
HAL Id: lirmm-01324285
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01324285

Submitted on 1 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mining reusable software components from
object-oriented source code of a set of similar software

Anas Shatnawi, Abdelhak-Djamel Seriai

To cite this version:
Anas Shatnawi, Abdelhak-Djamel Seriai. Mining reusable software components from object-oriented
source code of a set of similar software. IRI: Information Reuse and Integration, Aug 2013, San
Francisco, CA United States. pp.193-200, �10.1109/IRI.2013.6642472�. �lirmm-01324285�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01324285
https://hal.archives-ouvertes.fr

Mining Reusable Software Components from Object-Oriented Source Code of a
Set of Similar Software

Anas Shatnawi, Abdelhak-Djamel Seriai

UMR CNRS 5506, LIRMM
Université Montpellier 2 Sciences et Techniques

Place Eugène Bataillon, Montpellier, France
{shatnawi, seriai}@lirmm.fr

Abstract

One of the most important approaches that support

software reuse is Component Based Software Engineering
(CBSE). Nevertheless the lack of component libraries is
one of the major obstacles to widely use CBSE in the
industry. To help filling this need, many approaches have
been proposed to identify components from existing
object-oriented software. These approaches identify
components from singular software. Therefore the
reusability of these components may be limited. In this
paper, we propose an approach to mine reusable
components from a set of similar object-oriented
software, which were developed in the same domain,
ideally by the same developers. Our goal is to enhance
the reusability of mined components compared to those
mined from single software. In order to validate our
approach, we have applied it onto two open source Java
applications of different sizes; small and large-scale ones.
The results show that the components mined from the
analysis of similar software are more reusable than those
which are mined from single ones.

Keywords: software component, similar software, mining,
reuse, object-oriented, source code, reverse engineering

1. Introduction

It is admitted that reuse improves the software quality
and productivity [1]. Component Based Software
Engineering (CBSE) is considered as one of the most
important approaches supporting software reuse [1, 2, 4].
Nevertheless, one of the major limitations against widely
use of CBSE is the lack of component libraries [12].
Therefore, mining reusable components from existing
software is an efficient way to supply component
libraries. Otherwise, as software components are admitted
as more reusable entities than object-oriented ones [12],
many approaches have proposed to identify components
from existing object-oriented software [3, 5, 6, 7]. These
approaches proposed to mine components by analyzing
single software. As a result, the mined components may
be useless in other software and consequently their
reusability is not guaranteed. In fact the probability of

reusing a component in new software is proportional to
the number of software that has already used it [18].
Moreover software companies often find themselves in
the situation where they have developed many software in
the same domain, but with functional or technical
variations [8]. In most cases, each software variant is
developed by adding some variations to an existing
software to meet the requirements of a new need. Thus in
this paper, we propose an approach to mine reusable
components from a set of similar object-oriented
software1 which were developed in the same domain,
ideally by the same developers. The goal is to analyze the
source code of these software to identify pieces of code
that may form reusable components. Our motivation is
that components mined from the analysis of several
existing software will be more useful (reusable) for the
development of new software than those mined from
singular ones. To validate our approach, we have applied
it onto two open source Java applications of different
sizes (i.e. small and large-scale ones). We propose an
empirical measurement to evaluate the reusability of the
mined components. According to this measurement, the
results show that the reusability of the mined components
using our approach is better than the reusability of those
mined from singular software.

The rest of this paper is organized as follows. In
section 2, we present the ROMANTIC approach, which
constitute a background for our work. Section 3 presents
the proposed approach. The experimental results are
presented and discussed in section 4. The related work
and conclusion are placed in sections 5 and 6 respectively.

2. Background: the ROMANTIC Approach

In our previous works [3] and [17], we have proposed

the ROMANTIC approach which aims to extract a
component-based architecture from an object-oriented
software. ROMANTIC is mainly based on two models:
first an object-to-component mapping model, second a
quality measurement model to evaluate the quality of
components which are mined from object-oriented source
code. In this paper, we rely on these two models to define
a process which allows to mine reusable components from
similar software.

1This work has been funded by grant ANR 2010 BLAN 021902.

