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Abstract 

 
One of the most important approaches that support 

software reuse is Component Based Software Engineering 
(CBSE). Nevertheless the lack of component libraries is 
one of the major obstacles to widely use CBSE in the 
industry. To help filling this need, many approaches have 
been proposed to identify components from existing 
object-oriented software. These approaches identify 
components from singular software. Therefore the 
reusability of these components may be limited. In this 
paper, we propose an approach to mine reusable 
components from a set of similar object-oriented 
software, which were developed in the same domain, 
ideally by the same developers. Our goal is to enhance 
the reusability of mined components compared to those 
mined from single software. In order to validate our 
approach, we have applied it onto two open source Java 
applications of different sizes; small and large-scale ones. 
The results show that the components mined from the 
analysis of similar software are more reusable than those 
which are mined from single ones. 
 
Keywords: software component, similar software, mining, 
reuse, object-oriented, source code, reverse engineering  
 
1. Introduction 
 

It is admitted that reuse improves the software quality 
and productivity [1]. Component Based Software 
Engineering (CBSE) is considered as one of the most 
important approaches supporting software reuse [1, 2, 4]. 
Nevertheless, one of the major limitations against widely 
use of CBSE is the lack of component libraries [12]. 
Therefore, mining reusable components from existing 
software is an efficient way to supply component 
libraries. Otherwise, as software components are admitted 
as more reusable entities than object-oriented ones [12], 
many approaches have proposed to identify components 
from existing object-oriented software [3, 5, 6, 7]. These 
approaches proposed to mine components by analyzing 
single software. As a result, the mined components may 
be useless in other software and consequently their 
reusability is not guaranteed. In fact the probability of 

reusing a component in new software is proportional to 
the number of software that has already used it [18]. 
Moreover software companies often find themselves in 
the situation where they have developed many software in 
the same domain, but with functional or technical 
variations [8]. In most cases, each software variant is 
developed by adding some variations to an existing 
software to meet the requirements of a new need. Thus in 
this paper, we propose an approach to mine reusable 
components from a set of similar object-oriented 
software1 which were developed in the same domain, 
ideally by the same developers. The goal is to analyze the 
source code of these software to identify pieces of code 
that may form reusable components. Our motivation is 
that components mined from the analysis of several 
existing software will be more useful (reusable) for the 
development of new software than those mined from 
singular ones. To validate our approach, we have applied 
it onto two open source Java applications of different 
sizes (i.e. small and large-scale ones). We propose an 
empirical measurement to evaluate the reusability of the 
mined components. According to this measurement, the 
results show that the reusability of the mined components 
using our approach is better than the reusability of those 
mined from singular software. 

The rest of this paper is organized as follows. In 
section 2, we present the ROMANTIC approach, which 
constitute a background for our work. Section 3 presents 
the proposed approach. The experimental results are 
presented and discussed in section 4. The related work 
and conclusion are placed in sections 5 and 6 respectively. 
 
2. Background: the ROMANTIC Approach 

 
In our previous works [3] and [17], we have proposed 

the ROMANTIC approach which aims to extract a 
component-based architecture from an object-oriented 
software. ROMANTIC is mainly based on two models: 
first an object-to-component mapping model, second a 
quality measurement model to evaluate the quality of 
components which are mined from object-oriented source 
code. In this paper, we rely on these two models to define 
a process which allows to mine reusable components from 
similar software. 

1This work has been funded by grant ANR 2010 BLAN 021902.

193IEEE IRI 2013, August 14-16, 2013, San Francisco, California, USA 
978-1-4799-1050-2/13/$31.00 ©2013 IEEE



2.1. From object to component: the mapping 
model 

 
A software component is defined based on two parts: 

internal and external structures [16, 17]. The internal 
structure implements services provided by the component 
as well as those used by them. The external structure 
consists of the accessible services structured as provided 
and required interfaces. The provided interfaces are the 
services accessed by other applications/components. The 
required interfaces represent services that the component 
needs to perform its provided ones. These are provided by 
other applications/components. When a component is 
object oriented (i.e. implemented by an object-oriented 
language), its internal structure is represented by one or 
more classes, which can belong to different packages. Fig. 
1 shows the object-to-component mapping model. 

