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Representing Multi-Scale Datalog +/-
Using Hierarchical Graphs

Cornelius Croitoru and Madalina Croitoru

Faculty of Computer Science, Al. I. Cuza University, Romania
GraphIK, University of Montpellier, France

Abstract We introduce a multi scale knowledge representation and
reasoning formalism of Datalog+/- knowledge bases. This is de�ned on a
novel graph transformation system that highlights a new type of render-
ing based on the additional expansion of relation nodes. Querying and
integration capabilities of our approach are based on a FOL sound and
complete homomorphism.

1 Introduction

The set of requirements for knowledge representation formalisms must include
(i) the existence of a declarative semantics, (ii) a logical foundation, and (iii)
the possibility of representing structured knowledge [2]. While many languages
have followed these three directions, a lot of existing work focused mainly on the
�rst two aspects. Here we address the third requirement and namely the need
to represent hierarchical, multi scale knowledge. Therefore, our representation
structures ful�l all these three conditions in a formal way. By hierarchical, multi
scale, knowledge we understand knowledge that can be represented at di�erent
level of granularity. For instance, we can see the human body as made out of
body parts such as hands, legs, lungs etc. or we can zoom in and look at the
muscles and the bones or we can further zoom in and see how minerals and
organic substances interact in our body. Such levels are not disconnected - a
lack of Mg in the body can lead to muscle spasms that can lead to tingling in
the legs. Multi scale knowledge bases are commonly used in Life Sciences [5] but
not only. Supply Chain Management [16], Information Integration [19], Sensor
Networks [1], Policy Rules [13] etc. all require to represent and reason about
knowledge at various levels of granularities while being able to go from one level
to the other easily.

The representation we propose is using the notion of a transitional descrip-
tion. The transitional description allows to go from one level of granularity to
the next. This mechanism is used to de�ne inductively hierarchical structures of
depth d. We build upon the state of the art and, in this paper, consider the Data-
log +/- language. By considering n-ary predicates and existential rules (i.e. rules
that allow for existentially quanti�ed variables in the conclusion) this language
generalises certain Description Logics. Even if not endowed with a graphical de-
piction, Datalog +/- is logically equivalent to Conceptual Graphs with Rules



and Negative Constraints. In this paper, while considering the core logical lan-
guage of Datalog +/- we endow it with graph based logically sound and complete
semantics.

The paper is structured as follows. In Section 2 we explain the choice of
logical language and place ourselves within the state of the art for representing
hierarchical knowledge. In Section 3 we recall basic notions needed throughout
the paper such as facts, rules, knowledge base, etc. We also show how to endow
the Datalog +/- language with a graph based syntax while staying sound and
complete wrt semantics. Section 4 presents the hierarchical knowledge repres-
entation and reasoning formalism and Section 5 concludes the paper.

2 State of the Art

In this paper we consider a rule based language that gains more and more interest
from a practical point of view, Datalog +/- [7]. We consider existential variables
in the head of the rules as well as n-ary predicates and con�icts (and generalise
certain subsets of Description Logics (e.g. DL-Lite) [3,8]). The tractability con-
ditions of the considered rule based language rely on di�erent saturation (chase)
methods [17]. The language can be equivalently seen in a logically sound and
complete graph based representation [14] [4].

The data structure discussed here evolved from Conceptual Graphs [18], Nes-
ted Conceptual Graphs [11] and respectively Layered Conceptual Graphs [12].
The idea of a detailed context of knowledge can be traced back to the de�ni-
tion of Simple Conceptual Graphs (SCGs) [18], to the work of [15] and to the
de�nition of the more elaborate Nested Conceptual Graphs [11]. The querying
capabilities associated with our approach are supported by the logically sound
homomorphism operation, which is de�ned between a query and the hierarchical
structure.

