluated
on the collected software applications and APIs. We identify client components
independently from each software application. Each component in software is
considered as a client of the APIs to form a transaction of classes. Then, we
mine Frequent Usage Pattern (FUP) from the identified transactions. Next, from
classes composing each FUP, we identify classes composing a set of component
interfaces. Then, we identify all component classes starting from ones composing
their interfaces. Lastly, the final results obtained by our approach are presented.

We evaluate the obtained components by answering the three following re-
search questions.

– RQ1: Does the Approach Reduce the Understandability Efforts?
This research question aims at measuring the saved efforts in the API un-
derstandability that are brought by migrating object-oriented APIs into
component-based ones.

– RQ2: Are the Mined Components Reusable? As our approach aims
at mining reusable components, we evaluate the reusability of the resulted
component. This is based on measuring how much related classes are grouped
into the same components.

– RQ3: Is the Identification of Provided Interfaces Based on FUPs
Useful? The proposed approach identifies the provided interfaces of the
components based on how clients have used the API classes (i.e. FUPs).
Thus, this research question evaluates how much benefit the use of FUPs
brings by comparing components identified by our approach with ones iden-
tified without taking FUPs into account.

5 sourceforge.net, code.google.com, github.com, gitorious.org, and aopensource.com
6 We select android API level 14 as a reference



To answer the second question that related to the reusability, we use theK−fold
cross validation method [18]. The idea is to partition the client applications into
K parts. Then, the identification process is applied K times by considering,
each time, K − 1 different parts for the identification process and by using the
remaining part to measure the reusability. Next, we take the average of all K
trail results. In our experiment, we set K to 2, 4, and 8.

Fig. 9. Changing the support threshold value to mine FUPs of classes

6.2 Results
Intermediate Results and Identified Components The average number of
client components identified from each software is 4.5 and the average number of
classes composing each component is 18.73. Table 1 shows the average number
of transactions per software application (ANTIC), the average of transaction
size in terms of classes (ATS), and the percentage of components that have used
the API (PCU). The last column of this table shows an example of transactions.

The results show that android, view, and app APIs have been used respec-
tively by only 54%, 29% and 32% of client components. In addition, we note
that each client component has used the API classes intensively compared to
the number of classes composing it. For example, the transaction size is 17.91
classes for the view API, where the average number of classes per component
is 18.73. This is due to the fact that classes that serve the same services in
software applications, and consequently depend on the same API classes, are
grouped together in the same client component.

Table 1. The Identification of Transactions

API ANTIC ATS PCU Example
android 2.61 64.82 0.54 Bitmap, Path, Log, Activity, Location, Canvas, Paint,

ViewGroup, MotionEvent, View, TextView, GestureDe-
tector

view 1.51 17.91 0.29 MenuItem, Menu, View, ContextMenu, WindowManager,
MenuInflater, Display, LayoutInflater

app 1.58 10.90 0.32 ProgressDialog, Dialog, AlertDialog, Activity, ActionBar,
Builder, ListActivity

The identification of FUPs relies on the value of the Support threshold. The
number and the size of the mined FUPs depend on this value. For all application
domains where FUPs are used (e.g. data mining), this value is determined by
domain experts. In our approach, to help API experts to determine this value,
we assign the Support threshold values situated in [30%-100%]. We give for each
Support value the number of the mined FUPs and the average size of the mined
FUPs for each API (c.f. Figure 9). The results show that the number of mined



FUPs is directly proportional to the Support value, while the average size of the
mined FUPs is inversely proportional.

Based on their knowledge of the API, API experts can select the value of
the Support. For example, if the known average number of API classes used
together to implement an application service is N , then the experts can choose
the Support value corresponding to FUPs having N as the average size. Based on
the obtained results and our knowledge on android APIs7, we select the Support
threshold values as 60%, 45%, and 45% respectively for the android, the view
and the app APIs.

