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Fractional triangle decompositions in graphs with large minimum degree

A triangle decomposition of a graph is a partition of its edges into triangles. A fractional triangle decomposition of a graph is an assignment of a non-negative weight to each of its triangles such that the sum of the weights of the triangles containing any given edge is one. We prove that every graph graph on n vertices with minimum degree at least 0.9n has a fractional triangle decomposition. This improves a result of Garaschuk that the same conclusion holds for graphs with minimum degree at least 0.956n. Together with a recent result of Barber, Kühn, Lo and Osthus, this implies that for all > 0, every large enough triangle divisible graph on n vertices with minimum degree at least (0.9 + )n admits a triangle decomposition.

Introduction

Decomposition and packing problems are central and classical problems in combinatorics, and, in particular, in design theory. Kirkman's theorem [START_REF] Kirkman | On a problem in combinatorics[END_REF] from the middle of 19th century gives a necessary and sufficient condition on the existence of a Steiner triple system with a certain number of elements. In the language of graph theory, Kirkman's result asserts that every complete graph with an odd number of vertices and a number of edges divisible by three can be decomposed into triangles. Note that if a graph can be decomposed into triangles, then its vertex degrees are even and the total number of edges is divisible by three. Barber, Kühn, Lo and Osthus [START_REF] Barber | Edge-decompositions of graphs with high minimum degree[END_REF] showed that the same conclusion is true for large graphs satisfying these divisibility conditions if their minimum degree is not too far from the number of their vertices. In this short paper, we study the fractional variant of the problem and we use it, together with a result of Barber, Kühn, Lo and Osthus [START_REF] Barber | Edge-decompositions of graphs with high minimum degree[END_REF], to improve the best known bound.

Let us fix the terminology we are going to use. A graph is a pair of sets (V, E) such that elements of E are unordered pairs of elements of V . The elements of V are called vertices and the elements of E are called edges. We denote by uv (or vu) the edge with vertices u and v. We denote by |G| the number of vertices of G. Two distinct vertices contained in the same edge are said to be adjacent or to be neighbours. Two edges that share a vertex are said to be adjacent. The degree of a vertex v is equal to the number of neighbours of v. Let gcd (G) denote the greatest common divisor of the degrees of the vertices of G.

Two graphs

G 1 = (V 1 , E 1 ) and G 2 = (V 2 , E 2 ) are isomorphic if there exists a bijection b from V 1 to V 2 such that uv is an edge of G 1 if and only if b (u) b (v) is an edge of G 2
for every two vertices u and v of G 1 . The complete graph K k is the graph with k vertices all mutually adjacent. The graph K 3 is also called a triangle.

A graph G 1 = (V 1 , E 1 ) is a subgraph of G 2 = (V 2 , E 2 ) if V 1 ⊆ V 2 and E 1 ⊆ E 2 .
The subgraphs of G 2 isomorphic to G 1 will be referred to as copies of G 1 .

Let H be a graph. An H-decomposition of a graph G is a set of subgraphs of G isomorphic to H that are edge disjoint such that each edge of G is contained in one of them. A graph is H-decomposable if it admits an H-decomposition. A K 3 -decomposition is also called a triangle decomposition and a graph is

triangle decomposable if it is K 3 - decomposable. A graph G is H-divisible if gcd (G)
is a multiple of gcd (H) and the number of edges of G is a multiple of the number of edges of H. It is easy to see that every Hdecomposable graph is H-divisible. However, the converse is not true. For example a cycle on six vertices is K 3 -divisible, but not K 3 decomposable. As noted previously, Kirkman [START_REF] Kirkman | On a problem in combinatorics[END_REF] proved that every K 3 -divisible complete graph is K 3 -decomposable. The fact that, for all H, every H-divisible complete graph is H-decomposable remained an open problem for over one hundred years before it was solved by Wilson [START_REF] Wilson | Decomposition of complete graphs into subgraphs isomorphic to a given graph[END_REF].