193IEEE IRI 2013, August 14-16, 2013, San Francisco, California, USA
978-1-4799-1050-2/13/$31.00 ©2013 IEEE

2.1. From object to component: the mapping
model

A software component is defined based on two parts:

internal and external structures [16, 17]. The internal
structure implements services provided by the component
as well as those used by them. The external structure
consists of the accessible services structured as provided
and required interfaces. The provided interfaces are the
services accessed by other applications/components. The
required interfaces represent services that the component
needs to perform its provided ones. These are provided by
other applications/components. When a component is
object oriented (i.e. implemented by an object-oriented
language), its internal structure is represented by one or
more classes, which can belong to different packages. Fig.
1 shows the object-to-component mapping model.

2.2. From object to component: the quality
measurement model

According to [4, 15, 16], a component is defined as “a

software element that (a) can be composed without
modification, (b) can be distributed in an autonomous
way, (c) encapsulates the implementation of one or many
functionalities, and (d) adheres to a component model”
[3]. Based on this definition, we identified three quality
characteristics of a component: composability, autonomy
and specificity [3]. Composability is the ability of a
component to be composed without any modification.
Autonomy means that it can be reused in an autonomous

way. Specificity characteristic is related to the fact that a
component must implement a limited number of closed
functionalities. Based on these characteristics we
proposed a quality measurement model for object-
oriented components. The basis of this model is that
characteristics are mapped to object-oriented metrics
following ISO model 9126 [10]. First of all, the above
characteristics are refined into sub-characteristics. Then,
these sub-characteristics are refined into properties related
to the external structure of a component. Next, these
properties are mapped to the properties of the internal
structure of a component. Finally, these properties are
refined into object-oriented metrics. Fig. 2 shows how the
component characteristics are refined following the
proposed measurement model.

Based on this measurement model, we defined a
fitness function to measure the quality of an object-
oriented component based on its characteristics [3]. This
function is given bellow:

���� � �
� 	
�

��1� ���� � 2� ���� � 3� ������ (1)

Where:
• � is an object-oriented component composed of a

group of classes.

• ���� , ����� and ���� refer to the specificity,

autonomy, and composability of E respectively.

• �1, �2, �3 are weight values, situated in [0-1]. These are
used by the architect to weight each characteristic as
needed.
We have proposed a specific fitness function to

measure each of these characteristics. For example, the
specificity characteristic of a component is calculated as
follows:

���������� � �
� � �

�
��� � � ��������� � ������ � ������ �

��������������������� !"#��� � $ %!&���' (2)

This means that the specificity of a component E
depends on the following object-oriented metrics: the
cohesion of classes composing the internal structure of E
(������), the cohesion of all classes composing the
external structure of E (������), the average cohesion of

all classes composing the external structure of E (
�
��� �

� ���������), the coupling of internal classes of E
(� !"#��� which is measured based on the number of
dependencies between the classes of E), and the number
of public methods belong to the external structure of E
($ %!&���). LCC (Loose Class Cohesion) is an object-
oriented metric that measures the cohesion of a set of
classes [11]. For more details about the quality
measurement model please refer [3, 17].

Figure 1. shows the object-to-component mapping model.

Figure 2. Component quality measurement model.

194

3. The Proposed Approach

The aim of our approach is to mine reusable

components based on the static analysis of the source
code of a set of similar object-oriented software.

The mining process is based on the following steps:
first, each software is independently analysed to identify
all potential components. These are identified based on
the evaluation of their quality characteristics. Next, we
identify similar components among all potential ones.
Similar components are those providing, mostly the same
services and differing compared to few others. After that,
we rely on the similarity of each group of components to
build a single component, which will be representative of
this group; this will be considered as a reusable
component. Only classes constituting the internal
structures (i.e. the implementation) of the reusable
components are identified in this step. Next, we identify
their external structure: their provided and required
interfaces. Finally, the last step of the mining process
aims at documenting the mined components. This
documentation includes suggestions to describe the
services that components provide. Fig. 3 summarizes the
mining process.

3.1. Identifying potential components

Potential components are mined based on the analysis
of each object-oriented software. Each potential
component is composed of a set of classes where the
corresponding value of the quality fitness function is
satisfactory (i.e. its quality value is higher than a
predefined threshold). The classes composing a potential
component are gradually identified starting from a core
class. Each class of the analyzed software can be selected
to be a core one depending on if an accepted component
can be formed starting from this one. This is decided as
the result of the next steps.