2.2. From object to component: the quality 
measurement model 

 
According to [4, 15, 16], a component is defined as “a 

software element that (a) can be composed without 
modification, (b) can be distributed in an autonomous 
way, (c) encapsulates the implementation of one or many 
functionalities, and (d) adheres to a component model” 
[3]. Based on this definition, we identified three quality 
characteristics of a component: composability, autonomy 
and specificity [3]. Composability is the ability of a 
component to be composed without any modification. 
Autonomy means that it can be reused in an autonomous 

way. Specificity characteristic is related to the fact that a 
component must implement a limited number of closed 
functionalities. Based on these characteristics we 
proposed a quality measurement model for object-
oriented components. The basis of this model is that 
characteristics are mapped to object-oriented metrics 
following ISO model 9126 [10]. First of all, the above 
characteristics are refined into sub-characteristics. Then, 
these sub-characteristics are refined into properties related 
to the external structure of a component. Next, these 
properties are mapped to the properties of the internal 
structure of a component. Finally, these properties are 
refined into object-oriented metrics. Fig. 2 shows how the 
component characteristics are refined following the 
proposed measurement model.  

Based on this measurement model, we defined a 
fitness function to measure the quality of an object-
oriented component based on its characteristics [3]. This 
function is given bellow: 
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��1� ���� � 2� ���� � 3� ������       (1) 

 
Where: 
• �  is an object-oriented component composed of a 

group of classes. 

• ���� , �����  and ����  refer to the specificity, 

autonomy, and composability of E respectively. 

• �1, �2, �3 are weight values, situated in [0-1]. These are 
used by the architect to weight each characteristic as 
needed. 
We have proposed a specific fitness function to 

measure each of these characteristics. For example, the 
specificity characteristic of a component is calculated as 
follows: 
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This means that the specificity of a component E 
depends on the following object-oriented metrics: the 
cohesion of classes composing the internal structure of E 
( ������ ), the cohesion of all classes composing the 
external structure of E (������), the average cohesion of 

all classes composing the external structure of E (
�
��� �

� ��������� ), the coupling of internal classes of E 
(� !"#��� which is measured based on the number of 
dependencies between the classes of E), and the number 
of public methods belong to the external structure of E 
($ %!&���). LCC (Loose Class Cohesion) is an object-
oriented metric that measures the cohesion of a set of 
classes [11]. For more details about the quality 
measurement model please refer [3, 17]. 

Figure 1. shows the object-to-component mapping model. 

Figure 2. Component quality measurement model. 
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3. The Proposed Approach 
 
The aim of our approach is to mine reusable 

components based on the static analysis of the source 
code of a set of similar object-oriented software.  

The mining process is based on the following steps: 
first, each software is independently analysed to identify 
all potential components. These are identified based on 
the evaluation of their quality characteristics. Next, we 
identify similar components among all potential ones. 
Similar components are those providing, mostly the same 
services and differing compared to few others. After that, 
we rely on the similarity of each group of components to 
build a single component, which will be representative of 
this group; this will be considered as a reusable 
component. Only classes constituting the internal 
structures (i.e. the implementation) of the reusable 
components are identified in this step. Next, we identify 
their external structure: their provided and required 
interfaces. Finally, the last step of the mining process 
aims at documenting the mined components. This 
documentation includes suggestions to describe the 
services that components provide. Fig. 3 summarizes the 
mining process. 

3.1. Identifying potential components 
 

Potential components are mined based on the analysis 
of each object-oriented software. Each potential 
component is composed of a set of classes where the 
corresponding value of the quality fitness function is 
satisfactory (i.e. its quality value is higher than a 
predefined threshold). The classes composing a potential 
component are gradually identified starting from a core 
class. Each class of the analyzed software can be selected 
to be a core one depending on if an accepted component 
can be formed starting from this one. This is decided as 
the result of the next steps.  