Except [12], existing work in representing hierarchical knowledge in diagram-
matic way does not relate to the context in which the complex nodes appear.
The complex nodes behave like glass boxes, corresponding to a �zoom� action.
In [12] the authors use a similar notion of multi level granularity knowledge but
their approach is closely following Conceptual Graphs. In this paper the language
used is more generic following [7]. Last, a hierarchical extension of Datalog has
also been proposed by [6] but the approach su�ers from the lack of graph based
rendering of the transitions between levels.

3 Basic Notions

We consider constants but no other functional symbols; a vocabulary W is com-
posed of a set of predicates P and a set of constants C. Constants identify
the individuals in the knowledge base and predicates represent n-ary relations
between such individuals. We also consider X, a set of variables in the knowledge
base.



De�nition 1 (Vocabulary) Let C be a set of constants and P a set of predic-
ates. A vocabulary is a pair W = (P,C) and arity is a function from P to N.
For all p ∈ P , arity(p) = i means that the predicate p has arity i.

We will consider an in�nite set X of variables, disjoint from P and C. A term
is an element of C ∪ X. An atom is of form p(t1,...,tk), where p is a predicate
of arity k in W and the ti are terms. For a given atom A, we note terms(A),
csts(A) and vars(A) the terms, constants and variables occurring in A.

De�nition 2 (Fact) A fact is a �nite, but possibly empty, set of atoms on a
vocabulary. For a given fact F , we note atoms(F ) the atoms occurring in F .

Example. Let us consider a vocabulary W = (P,C). P = {man,woman}, C
= {Bob,Alice} and arity = {(man,1),(woman,1)}.man(Bob) and woman(Alice)
are two distinct atoms on W , and F = {man(Bob), woman(Alice)} a fact.

We can represent facts as labelled ordered bipartite graphs where one class
of partition represents the concepts (i.e. the unary predicates) and the other the
relations. Such representation is well known in the literature (see [18] or [9]).

A bipartite graph is a graph G = (VG, EG) with the nodes set VG = VC ∪VR,
where VC and VR are �nite disjoint nonempty sets, and each edge e ∈ EG is a
two element set e = {vC , vR}, where vC ∈ VC and vR ∈ VR. Usually, a bipartite
graph G is denoted as G = (VC , VR;EG). We call G∅ the empty bipartite graph
without nodes and edges.

Let G = (VC , VR;EG) be a bipartite graph. The number of edges incident to
a node v ∈ V (G) is the degree, dG(v), of the node v. If, for each vR ∈ VR there
is a linear order e1 = {vR, v1}, . . . , ek = {vR, vk} on the set of edges incident
to vR (where k = dg(v)), then G is called an ordered bipartite graph. A simple
way to express that G is ordered is to provide a labelling l : EG → {1, . . . , |VC |}
with l({vR, w}) = index of the edge {vR, w} in the above ordering of the edges
incident in G to vR. l is called a order labelling of the edges of G. We denote an
ordered bipartite graph by G = (VC , VR;EG, l).

For a vertex v ∈ VC ∪ VR, the symbol NG(v) denotes its neighbours set, i.e.
NG(v) = {w ∈ VC ∪ VR|{v, w} ∈ EG}. Similarly, if A ⊆ VR ∪ VC , the set of
its neighbours is NG(A) = ∪v∈ANG(v) − A. If G is an ordered bipartite graph,
then for each r ∈ VR, the symbol N i

G(r) denotes the i-th neighbour of r, i.e.
v = N i

G(r) if and only if {r, v} ∈ EG and l({r, v}) = i.

Throughout this paper we use a particular type of subgraph of a bipart-
ite graph: G1 = (V 1

C , V
1
R;E

1
G) is a subgraph of G = (VC , VR;EG) if V

1
C ⊆ VC ,

V 1
R ⊆ VR, NG(V

1
R) ⊆ V 1

C and E1
G = { {v, w} ∈ EG|v ∈ V 1

C , w ∈ V 1
R}. In other

words, we require that the (ordered) set of all edges incident in G to a vertex
from V 1

R must appear in G1. Therefore, a subgraph is completely speci�ed by its



vertex set.

