
HAL Id: lirmm-01332702
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01332702v1

Submitted on 16 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Speed and Accuracy Dilemma in NoC Simulation: What
about Memory Impact?

Manuel Selva, Abdoulaye Gamatié, David Novo, Gilles Sassatelli

To cite this version:
Manuel Selva, Abdoulaye Gamatié, David Novo, Gilles Sassatelli. Speed and Accuracy Dilemma in
NoC Simulation: What about Memory Impact?. ReCoSoC: Reconfigurable Communication-centric
Systems-on-Chip, Jun 2016, Tallinn, Estonia. �lirmm-01332702�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01332702v1
https://hal.archives-ouvertes.fr

Speed and Accuracy Dilemma in NoC Simulation:
What about Memory Impact?

Manuel Selva, Abdoulaye Gamatié, David Novo, Gilles Sassatelli
LIRMM (CNRS / Université de Montpellier)

161 Rue Ada, 34090 Montpellier
France

Email: firstname.lastname@lirmm.fr

Abstract—Network on Chip (NoC) communication infrastruc-
tures are increasingly being used in modern manycore architec-
tures. Many industrial and research NoC simulators have been
proposed in the last years in order to facilitate the design of such
communication infrastructures. As any simulator, all of them
have to trade off speed and accuracy. Simulation time directly
depends on the simulation accuracy. It also directly depends on
the complexity of the system to be simulated, e.g., the number
of cores and their unit complexity. In this work, we show that
the memory footprint of NoC simulators can be a serious factor
limiting the simulation of manycore architectures with a large
number of cores. We first quantitatively compare the memory
footprint of a transactional level modeling NoC simulator and
its cycle-accurate counterpart to show that memory footprint
is a concern. Then, we show that memory footprint is also
largely impacted by the choice of the programming abstraction by
comparing two cycle-accurate simulators written using different
application programming interfaces, i.e., plain C++ and SystemC.

I. INTRODUCTION

Simulation software is a key component in system design
process. During this process, it helps handling the increasing
complexity of modern processors at different levels. Simula-
tion tools first allow to perform large design space explorations
purely in software. They also help reducing the time to market
by allowing software development to start before the first
version of the hardware is available.

Processors with 256 cores [1] are already on the market.
According to the ITRS road-map, this core count in a single
chip will continue to increase in the near future. To help
designing these future processors, simulation tools must be
able to handle this huge core count. One main concern
when simulating such large systems is simulation time, which
heavily depends on simulation accuracy and on the number of
components to be simulated.

Among the existing studies on simulator design, most of the
addressed issues concern the speed and accuracy dilemma. In
other words, how to make the simulation faster while providing
a relevant accuracy in the results. Nevertheless, none of the
existing studies focus directly on the memory footprint, which
can be a strong limitation to the practical simulation of large
systems. As shown intuitively in Figure 1, for a given level
of accuracy, simulation time becomes very long when the
simulated manycore exceeds a particular number of cores. The

point where performances drastically decrease is reached when
the memory requirement of a simulation exceeds the physical
memory size of the simulation host. In such a situation, the
host system needs to use swapping mechanisms in order to
handle the simulation. This drastically increases simulation
time.

Even if the memory requirements of the simulation are
below the capacity of the host, the swapping limit can be
reached depending on the load of the system induced by
other running applications. This is particularly true for desktop
computers being more and more used to run simulations.
Memory footprint is thus a concern that must be taken into
account when choosing or building a simulation tool.

Swapping
required

Number of cores in simulated manycore

Si
m

ul
at

io
n

tim
e

Fig. 1. Simulation time as a function of the number of cores in the simulated
manycore. Because of swapping, simulation time increases drastically when
the memory requirements of a simulation exceed the physical memory
capacity of the host machine.

In this work, we focus on the simulation of Network on Chip
(NoC) communication infrastructures that are increasingly
being used in manycore architectures. We measure the memory
footprint of different NoC simulators to evaluate when the
swapping limit is reached in practice. We compare simulators
classified according to two criteria:

• Simulation abstraction defines the level of details taken
into account by the simulation. It can be either Trans-
actional Level Modeling (TLM) simulation or cycle-
accurate simulation;

• Programming abstraction concerns the level of abstrac-
tion (and thus the programming language) used to develop
a simulator.