The selection of the classes to be added at each step is 
decided based on the value of the quality function of the 
formed component. In other words, classes are ranked 
based on the obtained value of the quality function when 

it is gathered to the current group. The class obtaining the 
highest quality value is selected to extend the current 
group. We do this until all classes are grouped into a 
single group. The quality of the formed groups is 
evaluated at each step (i.e. each time when a new class is 
added). Some classes of this group will be excluded. 
These are those added after the quality function reaches 
the peak value.  

For example, in Fig. 4, classes 7 and 8 are put aside 
from the group of classes related to component 2 because 
when they are been added the quality of the component is 
decreased compared to the peak value. Thus classes 
retained in the group are those maximizing the quality of 
the formed component. After identifying all potential 
components of such software, the only ones retained are 
those where the quality values are higher than a 
predefined quality threshold. For example, in Fig. 4, 
component 1 does not reach the predefined threshold and, 
thus, not retained as a potential component. This means 
that the starting core class is not suitable. Algorithm 1 
below illustrates the process of potential components 
mining.  In this algorithm, Q refers to the quality fitness 
function and Q-threshold is a predefined quality 
threshold. 
Algorithm 1: PotentialComponents(OO source code): 
potential components 
---------------------------------------------------------------------- 
classes � extractInformation(OO source code); 
for each C in classes 
   component � C; 
   bestComponent � component; 
   while (|classes – component.classes| > 1) do 
     c1�getNearestClass(component,classes–component); 
     component � ��������	
�
�� 
     if (Q(component)) > Q(bestComponent) )then 
          bestComponent � component; 
     end if        
  end while 
  if (Q(bestComponent) > Q-threshold) 
     add(Results, bestComponent);    
  end if 
end for 
return Results; 

Figure 4. Forming potential components by incremental 
selection of classes. 

Figure 3. The process of reusable components mining. 
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3.2. Identifying similar components 
 

Potential components are mined based on the analysis 
of a set of similar software. As a consequence, some of 
them may be similar. Similar components are those 
providing mostly the same functionalities and differing in 
few ones. These can be considered as variants of a 
common component. The similarity as well as the 
difference between components appears compared to their 
internal structures composed of object-oriented classes. 
Thus similar components are those sharing the majority of 
their classes and differing considering the other ones. We 
gather similar component into groups from which we 
mine common ones.  

Groups of similar components are built based on a 
lexical similarity metric.  Thus components are identified 
as similar compared to the strength of similarity links 
between classes composing them. We use cosine 
similarity metric [9]. Following this metric each 
component is considered as a text document which 
consists of a list of component classes’ names.  

We use a hierarchal clustering algorithm to gather 
similar components into groups. It starts by considering 
individual components as initial leaf nodes in a binary 
tree. Next, the two most similar nodes are grouped into a 
new one (i.e. as a parent of them). This is continued until 
all nodes are grouped as a binary tree. This tree is 
composed of all candidate clusters. To identify the best 
ones (clusters), we use a depth first search algorithm. 
Starting from the tree root to find the cut-off points, we 
compare the similarity of the current node with its 
children. If the current node has a similarity value 
exceeding the average similarity value of its children, 
then the cut-off point is in the current node, otherwise, the 
algorithm continues through its children (c.f. Algorithm 
2). The results of this algorithm are clusters where each 
one groups a set of similar components. 
Algorithm 2: ComponentsClustering(Potential 
Components ): clusters of potential components 
---------------------------------------------------------------------- 
binaryTree � PotentialComponents 
while (|binaryTree| > 1) do 
   c1, c2� nearestNodes(binaryTree);// cosine similarity 
   c � newNode����
��� 
   ����������
����������� 
   ����������
����������� 
   add(c, binaryTree); 
end while 
clusters� depthFirstSearch.getBestClsuters(binaryTree); 
return clusters; 
3.3. Reusable component mining from similar 
potential ones 

 
As previously mentioned, similar components are 

considered as variants of a common one. Thus, from each 

cluster of similar components, we extract a common 
component which is considered as the most reusable 
compared to the members of the analyzed group. It is 
composed based on all shared classes and some selected 
non-shared ones. Shared classes form the core of the 
reusable component. These classes may not form a correct 
component following our quality measurement model. 
Thus some non-shared classes are added based on the 
following criteria: 

 
• The quality of the component obtained by adding a 
non-shared class to the core ones. 
 