In particular, if A ⊆ VC :

� The subgraph spanned by A in G, denoted as ⌈A⌉G, has VC(⌈A⌉G) = A ∪
NG(NG(A)) and VR(⌈A⌉G) = NG(A).

� The subgraph generated by A in G, denoted as ⌊A⌋G, has VC(⌊A⌋G) = A
and VR(⌊A⌋G = {v ∈ NG(A)|NG(v) ⊆ A} .

� For A ⊆ VR, the subgraph induced by A in G, denoted [A]G, has VC([A]G) =
NG(A) and VR([A]G) = A .

Example. Let us consider F = {man(Bob), woman(Alice), loves(Bob,Alice)}
a fact. The bipartite graph representation G = (VC , VR;EG) consists of VC =
{man(Bob), woman(Alice)}, VR = {loves(Bob,Alice)} and EG the correspond-
ing edges linking Bob to Alice via loves.

3.1 Semantics

De�nition 3 (Interpretation) Let W = (P,C) be a vocabulary. An interpret-
ation of W is a pair I = (∆, .I) where ∆ is the domain of the interpretation,
and .I a function where: ∀ c in C, cI ∈ ∆ and ∀ p in P , pI ⊆ ∆arity(p).

An interpretation is non empty and can be possibly in�nite.

De�nition 4 (Model) Let F be a fact on W , and I = (∆, .I) be an interpret-
ation of W . We say that I is a model of F i� there exists an application v :
terms(F ) → ∆ (called a justi�cation of F in I) such that:

� ∀ c ∈ csts(F ), v(c) = cI and
� ∀ p(t1,...,tk) ∈ atoms(F ), (v(t1),...,v(tk)) ∈ pI .

De�nition 5 (Fact to logical formula) Let F be a fact. ϕ(F ) is the logical
formula that corresponds to the conjunction of atoms in F . And Φ(F ) corres-
ponds to the existential closure of ϕ(F ).

Example Let us consider a fact F = {person(x), name(x,Bob), age(x, 25)}.

� ϕ(F ) = person(x) ∧ name(x,Bob) ∧ age(x, 25).
� Φ(F ) = ∃x person(x) ∧ name(x,Bob) ∧ age(x, 25).

Property 1 (Model equivalence). Let F be a fact and I be an interpretation of
W . Then I is a model of F i� I is a model (in the FOL sense) of Φ(F ).

De�nition 6 (Entailment) Let F and G be two facts, F entails G if every
model of F is also a model of G. The entailment relation is then noted F |= G.



De�nition 7 (Homomorphism) Let F and F ′ be facts. Let σ: terms(F ) →
terms(F ′) be a substitution, i.e. a mapping that preserves constants (if c ∈ C,
then σ(c) = c). We then note σ(F ) the fact obtained from F by substituting each
term t of F by σ(t). Then σ is a homomorphism from F to F ′ i� the set of
atoms in σ(F ) ⊆ F ′.

Example Let F = {man(x1)} and F ′ = {man(Bob), woman(Alice)}. Let
σ : terms(F ) → terms(F ′) be a substitution such that σ(x1) = Bob. Then σ is
a homomorphism from F to F ′ since the atoms in σ(F ) are {man(Bob)} and
the atoms in F ′ are {man(bob), woman(Alice)}.

Property 2 (Entailment). Let F and Q be facts. F |= Q i� there exists Π an
homomorphism from Q to F .

In [18] homomorphism is denoted as projection and it is the fundamental
operation on simple conceptual graphs. If we consider the bipartite depiction of
facts mentioned above, a projection from G to H is a mapping

Π : VC(G) ∪ VR(G) → VC(H) ∪ VR(H) such that:

� Π(VC(G)) ⊆ VC(H) and Π(VR(G)) ⊆ VR(H);

� ∀c ∈ VC(G), ∀r ∈ VR(G) if c = N i
G(r) then Π(c) = N i

H(Π(r));

� ∀v ∈ VC(G) ∪ VR(G) λG(v) ≥ λH(Π(v)) where λ is a labelling of nodes
with elements from a set of �nite partially ordered set (the terminology, the
support - please see next section.).