The selection of the classes to be added at each step is
decided based on the value of the quality function of the
formed component. In other words, classes are ranked
based on the obtained value of the quality function when

it is gathered to the current group. The class obtaining the
highest quality value is selected to extend the current
group. We do this until all classes are grouped into a
single group. The quality of the formed groups is
evaluated at each step (i.e. each time when a new class is
added). Some classes of this group will be excluded.
These are those added after the quality function reaches
the peak value.

For example, in Fig. 4, classes 7 and 8 are put aside
from the group of classes related to component 2 because
when they are been added the quality of the component is
decreased compared to the peak value. Thus classes
retained in the group are those maximizing the quality of
the formed component. After identifying all potential
components of such software, the only ones retained are
those where the quality values are higher than a
predefined quality threshold. For example, in Fig. 4,
component 1 does not reach the predefined threshold and,
thus, not retained as a potential component. This means
that the starting core class is not suitable. Algorithm 1
below illustrates the process of potential components
mining. In this algorithm, Q refers to the quality fitness
function and Q-threshold is a predefined quality
threshold.
Algorithm 1: PotentialComponents(OO source code):
potential components
--
classes � extractInformation(OO source code);
for each C in classes
 component � C;
 bestComponent � component;
 while (|classes – component.classes| > 1) do
 c1�getNearestClass(component,classes–component);
 component � ��������	
�
��
 if (Q(component)) > Q(bestComponent))then
 bestComponent � component;
 end if
 end while
 if (Q(bestComponent) > Q-threshold)
 add(Results, bestComponent);
 end if
end for
return Results;

Figure 4. Forming potential components by incremental
selection of classes.

Figure 3. The process of reusable components mining.

195

3.2. Identifying similar components

Potential components are mined based on the analysis
of a set of similar software. As a consequence, some of
them may be similar. Similar components are those
providing mostly the same functionalities and differing in
few ones. These can be considered as variants of a
common component. The similarity as well as the
difference between components appears compared to their
internal structures composed of object-oriented classes.
Thus similar components are those sharing the majority of
their classes and differing considering the other ones. We
gather similar component into groups from which we
mine common ones.

Groups of similar components are built based on a
lexical similarity metric. Thus components are identified
as similar compared to the strength of similarity links
between classes composing them. We use cosine
similarity metric [9]. Following this metric each
component is considered as a text document which
consists of a list of component classes’ names.

We use a hierarchal clustering algorithm to gather
similar components into groups. It starts by considering
individual components as initial leaf nodes in a binary
tree. Next, the two most similar nodes are grouped into a
new one (i.e. as a parent of them). This is continued until
all nodes are grouped as a binary tree. This tree is
composed of all candidate clusters. To identify the best
ones (clusters), we use a depth first search algorithm.
Starting from the tree root to find the cut-off points, we
compare the similarity of the current node with its
children. If the current node has a similarity value
exceeding the average similarity value of its children,
then the cut-off point is in the current node, otherwise, the
algorithm continues through its children (c.f. Algorithm
2). The results of this algorithm are clusters where each
one groups a set of similar components.
Algorithm 2: ComponentsClustering(Potential
Components): clusters of potential components
--
binaryTree � PotentialComponents
while (|binaryTree| > 1) do
 c1, c2� nearestNodes(binaryTree);// cosine similarity
 c � newNode����
���
 ����������
�����������
 ����������
�����������
 add(c, binaryTree);
end while
clusters� depthFirstSearch.getBestClsuters(binaryTree);
return clusters;
3.3. Reusable component mining from similar
potential ones

As previously mentioned, similar components are

considered as variants of a common one. Thus, from each

cluster of similar components, we extract a common
component which is considered as the most reusable
compared to the members of the analyzed group. It is
composed based on all shared classes and some selected
non-shared ones. Shared classes form the core of the
reusable component. These classes may not form a correct
component following our quality measurement model.
Thus some non-shared classes are added based on the
following criteria:

• The quality of the component obtained by adding a
non-shared class to the core ones.

• The density of a non-shared class in a cluster of
similar components which refers to the occurrence ratio of
the class compared to the components of this group. We
consider that a class, which has high density, contributes
to build a reusable component.

Consequently the following algorithm generates

classes forming the reusable components. First, for each
cluster of similar component, we extract all candidate
subsets of classes among the set of non-shared ones.
Then, the subsets that reach a predefined density
threshold are only selected. The density of a subset is the
average densities of all classes in this subset. Next, we
evaluate the quality of the component formed by grouping
core classes with classes of each subset resulting from the
previous step. Thus the subset maximizing the quality
value is grouped with the core classes to form the reusable
component. Only components with a quality value higher
than a predefined threshold are retained.