Our first contribution concerns simulators of NoCs for real-
time embedded systems. We empirically compare the memory
requirements of two simulators for a real-time NoC using978-1-5090-2520-6/16/$31.00 c©2016 IEEE

different simulation abstractions. The first simulator, named
McSim-CA, is cycle-accurate while the second one, named
McSim-TLM is based on TLM concepts. The second contri-
bution of this work compares the memory footprint of two
cycle-accurate NoC simulators built upon different program-
ming abstractions. We compare McSim-CA based on SystemC
with BookSim [2], a cycle-accurate NoC simulator written
in plain C++. In this paper we focus on the comparison of
memory footprint depending on simulation and programming
abstractions for NoC simulation. However, we believe that the
conclusion drawn from the current study apply more generally
to full system simulation.

The rest of the paper is organized as follows. Section II first
introduces NoCs and simulation and programming abstractions
commonly used to build NoC simulators. It then presents
related work. Section III compares the memory footprint of
McSim-CA and McSim-TLM both simulating the same NoC
architecture but using different simulation abstractions. To
show the impact of the programming abstraction on memory
footprint, we compare in Section IV McSim-CA based on
SystemC with BookSim, which is written in C++ only. Finally,
Section V concludes and presents perspectives.

II. BACKGROUND AND RELATED WORK

This section first introduces NoCs and the different ways of
designing and implementing a simulator for such communica-
tion medium. Then, related work is reviewed.

A. Network on Chip (NoC)

NoCs alleviate the bottleneck of usual buses and the pro-
hibitive cost of crossbars in the context of a large number of
cores by allowing parallel communications. Figure 2 shows
an example of a NoC-based manycore architectures with
distributed memory. It is made of tiles communicating with
each other by exchanging packets through the NoC. Each
tile comprises a router dedicated to receive and forward
packets over the NoC. Each tile also comprises a core and
a private memory. Among existing NoC topologies, the 2D-
mesh illustrated in Figure 2 is one of the most used.

As for distributed systems, routing, control flow and re-
source arbitration are required in NoCs. Routing consists in
deciding which links of the NoC must be used to carry a
message between different tiles. Control flow, also known
as packet switching, decides the packet allocation to the
internal router resources and to the NoC links. Resource
arbitration decides in case of conflict between packets, which
packet should be given priority. For performance concerns, this
control flow and arbitration are often done at the flit level. The
flits are the basic elements composing a packet. Many routing
algorithms and control flow mechanisms have been proposed
in literature [3].

Figure 3 shows the router architecture supporting the packet
switching and arbitration policies considered in this work. For
routing, we consider the XY strategy that first routes packets
according to the X axis and then according to Y axis. Each
router comprises five ports (some ports may not exist for

0

3

6

1

4

7

2

5

8

Router

Core

Mem

Router

Core

Mem

Router

Core

Mem

Router

Core

Mem

Router

Core

Mem

Router

Core

Mem

Router

Core

Mem

Router

Core

Mem

Router

Core

Mem

Fig. 2. Example of a 2D-mesh NoC-based manycore architecture with
distributed memory. The architecture is made of tiles, each comprising a core,
a private memory and a router allowing communication with other tiles.

routers at the boundaries of the mesh). Four ports are used
to communicate with neighboring tiles. The extra port, called
local port, allows communication with the core of the tile.
Each port contains several buffers, called virtual channels,
which temporarily store the flits of exchanged packets. These
buffers provide a better utilization of the NoC links by storing
blocked flits and still making usable the resources of the
router and the links of the NoC. The arbitration block handles
resource allocation in case of conflicts between packets. Dif-
ferent arbitration policies such as oldest-first or priority-based
exist. In this work, we focus on priority-based arbitration [4].
With such a policy, each virtual channel is associated with a
priority level, and the arbiter always gives priority to virtual
channels with the highest priority. The priority of a flit is
assigned according to the priority of the packet containing
the flit. This packet priority is assigned by packet producers
(cores) before sending them into the NoC. A credit-based
mechanism, not shown in Figure 3 for the sake of simplicity,
is used to ensure that routers do not forward flits to neighbors
without enough space in their virtual channels.