• The density of a non-shared class in a cluster of 
similar components which refers to the occurrence ratio of 
the class compared to the components of this group. We 
consider that a class, which has high density, contributes 
to build a reusable component. 

 
Consequently the following algorithm generates 

classes forming the reusable components. First, for each 
cluster of similar component, we extract all candidate 
subsets of classes among the set of non-shared ones. 
Then, the subsets that reach a predefined density 
threshold are only selected. The density of a subset is the 
average densities of all classes in this subset. Next, we 
evaluate the quality of the component formed by grouping 
core classes with classes of each subset resulting from the 
previous step. Thus the subset maximizing the quality 
value is grouped with the core classes to form the reusable 
component. Only components with a quality value higher 
than a predefined threshold are retained.  

Nevertheless the above algorithm is NP-complete (i.e. 
the complexity of identifying all subsets of a collection of 
classes is 2n-1).  This means that the computing time will 
be accepted only for components with a small number of 
non-shared classes. This algorithm is not scalable for a 
large number of non-shared classes (e.g. 10 non-shared 
classes need 1024 operations, while 20 classes need 
1048576 operations).  

Consequently, we propose the following heuristic 
algorithm as an alternative. First of all, non-shared classes 
are evaluated based on their density. The Classes that do 
not reach a predefined density threshold are rejected. 
Then, we identify the greater subset that reaches a 
predefined quality threshold when it is added to the core 
classes. To identify the greater subset, we consider the set 
composed of all non-shared classes as the initial one. This 
subset is grouped with the core classes to form a 
component. If this component reaches the predefined 
quality threshold, then it represents the reusable 
component. Otherwise, we remove the non-shared class 
having the lesser quality value compared to the quality of 
the component formed when this class is added to the core 
ones. We do this until a component reaching the quality 
threshold or the subset of non-shared classes becomes 

196



empty. Algorithm 3 shows the process of reusable 
components mining, where Q refers to the quality 
function (1), Q-threshold refers to the predefined quality 
threshold. 
Algorithm 3: MiningReusableComponents(Clusters of 
Components) : reusable components 
---------------------------------------------------------------------- 
for each cluster in Clusters of Components do 
     shared � getSharedClasses(cluster); 
     nonShared � getNonSharedClasses(cluster); 
     component � shared; 
     removeClassesLessThanDensityThreshold(nonShare); 
    while (|nonShare|>0) do 
if(Q(component + nonShare)>=Q-threshold) 
          add(Results,component); 
    break while; 
end if 
removeLessQualityClass(NonShare, shared); 
     end while 
end for 
return Results; 

3.4. Identifying structure of the reusable 
components 

 
As it is illustrated in section II, a component is used 

based on its provided and required interfaces. For an 
object-oriented component, provided interfaces are 
composed of the public methods of classes that compose 
its external structure. The required interfaces are 
composed of the methods that are used from the other 
components (i.e. the provided interfaces of the other 
components). We rely on the following heuristics to 
identify these interfaces. First, we consider that when a 
group of methods belongs to the same object-oriented 
interface, then they may belong to the same component’s 
interface. Second, cohesive and lexically similar methods 
have high probability to belong to the same interface. 
Third, when a component provides services for another 
component, it provides them through the same interface. 
Finally, when methods are called many times together, 
this is an indicator of a high correlation of use. We 
consider these methods as belonging to the same provided 
interface. 

According to the above heuristics, we defined the 
following function. It is used to measure the quality of a 
component’s interface. 