Nevertheless the above algorithm is NP-complete (i.e.
the complexity of identifying all subsets of a collection of
classes is 2n-1). This means that the computing time will
be accepted only for components with a small number of
non-shared classes. This algorithm is not scalable for a
large number of non-shared classes (e.g. 10 non-shared
classes need 1024 operations, while 20 classes need
1048576 operations).

Consequently, we propose the following heuristic
algorithm as an alternative. First of all, non-shared classes
are evaluated based on their density. The Classes that do
not reach a predefined density threshold are rejected.
Then, we identify the greater subset that reaches a
predefined quality threshold when it is added to the core
classes. To identify the greater subset, we consider the set
composed of all non-shared classes as the initial one. This
subset is grouped with the core classes to form a
component. If this component reaches the predefined
quality threshold, then it represents the reusable
component. Otherwise, we remove the non-shared class
having the lesser quality value compared to the quality of
the component formed when this class is added to the core
ones. We do this until a component reaching the quality
threshold or the subset of non-shared classes becomes

196

empty. Algorithm 3 shows the process of reusable
components mining, where Q refers to the quality
function (1), Q-threshold refers to the predefined quality
threshold.
Algorithm 3: MiningReusableComponents(Clusters of
Components) : reusable components
--
for each cluster in Clusters of Components do
 shared � getSharedClasses(cluster);
 nonShared � getNonSharedClasses(cluster);
 component � shared;
 removeClassesLessThanDensityThreshold(nonShare);
 while (|nonShare|>0) do
if(Q(component + nonShare)>=Q-threshold)
 add(Results,component);
 break while;
end if
removeLessQualityClass(NonShare, shared);
 end while
end for
return Results;

3.4. Identifying structure of the reusable
components

As it is illustrated in section II, a component is used

based on its provided and required interfaces. For an
object-oriented component, provided interfaces are
composed of the public methods of classes that compose
its external structure. The required interfaces are
composed of the methods that are used from the other
components (i.e. the provided interfaces of the other
components). We rely on the following heuristics to
identify these interfaces. First, we consider that when a
group of methods belongs to the same object-oriented
interface, then they may belong to the same component’s
interface. Second, cohesive and lexically similar methods
have high probability to belong to the same interface.
Third, when a component provides services for another
component, it provides them through the same interface.
Finally, when methods are called many times together,
this is an indicator of a high correlation of use. We
consider these methods as belonging to the same provided
interface.

According to the above heuristics, we defined the
following function. It is used to measure the quality of a
component’s interface.

�$()*+,-)�.� � �
� /��

01� � ���.� � 12 � �.�.� �
����������������������������������13 � �4�.� � 15 � ���.�6 (3)
Where:
• M: a set of methods.

• SI: measures how much a set of methods M belongs to
the same object-oriented interface.

• SM: measures how much a set of methods M is similar
using cosine and cohesion (LCC) metrics.

• CU: measures how many times a set of methods M
has been called together by the same component.

• CI: measures how many times a set of methods M is
invocated together.

Based on the above function we use a hierarchical

clustering algorithm to partition a set of public methods
into a set of clusters, where each cluster is a component’s
interface. First, this clustering algorithm produces a
binary tree that contains all candidate clusters. Then we
use a depth first search algorithm to travel through the
binary tree, in order to identify the best partition of the
methods.

3.5. Documentation of Components

The documentation of a component helps the
developers to find a component that meets their needs.
The description of the component functionalities forms an
important part of its documentation. Thus we propose to
identify for each mined component its main
functionalities. We do this based on two steps: the
identification of the component functionalities and the
generation of a description for each of them. These steps
are detailed below.

3.5.1. Identifying the component functionalities. As we
mentioned it in section II, the quality function is based on
three sub-characteristics. One of them is used to measure
the specificity of a component. It is related to the
functionalities provided by this component. The
specificity depends on three properties. The first is that
the number of public methods is proportional to the
number of functionalities. The second is that classes
providing the same functionalities must be cohesive. The
last property is that elements of source code participating
in the same functionality must have a high cohesion with
themselves and low coupling with other parts in the
component. Thus, we use equation 2 (Cf. section 2.2) as a
fitness function in a hierarchical clustering algorithm in
order to decompose component classes into partitions,
where each one represents one of the functionality of the
analyzed component.