B. Simulation Abstraction

In order to simulate a NoC in an accurate way regarding
timing, many micro-architectural details should be taken into
account. Indeed, most of them have an impact on the timing
behavior of the NoC. As a consequence, a cycle-accurate
simulator, i.e., accurate at the clock cycle granularity, needs
to simulate all these details impacting timing. The simulation
of all the details affecting accuracy comes at the price of
simulation time; the more detailed the system, the longer the
simulation. Cycle-accurate simulation also has a cost on the
development of the simulator, again because all design details
need to be taken into account.

Routing
Packet switching

Arbitration
...

data in

...
data in

...
data in

...

data in

...

data in

data out
data out

data out

data out

data out

Local port

Fig. 3. Router with virtual channels. Each input port has several virtual
channels used to store flits. The packet switching block is responsible to
allocate output resources to input flits stored in virtual channels. Different
arbitration policies such as oldest-first and priority-based exist.

To speed up the simulation and to reduce the complex-
ity of building a simulator, the TLM abstraction has been
proposed. In TLM, communications between components are
represented as high level transactions abstracting away some
details impacting timing. In other words, the accuracy of the
results is decreased to speedup the simulation. TLM simulators
are also often simpler to implement than their cycle-accurate
counterpart because less details are taken into account.

The choice of the simulation abstraction depends on the
expected result accuracy. In practice, TLM simulators are often
built in first stages of hardware design to perform large design
space explorations. They are also widely used to start software
development before the hardware is available. Later on, cycle-
accurate simulators are used in the design process for a more
accurate validation of design choices.

C. Programming Abstraction

From the perspective of a simulator developer, beyond
the simulation abstraction described above, the programming
abstraction should be considered carefully. When building a
simulator, at least, three levels of abstraction can be considered
as shown in Figure 4.

1) Low level programming languages: At a low level, the
developer of a simulator can decide to use a programming
language such as C. In this case, all the simulator logic devoted
to the management of time and concurrent processes, should
be implemented from scratch. This task can result in high
simulation speed if it is carefully handled, but it is time
consuming and tedious.

2) Object-oriented languages: The next level consists in
using higher level programming languages such as object
oriented ones. As for low level programming languages, the
developer has to manually implement the logic related to time
and concurrent processes. Nevertheless, the high level concepts

Low level programming
languages (C)

High level programming
languages (C++, Java)

Simulation frameworks
(SystemC, Ptolemy II)

-

Pr
od

uc
tiv

ity

+-

Sim
ulation

speed

+

Fig. 4. Programming abstractions for hardware simulation. As in any domain,
abstraction has a cost regarding performance.

of the language such as classes and inheritance can make this
task easier compared to using a language such as C.

3) Simulation frameworks: A higher programming abstrac-
tion is provided by simulation frameworks such as Ptolemy or
SystemC. The latter, considered in this work, is a C++ based
framework widely adopted in both industry and academia. It
allows to implement simulators very easily. Indeed, all the
management of timing and parallel activities is handled by
the framework. To that end, the developer uses a high level
Application Programming Interface (API) providing access to
concepts such as hardware modules and hardware communica-
tion mechanisms such as signals and first-in-first-out buffers.

In addition to the above programming abstractions, further
alternatives are not shown in Figure 4. Among them, hardware
description languages provide a high accuracy, but they often
induce low productivity and simulation speed. On the opposite,
analytic models are very fast to simulate but provide low
accuracy.

As in any other programming domains not related to sim-
ulation, abstractions have a cost regarding performances. In
this work we evaluate this cost regarding memory footprint,
impacting directly simulation time when swapping is required.

D. Related Work

Among all the cycle-accurate NoC simulators proposed in
the past, BookSim [2] is a state-of-the-art simulator written
in C++ only. It is able to simulate NoCs under different
usage conditions. It provides support for configuring the NoC
topology, the routing algorithm and the router architecture.
NoCTweak [5] is a SystemC-based NoC simulator focusing
on 2D-mesh topologies. It provides results for common per-
formance metrics such as throughput and latency. Noxim [6]
is also written in SystemC and allows to configure different
parameters regarding the internal micro-architecture of the
routers to be simulated. TOPAZ [7] is another simulator that
enables the modeling of a wide variety of message routers. It
was originally conceived to obtain results very close to those
obtained by using hardware description languages.