 

�$()*+,-)�.� � �
� /��

01� � ���.� � 12 � �.�.� �
����������������������������������13 � �4�.� � 15 � ���.�6   (3) 
Where: 
• M: a set of methods. 

• SI: measures how much a set of methods M belongs to 
the same object-oriented interface. 

• SM: measures how much a set of methods M is similar 
using cosine and cohesion (LCC) metrics.  

• CU: measures how many times a set of methods M 
has been called together by the same component. 

• CI: measures how many times a set of methods M is 
invocated together. 

 
Based on the above function we use a hierarchical 

clustering algorithm to partition a set of public methods 
into a set of clusters, where each cluster is a component’s 
interface. First, this clustering algorithm produces a 
binary tree that contains all candidate clusters. Then we 
use a depth first search algorithm to travel through the 
binary tree, in order to identify the best partition of the 
methods.  

 
3.5. Documentation of Components 
 

The documentation of a component helps the 
developers to find a component that meets their needs. 
The description of the component functionalities forms an 
important part of its documentation. Thus we propose to 
identify for each mined component its main 
functionalities. We do this based on two steps: the 
identification of the component functionalities and the 
generation of a description for each of them. These steps 
are detailed below. 

 
3.5.1. Identifying the component functionalities. As we 
mentioned it in section II, the quality function is based on 
three sub-characteristics. One of them is used to measure 
the specificity of a component.  It is related to the 
functionalities provided by this component. The 
specificity depends on three properties. The first is that 
the number of public methods is proportional to the 
number of functionalities. The second is that classes 
providing the same functionalities must be cohesive. The 
last property is that elements of source code participating 
in the same functionality must have a high cohesion with 
themselves and low coupling with other parts in the 
component. Thus, we use equation 2 (Cf. section 2.2) as a 
fitness function in a hierarchical clustering algorithm in 
order to decompose component classes into partitions, 
where each one represents one of the functionality of the 
analyzed component. 
 
3.5.2. Generation of the functionality description. In 
the previous step, the component classes are partitioned 
according to their functionalities. In this step, we present 
how the description of each partition (i.e. functionality) is 
generated. This description consists of the most frequent 
words in the partition classes’ names. We consider that in 
an object-oriented language, a class name is often a set of 
nouns concatenated by the camel-case notation. These 
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nouns are representing a meaningful name for the main 
purpose of the class. Usually, the first noun in a class 
name holds the main goal of the class, and so on. 
Accordingly we propose the following three steps. First, 
tokens are extracted by separating the words which form 
the class name according to the camel-case syntax (e.g. 
MediaControllerAlbum is divided into Media, Controller, 
and Album). Second, a weight is affected to each 
extracted token. The tokens which are the first word of a 
class name are given a large weight. Other tokens are 
given a small weight. The weight is calculated as follows: 
 

7)�89(�:� � �
� ;��

� �< � =� � >?@A � =2 � >?A> �
��������������������������������=3 � �>?BA � =5�                  (4) 
 
Where: 

• W: refers to a word. 

• Ni refers to the number of occurrence of the word 
w in the position i. 

 
Last, we use tokens which have the highest weight to 

construct the functionality description in an orderly 
manner. Meaning, the token that has the highest weight 
will become the first word of the functionality description 
and so on. The architect defines the number of words as 
needed. 
 
4. Experimental Results and Evaluation 
 

To validate the proposed approach, we applied it onto 
product variants of two open source Java applications. 
These are Mobile Media1 [13] as a small-scale software, 
and ArgoUML-SPL2 [14] as a large-scale one. 

Mobile Media is a software product line. It is used to 
manipulate music, video and photo on mobile devices. 
Using the latest version, the user can generate 200 
variants. In our experimentation, we use 8 variants, where 
each variant contains 43.25 classes on average. 

ArgoUML-SPL [14] is a UML modeling tool. It is 
developed based on software product line. We applied our 
approach on 9 variants, where each variant is generated 
by changing a set of the needed features. Each variant 
contains 2198.11 classes on average. 
 