3.5.2. Generation of the functionality description. In
the previous step, the component classes are partitioned
according to their functionalities. In this step, we present
how the description of each partition (i.e. functionality) is
generated. This description consists of the most frequent
words in the partition classes’ names. We consider that in
an object-oriented language, a class name is often a set of
nouns concatenated by the camel-case notation. These

197

nouns are representing a meaningful name for the main
purpose of the class. Usually, the first noun in a class
name holds the main goal of the class, and so on.
Accordingly we propose the following three steps. First,
tokens are extracted by separating the words which form
the class name according to the camel-case syntax (e.g.
MediaControllerAlbum is divided into Media, Controller,
and Album). Second, a weight is affected to each
extracted token. The tokens which are the first word of a
class name are given a large weight. Other tokens are
given a small weight. The weight is calculated as follows:

7)�89(�:� � �
� ;��

� �< � =� � >?@A � =2 � >?A> �
��������������������������������=3 � �>?BA � =5� (4)

Where:

• W: refers to a word.

• Ni refers to the number of occurrence of the word
w in the position i.

Last, we use tokens which have the highest weight to

construct the functionality description in an orderly
manner. Meaning, the token that has the highest weight
will become the first word of the functionality description
and so on. The architect defines the number of words as
needed.

4. Experimental Results and Evaluation

To validate the proposed approach, we applied it onto
product variants of two open source Java applications.
These are Mobile Media1 [13] as a small-scale software,
and ArgoUML-SPL2 [14] as a large-scale one.

Mobile Media is a software product line. It is used to
manipulate music, video and photo on mobile devices.
Using the latest version, the user can generate 200
variants. In our experimentation, we use 8 variants, where
each variant contains 43.25 classes on average.

ArgoUML-SPL [14] is a UML modeling tool. It is
developed based on software product line. We applied our
approach on 9 variants, where each variant is generated
by changing a set of the needed features. Each variant
contains 2198.11 classes on average.

4.1. Identifying potential components

To consider that a group of classes forms a component,

its quality function value should exceed a predefined
quality threshold. We tested the quality threshold value
from 0 up to 1 by incrementing it 0.05 in each run. The
results obtained from Mobile Media and ArgoUML are
respectively shown in Fig. 5.a and Fig. 5.b. where the
value of the threshold is in the X-axis, and the average

number of the mined components in a variant is in the Y-
axis.

Table 1 shows the total number of potential
components (TNOCV) mined based on the analysis of all
variants, the average number of classes (size) of these
components (ASOC), the average value of the specificity
characteristic (AS), the average value of the autonomy
characteristic (AA) and the average value of the
composability characteristic (AC). We assign 0.70 and
0.83 as threshold value respectively for Mobile Media and
ArgoUML case studies.

Table 1. The results of potential components extraction.

Product Name TNOCV ASOC AS AA AC
Mobile Media 24.5 6.45 0.56 0.71 0.83
ArgoUML-SPL 811 11.38 0.64 0.83 0.89

As an example of a potential component extracted

from ArgoUML-SPL, consider the one identified by
considering GoClassToNavigableClass as the core class
Fig. 6 shows how this component is formed and when the
quality fitness function reaches the peak after adding the
18th classes. Thus the 18 first classes form this potential
component. The remaining classes are rejected.

4.2. Identifying similar components

The results of the clustering algorithm are presented in

Table 2. For each case study, Table II shows the number
of clusters (NOC), the average numbers of components in
the identified clusters (ANOC), the average number of
shared classes in these clusters (ANSC), the average value
of the specificity characteristic (ASS), the average value
of the autonomy characteristic (AAS), and the average
value of composability characteristic of the shared classes
(ACS) in these clusters.

Table 2. The results of component’s clustering.

Product NOC ANOC ANSC ASS AAS ACS
Mobile Media 42 5.38 5.04 0.59 0.71 0.89
ArgoUML-SPL 325 5.26 8.67 0.57 0.87 0.93

4.3. Reusable component mining by analyzing
similar potential ones

Table 3 summarizes the final set of reusable

components mined using our approach. We assign 0.50 to
the density threshold value. For each product, we present
the number of the mined components (NOMC), the
average component size (ACS), and the average value of
the specificity (AS), the autonomy (AA), and the
composability (AC) of the mined components.