To speedup simulations of NoC-based systems, TLM con-
cepts can be applied. In this work we restrict the NoCs to be
simulated to NoCs with priority preemptive virtual channels. It
allows to simulate the NoC 1000 times faster with more than

90% of accuracy [8], [9]. Horsinka et al. [10] also proposed
a TLM NoC simulator integrated in a multi-level simulation
framework.

Most of the simulators described above, have been subject
to analysis regarding simulation speed. Standalone analyses
regarding the simulation speed and accuracy dilemma have
also been proposed [11], [12]. To the best of our knowledge,
none of these studies focused on the memory footprint criteria.

III. IMPACT OF SIMULATION ABSTRACTION ON MEMORY
FOOTPRINT

We compare the memory footprint of two simulators built in
the context of the DreamCloud1 European project. Both simu-
lators are included in the Manycore platform Simulation (Mc-
Sim) tool suite. They simulate the same NoC-based manycore
architecture, but they use different simulation abstractions.
The fastest simulator, called McSim-TLM2, represents the
NoC at a transactional level. The second one, called McSim-
CA3, is cycle-accurate. It handles all the internals of the NoC
architecture impacting timing.

Both McSim-TLM and McSim-CA simulate the 2D-mesh
NoC architecture depicted by Figures 2 and 3. From the
cores perspective, both simulators simulate application models
described at a high level. This application model is used only
as a packet injector for simulating the NoC traffic and has been
described in a previous work [13]. McSim-TLM and McSim-
CA simulators only differ in the accuracy of the NoC simulator
as described in the next two subsections.

A. McSim-TLM

The McSim-TLM simulator is based on existing work [9]
and has been implemented in SystemC. To speedup simu-
lations of such NoC architectures we rely on the fact that
a packet with high priority will always preempt a packet
with lowest priority. Based on this preemption property and
considering static routing only, McSim-TLM simulates only
the instants at which a packet enters and at which a packet
leaves the NoC. Internally, McSim-TLM maintains a map
containing the expected leaving time for all the packets into
the NoC. Each time a packet enters the NoC, the expected
leaving time of all the packets impacted by the new packet is
delayed. Impacted packets are the ones with a lower priority
and having a route interfering with the one of the new packet.
Compared to the simulation of all the events happening inside
all the routers of the NoC, McSim-TLM drastically reduces
the number of simulated events.

Abstracting the NoC in this way has nevertheless some
impact on the accuracy of results. McSim-TLM may consider
conflicts that do not occur in practice. These false conflicts
come from the fact that packets may not use all their route
all the time in practice. The number of these false conflicts
mainly depends on the NoC size and the packet length. In the
opposite way, the assumption about using the entire route all

1http://www.dreamcloud-project.org/
2https://github.com/DreamCloud-Project/McSim-TLM-NoC
3https://github.com/DreamCloud-Project/McSim-CA-NoC

2x
2

3x
3

4x
4

5x
5

8x
8

10
x1

0

15
x1

5

20
x2

0

0

10

20

30

40 37
33

25 25 24 25 26 26

38

31

24
21 22 21 22 22

2x
2

3x
3

4x
4

5x
5

8x
8

10
x1

0

15
x1

5

20
x2

0

0

10

20

30

40

NoC Size

E
xe

cu
tio

n
tim

e
(m

s)

McSim-TLM
McSim-CA

Fig. 5. Accuracy comparison between McSim-TLM and McSim-CA. McSim-
TLM can under and over estimate the real contention occurring in the NoC.

the time can also lead to scenarios where the simulator ignores
some conflicts occurring in practice [9]. Figure 5 illustrates
these inaccuracies by showing the comparison of the execution
time of the same application simulated with McSim-TLM and
McSim-CA. In all the different NoC sizes except for 2x2, the
McSim-TLM simulator considers conflicts that do not occur
in practice leading to a higher execution time than the one
reported by McSim-CA. In the 2x2 configuration, we face the
opposite situation where the TLM abstractions lead to ignoring
conflicts occurring in practice.