A projection G → H exists if and only if G entails H (i.e. G ≥ H). Sub-
sumption checking is an NP-complete problem [9].

3.2 Rules

Rules are objects used to express that some new information can be inferred from
another information. Rules are also used in order to de�ne the terminological
knowledge corresponding to a set of facts. In the rules we could include the
hierarchy of concept types, the hierarchy of relations and more complicated rules
that do not simply de�ne generalisations specialisations of types.

Rules are built from two di�erent parts called head and body. Once the body
of a rule can be deduced from a fact, then the information in the head should
also be considered when accessing information. Please note that the head could
contain new variables not present in the body. In this case applying such rules
should be done with care as it can generate an in�nite number of new facts to
be taken into account.

De�nition 8 (Rule) Let H and B be facts. A rule is a pair R = (H,B) of
facts where H is called the head of the rule and B is called the body of the rule.
A rule is commonly noted B → H.



De�nition 9 (Rule model) Let W be a vocabulary, I an interpretation on W ,
and R a rule on W . We say that I is a model of R i� for every justi�cation VB

of B in I there exists a justi�cation VH of H in I such that ∀t ∈ vars(B) ∩
vars(H), VB(t) = VH(t).

De�nition 10 (Rule to logical formula) Let R = (H,B) be a rule. Let bx
be the variables from B, and hx be the variables from H that are not in B, the
logical formula corresponding to R is the following: Φ(R) = ∀ bx ( ϕ(B) → ∃ hx

ϕ(H)).

Example Let us consider a rule R = {person(x), person(y), sibling(x, y)}
→ {person(z), parent(x, z), parent(y, z)}. Φ(R) = ∀x, y( person(x) ∧ person(y)
∧ sibling(x, y) → ∃z person(z) ∧ parent(x, z) ∧ parent(y, z)).

Property 3 (Model equivalence). Let R be a rule and I be an interpretation of
W . Then I is a model of R i� I is a model (in the FOL sense) of Φ(R).

In conceptual graphs, the rules that de�ne the terminology (hierarchy of con-
cepts and relations) is de�ned in the so called support of the conceptual graph.
The support is taken into account when performing projection (as explained in
the previous section). In this paper we will also use the hierarchy of rules and
concepts in the multi scale representation of knowledge. Therefore, we remind
here the notion of support that will be used later on in the hierarchical know-
ledge base de�nitions.

The support is a tuple S = (TC , TR) where TC is a �nite partially ordered
set (poset), (TC ,≤), of concept types, de�ning a type hierarchy which has a
greatest element ⊤C , namely the universal type. In this specialisation hierarchy,
∀x, y ∈ TC , x ≤ y is used to denote that x is a subtype of y. TR is a �nite
set of relation types partitioned into k posets (T i

R,≤)i=1,k of relation types
of arity i (1 ≤ i ≤ k), where k is the maximum arity of a relation type in
TR. Moreover, each relation type of arity i, r ∈ T i

R, has an associated sig-

nature σ(r) ∈ TC × . . .× TC︸ ︷︷ ︸
i times

, which speci�es the maximum concept type of

each of its arguments. This means that if we use r(x1, . . . , xi), then xj is a
concept with type(xj) ≤ σ(r)j (1 ≤ j ≤ i). The partial orders on relation
types of the same arity must be signature-compatible, i.e. it must be such that
∀r1, r2 ∈ T i

R r1 ≤ r2 ⇒ σ(r1) ≤ σ(r2). The sets TC , TR are mutually disjoint.

Before de�ning formally what a knowledge base is, let is make a note about
how the support is related to facts. If we consider a fact G = (VC , VR;EG)
then the nodes in the graph (fact), the concepts and the relation will respect
signature wise the support (hierarchy given by the concept types and relation
types). Formally, we can consider λ is a labelling of the nodes of G with elements

from the support S = (TC , TR): ∀r ∈ VR, λ(r) ∈ T
dG(r)
R ; ∀c ∈ VC , λ(c) ∈ TC

such that if c = N i
G(r), λ(r) = tr and λ(c) = tc, then tc ≤ σi(r).