Table 3. The final set of mined components.

Product NOC ACS AS AA AC
Mobile Media 39 5.61 0.58 0.74 0.90
ArgoUML-SPL 324 9.77 0.61 0.84 0.84 1Available at http://homepages.dcc.ufmg.br/~figueiredo/spl/icse08

2Available at http://argouml-spl.tigris.org/

198

Table 4 shows some of the reusable components that
are mined based on the analysis of Mobile Media. DOF is
the description of the functionalities provided by the
considered component. NOV is the number of variants
that contains this component. NOC represents the number
of classes that forms the component. S, A and C
represents respectively the specificity, the autonomy, and
the composability of each component.

As shown in Table 4, the second component provides
two functionalities, which are Add Constants Photo
Album, and Count Software Splash Down Screen. The
former one deals with adding a photo to an album. The
letter dedicated to splash screen service.

Table 4. Some components.

DOF
N
O
V

N
O
C

S A C

New Constants Screen Album
Image

6 6 0.59 0.75 0.94

Add Constants Photo Album
8 10 0.57 0.75 0.89 Count Software Splash Down

Screen
Base Image Constants Album
Screen Accessor List

6 9 0.67 0.50 0.85 Controller Image Interface
Thread

4.5. Reusability validation

In order to validate the reusability of components that

are mined based on our approach, we compare their
reusability with ones that are mined from singular
software. We consider that the reusability of a component
in a collection of software is evaluated by calculating the
ratio between the number of software that can reuse this
component to the number of all software. The component
can be reused in a software if it provides functionalities
required by this software. In other words, we analyze the
software functionalities, and then we check if a
component provides some of these functionalities. The

functionalities are identified based on potential
components in this software.

We measure the reusability of the mined components
based on K-fold cross validation method [9]. K-fold is an
evaluation model that is used to validate the results of the
mining model by dividing the data set into two parts: train
data, and test data. Train data are used to learn the mining
model, while test data are then used to validate the mining
model. The idea of K-fold method is to divide the data set
into K parts. The validation is applied K times by
considering K-1 parts as train data and the other one as
test data. After that, the validation result is the average of
all K trails. In the same manner, we validate our approach
by dividing the variants of the product into K parts. Then,
we mine components from train variants only (i.e. K-1
parts). Next, we validate the reusability of these
components in the test variants. We evaluate the result by
assigning 2, 4, and 8 to the K in each validation time.
Due to limited space, we give only the results obtained
from the Mobile Media case study (c.f. Table 5). These
results show that the reusability of the components which
is mined from a collection of similar software is better
than the reusability of components which is mined from
singular software. Also, the reusability is decreased when
the number of K is increased because of the number of
test variants is decreased (i.e. when K=8, there is only one
test variant). The slight difference between the reusability
results comes from the nature of our case studies, where
these case studies are very similar. Consequently, the
resulting components are closely similar (i.e. there are
many groups of similar components containing exactly
the same classes which resulted the same reusable
component). Therefore, there is very small difference in
the results, as shown in Table 5.

Table 5. The reusability validation

K Similar Software Singular Software
2 0.32 0.28
4 0.18 0.15
8 0.09 0.07

Figure 6. An instance of a potential
component extraction.

 (a) (b)

Figure 5. Changing threshold value to extract all potential components.

199

5. Related Work

Numerous approaches have been presented to address

the problem of component identification from object-
oriented software such as [3], [5], [6], and [7]. All
existing approaches mined components from single
software.

In [3], the authors presented an approach to extract
components from object-oriented software. Classes
composing the extracted components form a partition.
Mined component are considered as a part of the
component-based architecture of the corresponding
software.

The authors in [5] presented an approach to migrate an
object-oriented software into a component-based
software. The authors extract services from the software,
and then these services are converted into components.
They depended on use case, sequence diagrams, and class
diagrams to identify the structural relationship between
the objects, and object usage. The limitation of this
approach is that sequence diagrams, use case, and class
diagrams are not always available.

In [6], the authors depended on dynamic dependencies
between software classes, in order to reengineer an
object-oriented software into a component-based
software. They relied on the use-case diagram to identify
the execution trace scenarios. Classes that frequently
occur in the execution traces are grouped into a
component.