B. McSim-CA

For McSim-CA, because of the complexity of writing
a cycle-accurate NoC simulator from scratch, we reuse an
existing simulator. We opted for NoCTweak [5] for two main
reasons. First, because the NoCTweak simulator is based
on SystemC, the integration of the cores simulation engine
already developed for McSim-TLM was straightforward. Sec-
ond, thanks to its modular design, NoCTweak was easily
extended to support arbitration based on virtual channels. In
McSim-CA, all the internal components of each router, e.g.,
virtual channels, arbitration logic, are simulated. McSim-CA
extends NoCTweak with a new virtual channel allocator and
a new switch allocator both based on priority.

C. Experimental Setup

All the experiments described in the following have been
performed on a system with an Intel i5-4670 processor, 4
gigabytes of main memory and running Linux. We use the last
2.3.1 version of the Accellera SystemC implementation4. In
order to monitor memory footprint during each simulation, we
periodically read the /proc/PID/smaps virtual file reflect-
ing kernel memory data structures for the process identified by
PID. We simulate the same application model using different
NoC sizes for both McSim-TLM and McSim-CA using 8
virtual channels with 16 flit entries. The application model
has a uniform randomly distributed injection rate of 0.0069.

4http://www.accellera.org/downloads/standards/systemc

0 50 100 150 200
0

1,000

2,000

Elaboration Execution

Time (s)

M
em

or
y

fo
ot

pr
in

t
(M

b)

Fig. 6. Memory footprint of McSim-CA over time for during the simulation
of a 16x16 manycore architecture. All the memory allocations are performed
during the elaboration phase and never freed until the end of the simulation.

It is worth mentioning that the simulated application and
thus the injected NoC traffic, do not impact the memory
footprint. Indeed, a SystemC simulation is made of two
phases. The first one, usually called elaboration, instantiates
all the objects and their connections, i.e., modules and signals
in SystemC terminology. The second phase, called execu-
tion, consists in effectively running the simulation. Most of
the memory allocations take place in the elaboration phase.
Thus, considered as static, even if they are dynamic memory
allocation from the operating system point of view. As a
consequence, the memory footprint measured at the end of
the elaboration phase is present until the end of the execution
phase. To support this claim, Figure 6 reports the evolution
of the memory footprint for the cycle-accurate simulator
simulating a 16x16 manycore architecture. From this plot, we
see that the memory footprint is growing during elaboration
phase and then stays constant up to the end of the simulation.
Because memory footprint is almost constant from the end of
the elaboration phase to the end of the simulation, we report
only the average memory footprint in the following sections.

D. Results and Analysis

Figure 7 reports average memory footprint for both sim-
ulators according to the NoC size. The vertical axis reports
average memory footprint in megabytes on a logarithmic
scale while the horizontal axis shows different NoC sizes.
As expected, this plot shows that McSim-TLM uses far less
memory than McSim-CA. Nevertheless, the memory foot-
print of McSim-CA is surprisingly high. It uses around 3.8
gigabytes of memory to simulate a 20x20 platform while
McSim-TLM only uses 31 megabytes which is 121 times
lower. With McSim-TLM, we are able to simulate a platform
made of 128x128 cores using one gigabyte of memory while
the swapping limit of four gigabytes of our host machine
is reached for a manycore with 20x20 cores with McSim-
CA. Above this NoC size limit, the simulation time grows
exponentially.

In McSim-TLM, a single object is created to simulate the
NoC. The increase of the total memory footprint mainly comes
from the creation of additional core objects. On the other hand,

4x
4

8x
8

16
x1

6

20
x2

0

32
x3

2

64
x6

4

12
8x

12
8

10

100

1,000

10,000

Host memory = 4Gb

9 11

25
31

75

209

718

136

608

2,420
3,777

4x
4

8x
8

16
x1

6

20
x2

0

32
x3

2

64
x6

4

12
8x

12
8

10

100

1,000

10,000

NoC Size

A
ve

ra
ge

m
em

or
y

fo
ot

pr
in

t
(M

b)

McSim-TLM
McSim-CA

Fig. 7. Average memory footprint of McSim-TLM and McSim-CA. The
memory footprint is expressed in megabytes on a logarithmic scale. Memory
footprint of McSim-TLM is really small compared to the one of McSim-CA
which is almost 4 gigabytes for a 20x20 NoC.

in McSim-CA, all internal components of the NoC have an
associated object in memory. The simulator creates objects for
each router, each virtual channel and each internal component
of the routing and packet switching block. So, the total number
of these objects and their corresponding memory footprint, is
proportional to the size of the 2D-mesh.