3.3 Knowledge Base

De�nition 11 (Knowledge base) Let W be a vocabulary. A knowledge base
(KB) is a pair K = (F ,R) where F is a fact on W and R is a set of rules on
W .

De�nition 12 (KB model) Let K = (F ,R) be a knowledge base and I be an
interpretation. I is a model of K i� I is a model of F and also a model of every
rule Ri in R.

De�nition 13 (Entailment) Let K be a knowledge base and Q be a fact. K
entails Q i� all models of K are also models of Q.

De�nition 14 (Logical representation) LetK = (F,R) be a knowledge base.
Φ(K) = (Φ(F ),Φ((R))) is the logical representation of K. Φ(F ) is the logical for-
mula of F and Φ(R) =

∪
r∈R Φ(r).

Property 4 (Model equivalence). Let K be a knowledge base and I be an in-
terpretation. Then I is a model of K i� I is a model (in the FOL sense) of
Φ(K).

In other words, given a knowledge base K and a conjunctive query Q, the
RBDA problem consists in answering if Q can be deduced from K, denoted K
|= Q.

Rule application can be performed of two di�erent methods, called Forward
chaining and Backwards chaining.

De�nition 15 (Applicable rule) Let R = (H,B) be a rule and F be a fact.
R is applicable to F if there exists an homomorphism Π : B → F . In this case,
the application of R to F according to Π is a fact α(F,R,Π) = F ∪ Πsafe(H).

Please note the use of Πsafe instead of Π. Πsafe is an application that con-
verts existential variables into fresh ones at the moment of joining new informa-
tion with the initial fact. Such process is important in order to avoid unnecessary
specializations. A derivation is the result of a �nite sequence of rules application.

De�nition 16 (Derivation) Let F be a fact. F ′ is a derivation of F i� there
exists a �nite sequence of facts F = F0, ..., Fk = F ′ (called the derivation se-
quence) such that for every i there exists R and Π such that Fi = α(Fi−1, R,Π).

De�nition 17 (Saturation) Let F be a fact and R be a set of rules. ΠR(F )
= {Π:BR → F} is the set of homomorphisms of the body of applicable rules to
F . α(F,R) = F

∪
π∈ΠR(F ) π

safe(HR) is the result of the application of all those
rules. The saturation of a fact is the process of applying rules from the initial
fact until no more new information can be added to the fact via rule application.
Let the initial fact F0 = F , and Fi = α(Fi−1, R), a fact is saturated when Fi ≡
Fi+1.



Theorem 1 (Equivalence). Let K = (F,R) be a knowledge base and Q be a
fact. The following assertions are all equivalent:

� K |= Q

� there exists a derivation F ... F ′ such that F ′ |= Q

� there exists an n ∈ N such that Fn, R |= Q

When there are no rules in the ontology, the problem is then equivalent to
homomorphism computation, which is a NP-hard problem. In the presence of
rules, the problem is undecidable. Both the forward chaining and backwards
chaining mechanisms are not certain of halting. This is easy to verify through
the means of very simple examples.

Forward chaining Let K = (F ,R) be a knowledge base, F = person(Bob),
and R = {{person(x)} → {parent(y, x), person(y)}}.

Let Q = {parent(x, Tom)} be a fact. Asking a forward chaining mechanism
if Q can be deduced from K may eventually never stop. The mechanism will
�rst verify if Q can be deduced from F , if there is an x having Tom as parent in
F . As it is not the case, rules will be applied and F will be enriched into F ′ =
{person(Bob),parent(p1, Bob),person(p1)}. The mechanism will then verify if Q
can be deduced from F ′. As it is still not the case, it will once again apply rules
and enrich F ′ into F”. And it will do it in�nitely as in this case, no answer will
be ever found to the query.

Backwards chaining Let K = (F ,R) be a knowledge base, and R =
{{p(x, y),p(y, z)} → {p(x, z)}}.