Table 2 shows examples of the mined FUPs. For instance, the FUP related
to view API contains 10 classes. The analysis of this FUP shows that it corre-
sponds to three services: animation (Animation and AnimationUtils classes),
view (Surface, SurfaceView, SurfaceHolder, MeasureSpec, ViewManager and
MenuInflater classes), and persistence of the view states (AbsSavedState and
AccessibilityRecord classes). These services are dependent. Animation service
needs the view service and the data of animation view needs to be persistent.

Table 2. Examples of the Mined FUPs

API Example
android Intent, Context, Log, SharedPreferences, View, TextView, Toast, Activity,

Resources
view Surface, Animation, AnimationUtils, AccessibilityRecord, ViewManager,

MenuInflater, AbsSavedState, SurfaceView, SurfaceHolder, MeasureSpec
app Dialog, Activity, ProgressDialog

In Table 3, we present the results of interface identification in terms of the
average number of component interfaces identified from a FUP (ANCIP ), the
average number of classes composing component interfaces (ACIS) and the to-
tal number of component interfaces in the API (TNCI). The last column of
this table presents examples of component interfaces identified from the FUPs
given in Table 2. For instance, the analysis of classes composing the component
interfaces identified from the FUP related to the view API shows that they are
related to surface view services.

Table 3. Identification of Component Interfaces from FUPs

API ANCIP ACIS TNCI Examples
android 1.57 5.62 232 Activity, View, TextView, Toast
view 2.17 2.94 19 Surface, SurfaceView, SurfaceHolder
app 2.50 4 10 Dialog, ProgressDialog

Table 4 presents the results related to the mined components composing the
first API layer. For each API, we give the number of the mined components
(NMC) and the average number of classes composing the mined components
(ACS). The last column of this table shows examples of classes composing com-
ponents identified started from classes composing provided component interfaces
presented in Table 3. The results show that the services offered by classes of
android, view and app APIs are identified as 232, 19 and 10 components respec-
tively. This means that developers only require to interact with these components
to get the needed services from these APIs.

7 The authors of this paper are experts on the android APIs



Table 4. Identifying Classes Composing Components

API NMC ACS Example
android 232 19.99 Activity, View, TextView, Toast, Drawable, GroupView, Window,

Context, ColorStateList, LayoutInflater
view 19 7.49 Surface,SurfaceView, SurfaceHolder, MockView, Display, CallBack
app 10 5.86 Dialog, ProgressDialog, AlertDialog

Table 5 shows the final results obtained by our approach. For each API, we
firstly give the size of the API in terms of the number of OO classes composing
the API and the number of the identified components. Secondly, we present
the total number of used entities (classes and respectively components) by the
software clients. The results show that classes participating in providing related
services are grouped into one component. Furthermore, the total number of
cohesive and decoupled services is identified for each API. For instance, android
API consists of 497 components (coarse-grained services), while view and app
APIs contain 43 and 55 components respectively.

Table 5. The Final Results

API Name API Entity API size No. of used Entities

android
OO 5790 491
CB 497 54

view
OO 491 42
CB 43 17

app
OO 361 45
CB 55 5

Answering Research Questions RQ1: Does the Approach Reduce the Un-
derstandability Efforts? The efforts spent to understand such an API is directly
proportional to the complexity of the API. This complexity is related to the
number of API elements and the individual element’s complexity. On the one
hand, the reduction in the number of elements composing the API is obtained
by grouping classes collaborating to provide one coarse-grained service into one
component. The results show that the average number of identified components
for the studied APIs is 11% ( ( (497/5790) + (43/491) + (55/361) ) /3 ) of the
number of classes composing the APIs. This means that the API size is signifi-
cantly reduced by mapping class-to-component. On the other hand, the reduction
in the individual element complexity is done by migrating object-oriented APIs
into component-based ones. Meaning, components define their required and pro-
vided interfaces, while OO classes at least do not define required interfaces (e.g.
a class may call a large number of methods belonging to a set of classes without
an explicit specification of these dependencies). The results show that the aver-
age number of used components for the APIs is 4% ( ( (54/491) + (17/42) +
(5/45) ) /3 ) of the number of used classes. This means that the effort spent to
understand API entities is significantly reduced in the case of software applica-
tions developed based on API components compared to the development based
on API classes. Note that, developers only need to understand the component
interfaces, but not the whole component implementation.