From this experiment we see that simulating a 20x20
NoC based manycore with McSim-CA consumes all the four
gigabytes of memory of our simulation host. Simulating bigger
manycores will require swapping and thus will lead to im-
practically long simulations. More generally, this study gives
additional information that can help the choice of going from
TLM to cycle-accurate simulation. In addition to the well-
known simulation speed degradation because of the number
of events simulated, cycle-accurate simulation can lead to
impractical simulation times if the swapping limit is reached.

IV. IMPACT OF PROGRAMMING ABSTRACTION ON
MEMORY FOOTPRINT

In this section, we compare McSim-CA with BookSim [2],
a state-of-the-art cycle accurate NoC simulator written purely
in C++, i.e., not using SystemC.

A. BookSim Configuration

In order to be able to compare McSim-CA with BookSim,
we calibrate the latter to simulate as close as possible the
same NoC architecture as McSim-CA. We use the following
configuration parameters:

• 2D-mesh topology,

• 8 virtual channels with 16 flit entries,
• default virtual channel and switch allocators,
• uniform injection rate.
Regarding virtual channel and switch allocators, BookSim

does not support the notion of per channel priority compared to
McSim-CA. We decided to use the default switch and virtual
channel allocator provided in BookSim. Even if this difference
could have a strong impact on the accuracy of the results, it
does not influence significantly the memory footprint because
in both McSim-CA and BookSim we use the same 2D-mesh
topology, the same number of virtual channels and the same
number of entries in each virtual channel.

Regarding the injection of packets, we can also fairly
compare BookSim with McSim-CA even if the latter uses
an application model to inject packets into the NoC while
the former uses synthetic injection patterns. The memory
footprint contributed by the objects corresponding to the NoC
architecture is very high compared to the footprint of the
objects corresponding to packets. To assess this claim, we
performed memory evaluation of BookSim for a 20x20 and
a 128x128 manycore architectures under different injection
rates. Figure 8 shows the average memory usage of BookSim
for injection rates varying from 0.0001 to 1 (for example, an
injection rate of 0.20 means each core injects one packet every
5 clock cycles). From this figure, we see that most of the
memory used by BookSim is not related to the number of
injected packets. Over 1 gigabyte of memory is required to run
the simulation of the 128x128 architecture with an injection
rate as small as 0.0001. The memory footprint then increases
slightly up to an injection rate of 1. This slight increase is
due to the memory required to store packets into temporary
queues at cores level before they are injected into the network.
These queues grow infinitely for injection rates above the
saturation point of the NoC. Nevertheless, the graph shows that
the memory footprint induced by these packets is much lower
than that of the objects corresponding to the NoC architecture.
Moreover, in the following we report results for an injection
rate of 0.0069 because it is the injection rate of the application
used with McSim-CA. As shown in Figure 8, the additional
memory footprint caused by packet objects is negligible for
such a low injection rate.

We report average memory footprint for each simulation.
Figure 9 shows that BookSim also performs most of its mem-
ory allocations before starting the effective simulation, i.e.,
most of the memory is allocated at the end of the initialization,
which takes about two seconds. Then the memory footprint
slightly increases, but not significantly, during the simulation
phase up to the end of the simulation (time nine).

B. Results and Analysis

Figure 10 shows the results of the average memory footprint
of BookSim compared to McSim-CA. For McSim-CA the
results are the same as the ones presented in Section III. From
this plot it is clear that BookSim memory footprint is much
lower than the one of McSim-CA. BookSim can simulate
manycore architecture with 128x128 (i.e., 16384) cores using

0.0001 0.001 0.01 0.1 1

0

500

1,000
128x128

20x20

Initialization Simulation

Injection rate

M
em

or
y

fo
ot

pr
in

t
(M

b)

Fig. 8. BookSim memory footprint according to injection rate for a 20x20
and a 128x128 manycore architectures. Varying injection rate from 0.0001 to
1 does not impact memory footprint significantly.