Let Q = {p(a, b)} be a fact. Asking a backwards chaining mechanism if Q
can be deduced from K may also eventually never stop. The mechanism will
�rst verify if {p(a, b)} can be deduced from F . If that is the case, the mechanism
will stop. Otherwise, it will rewrite the initial query Q into a new query Q1 =
{p(a, x0),p(x0, b)}. Q is deduced from K if Q1 is deduced from K. If Q1 can not
be deduced from F , the mechanism will rewrite the query again, for example
with Q2 = {p(a, x0),p(x0, x1),p(x1, b)}. Such sequence of rewritings may never
end. Any �nite rewriting corresponds to a �nite sequence, for example, of length
k of form {p(a, x0) ... p(xk, b)}. The facts could always contain a sequence of
length k + 1.

4 Multi Scale Representation and Reasoning

In this section we introduce the notion of layered graphs that form the basis of our
proposal for multi scale knowledge representation and reasoning. We detail the
syntax and the semantics of layered graphs as well as a graph based projection
inspired algorithm.



4.1 Representing multi scale knowledge

We introduce the concept of a �complex node� that intuitively will be the node
that will be expanded to generate the layers in the hierarchical representation.
The complex nodes will only be concept nodes but their neighbours (relation
nodes) will also be expanded. In order to formalise the transition from one level
to the other, we introduce transitional descriptions.

De�nition 1. Let G = (VC , VR;EG) be a bipartite graph. A transitional de-

scription associated to G is a pair T D = (D, (G.d)d∈D∪NG(D)) where

� D ⊆ VC is a set of complex nodes.
� For each d ∈ D ∪NG(D) G.d is a bipartite graph.

� If d ∈ D then G.d is the description of the complex node d. Distinct complex
nodes d, d′ ∈ D have disjoint descriptions G.d ∩G.d′ = G∅.

� If d ∈ NG(D) then either G.d = G∅ or G.d ̸= G∅ and, in this case, NG(d)−
D ⊆ VC(G.d) and VC(G.d) ∩ VC(G.d′) ̸= ∅ if and only if d′ ∈ NG(d) ∩D.

A transitional description of a bipartite graph G provides a set D of com-
plex nodes in one of the classes of the bipartition, each complex node having
associated a description. This descriptions are disjoint bipartite graphs.

The neighbors of complex nodes either have empty descriptions or are de-
scribed as bipartite graphs. These bipartite graphs contain in one of the classes
of the bipartition, (VC), all the atomic neighbors of the initial graph. The re-
maining nodes in each of these classes are new nodes or are taken from the
descriptions of the corresponding complex neighbors of the initial graph.

De�nition 2. If T D = (D, (G.d)d∈D∪NG(D)) is a transitional description asso-
ciated to the bipartite graph G = (VC , VR;EG), then the graph T D(G) obtained
from G by applying T D is constructed as follows:

1. Take a new copy of ⌊VC −D⌋G.
2. For each d ∈ D, take a new copy of the graph G.d and make the disjoint

union of it with the current graph constructed.

3. For each d ∈ NG(D), identify the nodes of G.d which are already added to
the current graph (i.e. the atomic nodes of G that are neighbours of d and
the nodes of G.d′ which appear in G.d). For each complex neighbour d′ of
d in G, add the remaining nodes of G.d as new nodes in the current graph
and link all these nodes by edges as described in G.d (in order to have an
isomorphic copy of G.d as a subgraph in the current graph).

Figure 1 shows an example of transitional description, where graph G has
VC = {a, b, c, d, e}, VR = {1, 2, 3, 4} and the set of complex nodes from VC (shown
as bold rectangles) is D = {a, c, d}. The description of these nodes, namely G.a,
G.c, and G.d, follows the same rule of node labelling (i.e. rectangle nodes are
denoted by letters and oval nodes are denoted by numbers) and has a pre�x
association. NG(D) is the set {1, 2, 3} whose description is shown in Figure 1.