In [7], the authors proposed an approach to extract
stable components. The authors identify a set of candidate
components from requirements and use case using formal
concept analysis. The extracted components represent the
functional units that can be reused in the future [7]. The
authors focused on the component stability rather than the
component reusability.

7. Conclusion

Mining components from similar software provides

more guarantees for the reusability of the mined
components rather than depending on single software. In
this paper, we proposed an approach to mine reusable
components from a set of similar object-oriented
software. We validate our approach by applying it on two
sets of variants of two open source Java applications.

There are two aspects to be considered regarding the
hypothesis of our approach. First, we consider that the
variability between software is in the class level (i.e.
classes that have the same name should have the same
implementation). Second, forming a component by adding
a non-shared class to the core ones may cause a dead code
(i.e. a piece of code which is executed but there is no need
for its result).

Our future directions will focus on migrating similar
software into component based software product line.

8. References
[1] W.B. Frakes, K. Kang, "Software reuse research: status and

future," IEEE Transactions on Software Engineering, vol.31, no.7,
pp.529-536, 2005.

[2] N.M.J. Basha, S.A. Moiz, "Component based software
development: A state of art," International Conference on
Advances in Engineering, Science and Management (ICAESM),
pp.599-604, 2012.

[3] S. Kebir, A.-D. Seriai, S. Chardigny, A. Chaoui, "Quality-Centric
Approach for Software Component Identification from Object-
Oriented Code," Joint Working Conference on Software
Architecture IEEE/IFIP WICSA and ECSA, pp.181-190, 2012.

[4] C. Szyperski, Component Software: Beyond Object-Oriented
Programming, 2nd ed. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 2002.

[5] S. K. Mishra, D. S. Kushwaha, A. K. Misra, “Creating reusable
software component from object-oriented legacy software through
reverse engineering,” Journal of Object Technology, vol. 8, no. 5,
pp. 133-152, 2009.

[6] S. Allier, H. A. Sahraoui, S. Sadou, Vaucher S., “Restructuring
object-oriented applications into componentoriented applications
by using consistency with execution traces,” in Proceedings of
CBSE’10. Berlin, Heidelberg: Springer-Verlag, pp. 216–231,
2010.

[7] H.S. Hamza, "A Framework for Identifying Reusable Software
Components Using Formal Concept Analysis," Conference on
Information Technology: New Generations. ITNG '09. Sixth
International, pp.813-818, 2009.

[8] J. Rubin and M. Chechik. Locating distinguishing features using
diff sets. InProceedings of ASE 2012. ACM, New York, NY,
USA, 242-245..

[9] J. Han, M. Kamber, Data Mining Concepts and Techniques, 2nd
Edition. Elsevier Inc, 2006.

[10] ISO, “Software engineering – Product quality – Part 1: Quality
model,” International Organization for Standardization, Tech. Rep.
ISO/IEC 9126-1, 2001.

[11] J. M. Bieman, B.-K. Kang, “Cohesion and reuse in an object-
oriented software,” in Proceedings of SSR ’95. New York, NY,
USA: ACM, pp. 259-262, 1995.

[12] O. Nierstrasz, L. Dami, “Component-Oriented Software
Technology,” Object-Oriented Software Composition, O.
Nierstrasz and D. Tsichritzis (Eds.), Prentice Hall, pp.3-28, 1995.

[13] E. Figueiredo, N. Cacho, C. Sant’Anna, et al., “Evolving Software
Product Lines with Aspects: an empirical study on design
stability,” ICSE, pp. 261-270. 2008.

[14] M.V. Couto, M.T. Valente, E. Figueiredo, "Extracting Software
Product Lines: A Case Study Using Conditional Compilation,"
CSMR 2011 , pp.191-200, 2011.

[15] G. T. Heineman, W. Councill T., Eds., “Component-based
software engineering: putting the pieces together,” Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc., 2001.

[16] C. Luer, A. V. D. Hoek,“Composition environments for
deployable software components,” Tech. Rep., 2002.

[17] S. Chardigny, A. Seriai, M. Oussalah, and D. Tamzalit,“Extraction
of component-based architecture from objectoriented software,” in
Proceedings of WICSA 2008. Washington, DC, USA: IEEE
Computer Society, pp. 285–288, 2008.

[18] J Sametinger,“Software Engineering with Reusable Components,”
Springer Verlag Berlin Heidelberg New York, 1997.

200