0 2 4 6 8
0

500

1,000

Initialization Simulation

Time (s)

M
em

or
y

fo
ot

pr
in

t
(M

b)

Fig. 9. Booksim memory footprint over time for a 128x128 manycore
platform with injection rate of 0.0069. As for McSim-CA, memory footprint
increase in the first phase of the simulation before reaching a plateau.

1 gigabyte of memory while McSim-CA requires 3.8 gigabytes
for 20x20 (i.e., 400) cores.

Because both BookSim and McSim-CA simulators create
an internal memory representation for each object in the NoC,
and because they simulate the same NoC architecture, the
main explanation for this large difference is the individual
size of each object type among router, virtual channel, buffer,
link, and all the other objects required for the cycle-accurate
simulation. We performed a memory analysis of McSim-CA
by instrumenting the code to measure the size of all the
allocated objects. No memory killer objects were identified
even if we were able to save few megabytes by removing
some object fields that were not strictly required. Further
investigations on BookSim implementation are required to
have a better understanding of this big gap, nevertheless our
study leads to the conclusion that this big memory footprint
is the result of a sub-optimized usage of SystemC. Indeed, to
easily write a cycle-accurate NoC simulator, one is tempted to
use extensively all the abstractions provided by the API, such
as signals and buffers.

The main conclusion we draw from this comparison is
that the programming abstraction has a strong impact on the
memory requirement for a cycle-accurate simulator. Large
memory footprint has an impact on the simulation when
swapping is required. Depending on the size of the simulated

4x
4

8x
8

16
x1

6

20
x2

0

32
x3

2

64
x6

4

12
8x

12
8

10

100

1,000

10,000

Host memory = 4Gb

5
8

15
25

72

276

1,069

136

608

2,420
3,777

4x
4

8x
8

16
x1

6

20
x2

0

32
x3

2

64
x6

4

12
8x

12
8

10

100

1,000

10,000

NoC Size

A
ve

ra
ge

m
em

or
y

fo
ot

pr
in

t
(M

b)
BookSim

McSim-CA

Fig. 10. Average memory footprint of McSim-CA and BookSim. Footprint
is expressed in megabytes on a logarithmic scale. BookSim, written in plain
C++, uses far less memory than McSim-CA which is based on SystemC.

architecture, memory footprint must be an important criterion
for the choice of the programming abstraction. Moreover, it
is worth mentioning that the memory limitation presented for
NoC simulator in this work will be even more important for
a full system simulator including cores. The swapping limit
reached for a 20x20 manycore architecture with McSim-CA
on our simulation host machine will be reached for smaller ar-
chitectures in the case where McSim-CA also simulates cores
accurately. The 4 gigabytes footprint of 20x20 simulations is
also a problem when they run on server machines. On such
machines, the memory available per core is few gigabytes by
default. Running one simulation on each core of the system
at the same time may also lead to the swapping limit.

V. CONCLUSION AND PERSPECTIVES

This work presents an evaluation of the memory footprint
of three NoC simulators that differ from the accuracy point of
view and from the programming abstraction used to implement
them. The study provides quantitative results to support the
natural intuition that TLM NoC simulators also save memory
in addition to time. By comparing the memory footprint of
two cycle-accurate simulator based on different programming
abstractions, we also evaluated the cost of using programming
abstraction provided by framework such as SystemC. This
study concludes that depending on the size of the NoC to
be simulated, great care must be taken when building or
choosing a NoC cycle-accurate simulator. Even if this study
focuses on NoC simulators, we believe that the tendencies
of the results presented would be similar for the simulation
of other hardware components. In the case of a full system

cycle-accurate simulator, the swapping limit would be reach
earlier because of all the memory used to simulate the cores
behavior accurately.