Note that the description associated with node 1 is the empty graph. The nodes
of VC(G.2) are (i) the atomic node b of G, (ii) the nodes ca and cb from G.c, and
(iii) the node dc from G.d, since NG(2) = {b, c, d}, b is an atomic node of G and
c, d are complex nodes of G. In the description of G.3, a new node 3a appears
besides nodes e and db, dc.

a

b

c

d

e

  1  

  2   

 3   

4

G

G.a : 

aa

ab

ac

a1

a2

G.c :
ca

cb

c1

G.d :

da

d1db

dc

G.1 :

G.2 :

b

ca

cb

dc

21

22

G.3

db

dc

e

3a

31

32

Figure 1. Transitional Description

Figure 2 illustrates this construction for graph G and for the transitional
description of G depicted in Figure 1.

b e aa ab ac ca cb da db dc 3a

4 a1 a2 c1 d1

21 31
32

22

Figure 2. The Graph Obtained from Applying a Transitional Description

Theorem 2. If G = (VC , VR;EG) is a bipartite graph and T D is a transitional
description associated to G, then the graph T D(G) obtained from G by applying
T D is also a bipartite graph.



Proof. Let H = T D(G). By the construction of the graph H described in the
previous de�nition, we have V (H) = VC(H) ∪ VR(H), where

VC(H) = (VC(G)−D) ∪ ∪d∈D∪NG(D)VC(G.d)

and

VR(H) = VR(⌊VC(G)−D⌋G) ∪ ∪d∈D∪NG(D)VR(G.d).

Furthermore, each edge of the graph H is either from ⌊VC(G) − D⌋G or from
some bipartite description, hence has an endpoint in VC(H) and the other in
VR(H).

Note that if G.d = G∅ for d ∈ NG(D), we have no description available for
relation vertex d. This either depends on a lack of information or on an inap-
propriate expounding. The idea traces back to the notion of context in [18] or
to the more elaborate notion of nested conceptual graph [10]. However, as our
approach is not just a diagrammatic representation, the bipartite graph struc-
ture is taken into account.

This hierarchical representation allows, if we have a interconnected world
described by a set of facts (a bipartite graph) and if we can provide details about
both some complex concepts and their relationships, to construct a second level
of knowledge about this world, describing these new details. This process can
be similarly performed with the last constructed level, thus obtaining a coherent
set of layered representations of the initial world. Please note that at each level,
we need to highlight the speci�c set of hierarchical rules (concepts and rules) for
that level. This means that at di�erent levels we can use di�erent terminologies
that are speci�c to that level.

De�nition 3. Let d a nonegative integer. A hierarchical KB of depth d is a
family HG =

⟨
G0, T D0, . . . , T Dd−1

⟩
where:

� G0 = [S0, (V 0
C , V

0
R;E

0)] is a knowledge base composed of a support S and a
set of facts (V 0

C , V
0
R;E

0);

� T D0 is a transitional description associated to G0,

� for each k, 1 ≤ k ≤ d − 1, T Dk is a transitional description associated to
Gk = [Sk, (V k

C , V k
R ;Ek)] = T Dk−1(Gk−1).

We can de�ne substructures of the HG model which can be useful to devise a
customisable and versatile functionality that deals with large graph structures.

De�nition 4. If HG1 = {HG0
1, . . . , HGd1

1 } and HG2 = {HG0
2, . . . , HGd2

2 }
are two hierarchical KBs, then HG2 is a subgraph of HG1 if d2 ≤ d1 and ∃k,
0 ≤ k ≤ d1 − d2, such that for all i ∈ {0, . . . , d2}: Gi

2 is a subgraph of Gk+i
1 ,

Di
2 ⊆ Dk+i

1 and G2.d is a subgraph of G1.d for each d ∈ Di
2 ∪NGi

2
(Di

2).



4.2 Reasoning with multi scale knowledge knowledge

Graph projection can be extended to hierarchical structures; however, with
knowledge integration in mind, we only consider the case where queries are
simple graphs (and not hierarchical graphs).