4.1. Identifying potential components 

 
To consider that a group of classes forms a component, 

its quality function value should exceed a predefined 
quality threshold. We tested the quality threshold value 
from 0 up to 1 by incrementing it 0.05 in each run. The 
results obtained from Mobile Media and ArgoUML are 
respectively shown in Fig. 5.a and Fig. 5.b. where the 
value of the threshold is in the X-axis, and the average 

number of the mined components in a variant is in the Y-
axis. 

Table 1 shows the total number of potential 
components (TNOCV) mined based on the analysis of all 
variants, the average number of classes (size) of these 
components (ASOC), the average value of the specificity 
characteristic (AS), the average value of the autonomy 
characteristic (AA) and the average value of the 
composability characteristic (AC). We assign 0.70 and 
0.83 as threshold value respectively for Mobile Media and 
ArgoUML case studies. 

 
Table 1. The results of potential components extraction. 

Product Name TNOCV ASOC AS AA AC 
Mobile Media 24.5 6.45 0.56 0.71 0.83 
ArgoUML-SPL 811 11.38 0.64 0.83 0.89 

 
As an example of a potential component extracted 

from ArgoUML-SPL, consider the one identified by 
considering GoClassToNavigableClass as the core class 
Fig. 6 shows how this component is formed and when the 
quality fitness function reaches the peak after adding the 
18th classes. Thus the 18 first classes form this potential 
component. The remaining classes are rejected.  
 
4.2. Identifying similar components 

 
The results of the clustering algorithm are presented in 

Table 2. For each case study, Table II shows the number 
of clusters (NOC), the average numbers of components in 
the identified clusters (ANOC), the average number of 
shared classes in these clusters (ANSC), the average value 
of the specificity characteristic (ASS), the average value 
of the autonomy characteristic (AAS), and the average 
value of composability characteristic of the shared classes 
(ACS) in these clusters. 

 
Table 2. The results of component’s clustering. 

Product NOC ANOC ANSC ASS AAS ACS 
Mobile Media 42 5.38 5.04 0.59 0.71 0.89 
ArgoUML-SPL 325 5.26 8.67 0.57 0.87 0.93 

 
4.3. Reusable component mining by analyzing 
similar potential ones 

 
Table 3 summarizes the final set of reusable 

components mined using our approach. We assign 0.50 to 
the density threshold value. For each product, we present 
the number of the mined components (NOMC), the 
average component size (ACS), and the average value of 
the specificity (AS), the autonomy (AA), and the 
composability (AC) of the mined components. 

 
Table 3. The final set of mined components. 

Product NOC ACS AS AA AC 
Mobile Media 39 5.61 0.58 0.74 0.90 
ArgoUML-SPL 324 9.77 0.61 0.84 0.84 1Available at http://homepages.dcc.ufmg.br/~figueiredo/spl/icse08 

2Available at http://argouml-spl.tigris.org/ 
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Table 4 shows some of the reusable components that 
are mined based on the analysis of Mobile Media. DOF is 
the description of the functionalities provided by the 
considered component. NOV is the number of variants 
that contains this component. NOC represents the number 
of classes that forms the component. S, A and C 
represents respectively the specificity, the autonomy, and 
the composability of each component.  

As shown in Table 4, the second component provides 
two functionalities, which are Add Constants Photo 
Album, and Count Software Splash Down Screen. The 
former one deals with adding a photo to an album. The 
letter dedicated to splash screen service. 
 

Table 4. Some components. 

DOF 
N
O
V 

N
O
C 

S A C 

New Constants Screen Album 
Image 

6 6 0.59 0.75 0.94 

Add Constants Photo Album 
8 10 0.57 0.75 0.89 Count Software Splash Down 

Screen 
Base Image Constants Album 
Screen Accessor List 

6 9 0.67 0.50 0.85 Controller Image Interface 
Thread 

 
4.5. Reusability validation 

 
In order to validate the reusability of components that 

are mined based on our approach, we compare their 
reusability with ones that are mined from singular 
software. We consider that the reusability of a component 
in a collection of software is evaluated by calculating the 
ratio between the number of software that can reuse this 
component to the number of all software. The component 
can be reused in a software if it provides functionalities 
required by this software. In other words, we analyze the 
software functionalities, and then we check if a 
component provides some of these functionalities. The 

functionalities are identified based on potential 
components in this software. 