From this work, we think that it will be very interesting to
study how existing SystemC model could benefit or not from
lazy memory allocations. For large systems, instantiating a lot
of components that are not used from the beginning of the
simulation, such lazy allocation mechanisms could help for
saving memory.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Community’s Seventh Framework Pro-
gramme (FP7/2007-2013) under the DreamCloud Project: http:
//www.dreamcloud-project.org, grant agreement no. 611411.

REFERENCES

[1] B. D. de Dinechin, Y. Durand, D. van Amstel, and A. Ghiti, “Guaranteed
Services of the NoC of a Manycore Processor,” in Proceedings of the
2014 International Workshop on Network on Chip Architectures, ser.
NoCArc ’14. New York, NY, USA: ACM, 2014, pp. 11–16.

[2] N. Jiang, D. Becker, G. Michelogiannakis, J. Balfour, B. Towles,
D. Shaw, J. Kim, and W. Dally, “A detailed and flexible cycle-accurate
network-on-chip simulator,” in Performance Analysis of Systems and
Software (ISPASS), 2013 IEEE International Symposium on, April 2013,
pp. 86–96.

[3] W. Dally and B. Towles, Principles and Practices of Interconnection
Networks. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2003.

[4] E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny, “QNoC: QoS
architecture and design process for network on chip,” Journal of Sytems
Architecture, vol. 50, pp. 105–128, 2004.

[5] A. T. Tran and B. Baas, “NoCTweak: A highly parameterizable simulator
for early exploration of performance and energy of networks on-chip,”
VLSI Computation Lab, ECE Department, University of California,
Davis, Tech. Rep. ECE-VCL-2012-2, 2012.

[6] V. Catania, A. Mineo, S. Monteleone, M. Palesi, and D. Patti, “Noxim:
An open, extensible and cycle-accurate network on chip simulator,”
in Application-specific Systems, Architectures and Processors (ASAP),
2015 IEEE 26th International Conference on, July 2015, pp. 162–163.

[7] P. Abad, P. Prieto, L. Menezo, A. Colaso, V. Puente, and J.-A. Gregorio,
“Topaz: An open-source interconnection network simulator for chip
multiprocessors and supercomputers,” in Networks on Chip (NoCS),
2012 Sixth IEEE/ACM International Symposium on, May 2012, pp. 99–
106.

[8] L. S. Indrusiak and O. M. dos Santos, “Fast and accurate transaction-
level model of a wormhole network-on-chip with priority preemptive
virtual channel arbitration,” in Design, Automation Test in Europe
Conference Exhibition (DATE), 2011, March 2011, pp. 1–6.

[9] L. S. Indrusiak, J. Harbin, and O. M. Dos Santos, “Fast simulation of
networks-on-chip with priority-preemptive arbitration,” ACM Trans. Des.
Autom. Electron. Syst., vol. 20, no. 4, pp. 56:1–56:22, Sep. 2015.

[10] S. A. Horsinka, R. Meyer, J. Wagner, R. Buchty, and M. Berekovic,
“On RTL to TLM abstraction to benefit simulation performance and
modeling productivity in NoC design exploration,” in Proceedings of
the 2014 International Workshop on Network on Chip Architectures,
ser. NoCArc ’14. New York, NY, USA: ACM, 2014, pp. 39–44.

[11] G. Schirner and R. Dömer, “Quantitative analysis of the speed/accuracy
trade-off in transaction level modeling,” ACM Trans. Embed. Comput.
Syst., vol. 8, no. 1, pp. 4:1–4:29, Jan. 2009.

[12] L. Lehtonen, E. Salminen, and T. D. Hmlinen, “Analysis of modeling
styles on network-on-chip simulation,” in NORCHIP, 2010, Nov 2010,
pp. 1–4.

[13] K. Latif, M. Selva, C. Effiong, R. Ursu, A. Gamatie, G. Sassatelli,
L. Zordan, L. Ost, P. Dziurzanski, and L. S. Indrusiak, “Design space ex-
ploration for complex automotive applications: An engine control system
case study,” in Proceedings of the 2016 Workshop on Rapid Simulation
and Performance Evaluation: Methods and Tools, ser. RAPIDO ’16.
New York, NY, USA: ACM, 2016, pp. 2:1–2:7.

http://www.dreamcloud-project.org
http://www.dreamcloud-project.org