De�nition 5. A descending path of length k in HG =
⟨
G0, T D0, . . . , T Dd−1

⟩
is a sequence P = v0, . . . , vk (k ≤ d),where vi ∈ V (Gi) and, for each i, 1 ≤ i ≤ k,
condition vi ∈ V (G.vi−1) holds. The last vertex of P is denoted as end(P ).
Moreover k, i.e. the length of P , is denoted by length(P ). The set of all des-
cending paths of HG is referred as P(HG).

De�nition 6. Let HG =
⟨
G0, T D0, . . . , T Dd−1

⟩
be a hierarchical knowledge

base and Q a query. A hierarchical projection from Q to HG is a mapping
Π : VC(Q) ∪ VR(Q) → P(HG) such that ∀v ∈ V (Q), if Π(v) = Pv:

� if v ∈ VC(Q), then end(Pv) ∈ VC(G
length(Pv))−Dlength(Pv) and

if v ∈ VR(Q) then end(Pv) ∈ VR(G
length(Pv))−NGlength(Pv)(Dlength(Pv));

� ∀c ∈ VC(Q), ∀r ∈ VR(Q) if c = N i
G(r), then length(Pc) ≤ length(Pr)

and for each v on Pr at distance k from the start vertex of Pr such that
length(Pc) ≤ k ≤ length(Pr), we have N i

Gk(v) = end(Pc).

If there is projection from Q to HG, then HG subsumes Q. Similar as explained
in the previous section we an consider a logical semantics of the hierarchical
knowledge bases and show its soundness with respect to graph operations. This
semantics is sketched below.

Let HG =
⟨
G0, T D0, . . . , T Dd−1

⟩
be a hierarchical knowledge base and

SHG = (TC , TR) be the union of the supports of its levels. A ternary predicate is
assigned to each concept type from TC , and an n+1-ary predicate is assigned to
each relation type of arity n from Tn

R. Each predicate has the same name as the
element of the support it is associated to. If t ∈ TC , then the ternary predicate
t(x, y, z) holds. Intuitively, this means that (i) at level x, y is a concept vertex,
(ii) the concept represented by this vertex is z, and (iii) its type is t. Similarly,
if t ∈ Tn

R, then predicate t(x, z1, . . . , zn)holds. This means that (i) a relation
vertex on the level x exists and that (ii) the relation represented by this vertex
is t(z1, . . . , zn).

The formula Ψ∗(HG) is constructed as the existential closure of xk, where
0 ≤ k ≤ d − 1 are the variables that represent the levels and Ψ∗(Gk) be the
formula obtained by adding xk as the �rst argument of each member predicate
for every level. Then,

Ψ∗(HG) = ∃x0∃x1 . . . ∃xd−1(∧d−1
k=0Ψ

∗(Gk))

Theorem 3. Hierarchical projection is sound and complete with respect to Ψ∗.

The proof is similarly to [11].
Since the semantics presented here are similar to the semantics of [11] a few

words to compare the two formalisms are necessary. Transitional descriptions are



a syntactical device which allows a successive construction of bipartite graphs.
The knowledge detailed on a level of a hierarchy is put in context by using
descriptions for relation nodes as well, while [11] only details the concept nodes
and thus can be viewed as a particular instance of the formalism shown here.

5 Conclusion

This paper presented a transformation system that could be an appropriate hier-
archical model for real world applications that require consistent transformation
at di�erent granularity levels. We presented the syntax of the extension and then
demonstrated that the syntactic extension proposed is accompanied by sound
and complete reasoning mechanisms.

Future work will focus on the application of such formalisation on a clear used
case issued from life sciences. We are interested to see if the syntactic extension
(i.e. the transitional descriptions) are easily elicited from non computing end
users. To this end speci�c interfaces must be carefully devised in order to easily
capture such knowledge.

The sound and complete reasoning mechanisms based on graphs are of great
importance in a practical setting. We are thus interested to see how the projec-
tion operation can be best visualised for non computing experts. If demonstrated,
this will be one of the main salient points of using such expressive formalism
based on graph based syntax as opposed to approaches such as [6].
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