The first generalisation to graphs that are near complete is due to Gustavsson [START_REF] Gustavsson | Decompositions of large graphs and digraphs with high minimum degree[END_REF]. He proved that for every graph H, there exist n 0 (H) and (H) such that every Hdivisible graph with n ≥ n 0 (H) vertices and minimum degree at least (1 -(H))n is Hdecomposable. This has been generalised to hypergraphs in a recent result of Keevash [START_REF] Keevash | The existence of designs[END_REF]. The best that is known to date for a general graph H is due to Barber, Kühn, Lo and Osthus [START_REF] Barber | Edge-decompositions of graphs with high minimum degree[END_REF], who gave a way to turn a fractional decomposition into an exact one. They proved the following: Let F be a graph with minimum degree δ(F ) and let H be a graph with chromatic number χ(H) and e(H) edges. Let C := min{9χ(H) 2 (χ(H) -1) 2 /2, 10 4 χ(H) 3/2 } and let t := max{C, 6e(H)}. Then for all > 0, there exists an n 0 such that every Hdivisible graph G on n ≥ n 0 vertices with δ(G) ≥ (1 -1/t + )n has an H-decomposition. For some particular classes of graphs, the exact asymptotic minimum degree threshold is known [START_REF] Barber | Edge-decompositions of graphs with high minimum degree[END_REF] [START_REF] Yuster | The decomposition threshold for bipartite graphs with minimum degree one[END_REF].

A fractional H-decomposition of a graph G is an assignment of non-negative weights to the copies of H in G such that for an edge e, the sum of the weights of the copies of H that contain e is equal to one. A graph is fractionally H-decomposable if it admits a fractional H-decomposition. A graph can be fractionally H-decomposable without being H-divisible. A fractional K 3 -decomposition is also called a fractional triangle decomposition and a graph is fractionally triangle decomposable if it is fractionally K 3 -decomposable. For all r ≥ 2, Yuster [START_REF] Yuster | Asymptotically optimal K k -packings of dense graphs via fractional K kdecompositions[END_REF] proved that every graph on n vertices with minimum degree at least 1 -1 9r 10 n is fractionally K r -decomposable, and Dukes [3][4] proved that the same result holds for sufficiently large graphs on n vertices with minimum degree at least 1 -2 9r 2 (r-1) 2 n. Our paper already led to further research: Barber, Kühn, Lo, Montgomery and Osthus [START_REF] Barber | Fractional clique decompositions of dense graphs and hypergraphs[END_REF] proved, building on our combinatorial approach, that every graph on n ≥ 10 4 r 3 vertices with minimum degree at least (1 -1/10 4 r 3/2 )n has a fractional K r -decomposition.

In this paper we will focus on triangle decompositions of graphs with large minimum degree. The following conjecture is due to Nash-Williams [START_REF] Nash-Williams | An unsolved problem concerning decomposition of graphs into triangles[END_REF]: Conjecture 1 (Nash-Williams [START_REF] Nash-Williams | An unsolved problem concerning decomposition of graphs into triangles[END_REF]). Let G be a K 3 -divisible graph with n vertices and minimum degree at least 3 4 n.

If n is large enough, then G is K 3 -decomposable.
The best result towards a proof of Conjecture 1 is due to the combination of results of Garaschuk [START_REF] Garaschuk | Linear methods for rational triangle decompositions[END_REF] and Barber, Kühn, Lo and Osthus [START_REF] Barber | Edge-decompositions of graphs with high minimum degree[END_REF].

Theorem 2 (Garaschuk [5], Barber, Kühn, Lo and Osthus [START_REF] Barber | Edge-decompositions of graphs with high minimum degree[END_REF]). There exists an n 0 such that every K 3 -divisible graph G on n ≥ n 0 vertices with minimum degree at least 0.956n is K 3 -decomposable.

The proof of Theorem 2 relies on a result on fractional K 3 -decomposability, which we now state. The following appears as a conjecture in [START_REF] Garaschuk | Linear methods for rational triangle decompositions[END_REF]. Note that for K 3 -divisible graphs, this is a consequence of Conjecture 1.

Conjecture 3 (Garaschuk [5]). Let G be a graph with n vertices and minimum degree at least 3 4 n. If n is large enough, then G is fractionally K 3 -decomposable. The best known result towards proving Conjecture 1 was established by Garaschuk [START_REF] Garaschuk | Linear methods for rational triangle decompositions[END_REF].

Theorem 4 (Garaschuk [5]). Let G be a graph with n vertices and minimum degree at least 0.956n. The graph G admits a fractional triangle decomposition.

In this paper we use a different method to prove the following.

Theorem 5. Every graph with n vertices and minimum degree at least 9 10 n admits a fractional triangle decomposition.

In [START_REF] Barber | Edge-decompositions of graphs with high minimum degree[END_REF], a particular case of Theorem 11.1 and Lemma 12.3 imply the following. Theorem 6 (Barber, Kühn, Lo and Osthus [START_REF] Barber | Edge-decompositions of graphs with high minimum degree[END_REF]). Suppose there exist n 0 and δ such that every graph on n ≥ n 0 vertices with minimum degree at least δn is fractionally K 3decomposable. For all > 0, there exists n 1 such that every K 3 -divisible graph on n ≥ n 1 vertices with minimum degree at least max δ, 3 4 + n vertices is K 3 -decomposable. Together with Theorem 6, our result improves Theorem 2. Theorem 7. Let > 0. There exists an n 0 such that every K 3 -divisible graph on n ≥ n 0 vertices with minimum degree at least ( 9 10 + )n is K 3 -decomposable.