RQ2: Are the Mined Components Reusable? We consider that the reusability
of a software component is related to the number of used classes among all ones
composing the software component. Thus, we calculate the reusability of the
component based on the ratio between the numbers of used classes composing
the component to the total number of classes composing the component. To



prove that our resulted component-based APIs could be generalized to another
independent set of client applications, we rely on K − fold cross validation
method. Table 6 presents the results of this measurement. These results show
that the reusability results is distributed in a disparate manner. The reason
behind this disputation is the size of the train and test data as well as the size
of the API. For instance, the average reusability for the app API is 37% when
the number of train clients is 50 application clients, while it is 51% when the
number of train clients is 88 application clients. Thus, the reusability of the
components increases when the number of train client applications increases.
The results show that our approach identifies reusable components, where the
average reusability for all APIs is 47%.

Table 6. Reusability Results

API android view app
K 2 4 8 2 4 8 2 4 8

Reusability 40% 43% 57% 46% 48% 56% 37% 41% 51%

RQ3: Is the Identification of Provided Interfaces Based on FUPs Useful? To
prove the utility of using FUPs during the identification process, we compare
the components mined based on our approach with ones mined using ROMAN-
TIC approach, which does not take FUPs into consideration. This is based on
the density of using the component provided interfaces by application clients.
The density refers to the ratio between the number of used interface classes to
the total number of interface classes for each component. Table 7 shows the
average density for the two identification approaches. These results show that
our approach outperforms ROMANTIC approach. For instance, the application
clients need to reuse a larger number of components of ones mined based on RO-
MANTIC with less density of provided interface classes compared to component
mined based on our approach. For instance, the average usage density of classes
composing provided interfaces of ROMANTIC components is 21%, while it is
61% for components mined by our approach for all APIs.

Table 7. The Results of Interface Density

API ROMANTIC Our Approach
android 20% 69%
view 18% 58%
app 26% 55%

7 Related work
To the best of our knowledge, no approach has been proposed to identify com-
ponents from object-oriented APIs. However, we present two research areas that
are related to our approach. The First one aims at identifying components from
OO software applications. The second area aims at mining frequent patterns of
API usage.

Concerning the identification of software components from the source code
of software applications, numerous approaches have been presented. Garcia et
al. provide a survey of some of these approaches [21]. In [22], Detten et al.
presented the Archimetrix approach, which aims at mining the architecture of
the legacy software. It relies on a clustering algorithm to partition the system
classes into components. This algorithm depends on name resemblance, cou-
pling and cohesion metrics as a fitness function. In [11], Kebir et al. presented



an approach to extract components from a single OO software system. Classes
composing the extracted components form a partition. Mined components are
considered as a part of the component-based architecture of the corresponding
software. In [12] Allier et al. depended on dynamic dependencies between classes
to recover components. Based on the use case diagram, the execution trace sce-
narios are identified. Classes that frequently occur in the execution traces are
grouped into a single component. Cohesion and coupling metrics are also taken
into account during the identification process. Weinreich et al. proposed, in [23],
an approach to recover multi-view architecture model of software applications
implemented based on service oriented architecture. The authors classified soft-
ware artifacts based on the information from source code, configuration files and
binary codes. In [24], an approach has been presented to mine reusable compo-
nents from a set of similar software applications. A component is considered as
more reusable, when it is reused many times by the software applications. The
authors firstly identified components independently from each software applica-
tion. Then, based on the lexical similarity between the classes composing these
components, they identified reusable ones.