We measure the reusability of the mined components 
based on K-fold cross validation method [9]. K-fold is an 
evaluation model that is used to validate the results of the 
mining model by dividing the data set into two parts: train 
data, and test data. Train data are used to learn the mining 
model, while test data are then used to validate the mining 
model. The idea of K-fold method is to divide the data set 
into K parts. The validation is applied K times by 
considering K-1 parts as train data and the other one as 
test data. After that, the validation result is the average of 
all K trails. In the same manner, we validate our approach 
by dividing the variants of the product into K parts. Then, 
we mine components from train variants only (i.e. K-1 
parts). Next, we validate the reusability of these 
components in the test variants.  We evaluate the result by 
assigning 2, 4, and 8 to the K in each validation time.  
Due to limited space, we give only the results obtained 
from the Mobile Media case study (c.f. Table 5). These 
results show that the reusability of the components which 
is mined from a collection of similar software is better 
than the reusability of components which is mined from 
singular software. Also, the reusability is decreased when 
the number of K is increased because of the number of 
test variants is decreased (i.e. when K=8, there is only one 
test variant). The slight difference between the reusability 
results comes from the nature of our case studies, where 
these case studies are very similar. Consequently, the 
resulting components are closely similar (i.e. there are 
many groups of similar components containing exactly 
the same classes which resulted the same reusable 
component). Therefore, there is very small difference in 
the results, as shown in Table 5. 

 
Table 5. The reusability validation 

K Similar Software Singular Software 
2 0.32 0.28 
4 0.18 0.15 
8 0.09 0.07 

 

Figure 6. An instance of a potential 
component extraction. 

 (a)                     (b) 

Figure 5. Changing threshold value to extract all potential components. 
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5. Related Work 
 
Numerous approaches have been presented to address 

the problem of component identification from object-
oriented software such as [3], [5], [6], and [7]. All 
existing approaches mined components from single 
software.  

In [3], the authors presented an approach to extract 
components from object-oriented software. Classes 
composing the extracted components form a partition. 
Mined component are considered as a part of the 
component-based architecture of the corresponding 
software. 

The authors in [5] presented an approach to migrate an 
object-oriented software into a component-based 
software. The authors extract services from the software, 
and then these services are converted into components. 
They depended on use case, sequence diagrams, and class 
diagrams to identify the structural relationship between 
the objects, and object usage. The limitation of this 
approach is that sequence diagrams, use case, and class 
diagrams are not always available. 

In [6], the authors depended on dynamic dependencies 
between software classes, in order to reengineer an 
object-oriented software into a component-based 
software. They relied on the use-case diagram to identify 
the execution trace scenarios. Classes that frequently 
occur in the execution traces are grouped into a 
component.  

In [7], the authors proposed an approach to extract 
stable components. The authors identify a set of candidate 
components from requirements and use case using formal 
concept analysis. The extracted components represent the 
functional units that can be reused in the future [7]. The 
authors focused on the component stability rather than the 
component reusability. 
 
7. Conclusion 

 
Mining components from similar software provides 

more guarantees for the reusability of the mined 
components rather than depending on single software. In 
this paper, we proposed an approach to mine reusable 
components from a set of similar object-oriented 
software. We validate our approach by applying it on two 
sets of variants of two open source Java applications.  

There are two aspects to be considered regarding the 
hypothesis of our approach. First, we consider that the 
variability between software is in the class level (i.e. 
classes that have the same name should have the same 
implementation). Second, forming a component by adding 
a non-shared class to the core ones may cause a dead code 
(i.e. a piece of code which is executed but there is no need 
for its result).  

Our future directions will focus on migrating similar 
software into component based software product line. 
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