In the context of API mining, many approaches have been proposed to mine
frequent usage patterns of APIs based on the usage history of APIs. Robillard
et al. provide a survey of these approaches [25]. These approaches can be mainly
classified based on four main criteria. The first one is related to the goal, which
can be either giving examples and recommendations of how to use API entities
(e.g. [7, 5]), supporting the documentation of APIs (e.g. [7, 6]), or improving the
bug detection task (e.g. [8]). The second criterion is related to the pattern order-
ing, where some approaches mine ordered patterns (e.g. [7, 6]), while other ones
mine unordered patterns (e.g. [8, 26]). The third one concerns the granularity
of the elements composing a pattern. For examples, in [7, 6]), the approaches
mine patterns composed of methods, and the approach in [26] mines patterns
composed of classes. The fourth one related to the technique that is used to
identify the patterns. The used technique can be association rules mining (e.g.
[26]), clustering algorithms (e.g. [6]) or a heuristic defined by the authors such as
[7, 8]. Some approaches combines many techniques, e.g., Unddin et al. used Prin-
ciple Component Analysis with Clustering algorithm [5], and Buse and Weimer
combined the clustering algorithm with their own proposed heuristic [27].

8 Conclusion and Future Work

In this paper, we presented an approach aimed at mining software components
from object-oriented APIs. It is based on static analysis of the source code of
both the APIs and their software clients. The mining process is used-driven.
This means that components are identified starting from classes composing their
interfaces. Classes composing the provided interface of the first layer components
compose FUPs. We experimented our approach by applying it on a set of open
source Java applications as clients for three android APIs. The results show that
our approach improves the reusability of the API.

As our approach is used-driven, the results depend on the quality and the
number of usages of the API. This means that identified FUPs rely on the
considered software clients. Therefore the identification of provided interfaces
and then their corresponding components depends on API clients. Consequently
it is essential to select clients having the largest number of usages of the API.



Our future work will focus on migrating the identified OO components into
existing component models such as OSGI model, and developing a visual envi-
ronment that allows domain experts to interact with the approach at each step
of the identification process, thus modify the obtained results as needed.

Appendix:
These are the names of the applications that considered as clients of the APIs.

ADW Launcher, APV, ARMarker, ARviewer, Alerts, Alogcat, AndorsTrail,
AndroMaze, AndroidomaticKeyer, AppsOrganizer, AripucaTracker, AsciiCam,
Asqare, AugmentRealityFW, AussieWeatherRadar, AutoAnswer, Avare, Ban-
sheeRemote, BiSMoClient, BigPlanetTracks, BinauralBeats, Blokish, Boston-
BusMap, CalendarPicker, CH-EtherDroid, CVox, CamTimer, ChanImageBrowser,
CidrCalculator, ColorPicker, CompareMyDinner, ConnectBot, CorporateAddress-
Book, Countdown, CountdownTimer, CrossWord, CustomMaps, DIYgenomics,
Dazzle, Dialer2, DiskUsage, DistLibrary, Dolphin, Doom, DriSMo, DroidLife,
DroidStack, Droidar, ExchangeOWA, FeedGoal, FileManager, FloatingImage,
Gcstar, GeekList, GetARobotVPNFrontend, GlTron, GoHome, GoogleMapsSup-
port, GraphView, HeartSong, Hermit, Historify, Holoken, HotDeath, Introspy,
LegoMindstroms, Lexic, LibVoyager, LiveMusic, LocaleBridge, MAME4droid,
Look, LookSocial, Macnos, Mandelbrot, Mathdoku, MediaPlayer, Ministocks, Mo-
tionDetection, NGNStack, NewspaperPuzzles, OnMyWay, OpenIntents, Open-
Map, OpenSudoku, Pedometer, Phoenix, PhotSpot, Prey, PubkeyGenerator, Pwd-
Hash, QueueMan, RateBeerMobile, AlienbloodBath, SuperGenPass, SwallowCatcher,
Swiftp, Tumblife, VectorPinball, WordSearch.
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