Proof of Theorem 5

Let δ = 1 10 . Fix a graph G with n vertices and minimum degree at least (1 -δ) n. Suppose the graph G has at least one triangle with three vertices of degree at least (1 -δ) n+2. Let G be the graph G where the edges of one such triangle are removed. Observe that G has minimum degree at least (1 -δ) n and that if G has a fractional triangle decomposition, then G has one too. By doing this operation several times, we can assume that G has no triangle with three vertices of degree at least (1 -δ) n + 2. Let m be the number of edges of G.

Initially, we give the same weight w ∆ to every triangle such that the sum of the weights of the triangles is equal to m 3 . We will modify the weights of the triangles to obtain a fractional triangle decomposition. We will do so in a way that the total sum of the weights is preserved.

We define the weight of an edge e to be the sum of the weights of the triangles that contain e. Given H a copy of K 4 in G, and two non-adjacent edges e 1 and e 2 in H, let -- us call (H, {e 1 , e 2 }) a rooted K 4 of G. We will use the following procedure to modify the weights of the edges of a rooted K 4 of G: Let (H, {e 1 , e 2 }) be a rooted K 4 of G. By removing a weight w from the two triangles of H that contain e 1 and adding the same weight w to each of the other two triangles (i.e. those that contain e 2 ), we transfer a weight of 2w from e 1 to e 2 . The weights of all the other edges of the graph remain unchanged (see Figure 1).

+ - + - + + + - + -
To prevent the weight of any triangle from becoming negative, we have to restrict how much weight we can transfer using the procedure above. If for some w we use the procedure to transmit a weight of 2w from an edge to another one, then any triangle's weight is lowered by at most w for triangles that are in the K 4 , and does not change for other triangles. Moreover, since every triangle contains a vertex with degree at most (1 -δ)n + 1, any triangle is in at most (1 -δ)n -1 copies of K 4 , and thus in at most 3(1 -δ)n -3 rooted K 4 (since for each K 4 there are three possible choices for the pair of edges). Since each triangle has an initial weight of w ∆ , if each rooted K 4 containing that triangle is used to transfer weight of at most 2w ∆ 3(1-δ)n-3 between its labelled edges, then its final weight will be non-negative.

For each edge e, let T e be the number of triangles of G containing e. We express redistributing the weights as a flow problem in an auxiliary graph, which is denoted by G. The vertices of G are the edges of G, plus two special vertices, called the supersource and the supersink. Two edges of G are adjacent as vertices in G if they form a pair in a rooted K 4 . The edge between them is set to have the capacity c = We will show that G has a flow of value M from the supersource to the supersink.

If G does not have a flow of value M , then it has a vertex cut (A 0 , B 0 ) such that the supersource is contained in A 0 , the supersink in B 0 and the sum of the capacities of the edges from A 0 to B 0 is less than M . Let A be the edges of G corresponding to the vertices of A 0 and B the edges corresponding to the vertices of B 0 . Note that |A| = |A 0 | -1 and

|B| = |B 0 | -1. Finally, let k = |A|, and observe that |B| = m -k.
Let T A and T B be the average T e for e in A and in B respectively. Let e = uv be an edge of G. Let W e be the set of the vertices w such that uvw is a triangle. By the definition of T e , |W e | = T e . Each vertex of W e is non-adjacent to at most δn vertices of G, and thus is non-adjacent to at most δn vertices of W e . So each vertex of W e is adjacent to at least T e -δn vertices of W e . Therefore e is in at least Te(Te-δn) The inequalities ( 1) and ( 2) can be rewritten using that Since the summand is a convex function of T e , we obtain the following.

(T A (T A -δn) -2k)c -2(T A w ∆ -1) < 0 (3) (T B (T B -δn) -2(m -k))c -2(1 -T B w ∆ ) < 0 (4) 
The inequality (3) implies that

T A (T A -δn) + 2 c (1 -T A w ∆ ) < 2k. (5) 
The inequality (4) implies that

2k < 2m -T B (T B -δn) + 2 c (1 -T B w ∆ ). ( 6 
)
We now combine the inequalities ( 5) and ( 6) and we substitute c = 2w ∆ 3(1-δ)n-3 to get the following.

T A (T A -δn) -(3n(1 -δ) -3)T A < 2m -T B (T B -δn) -(3n(1 -δ) -3)T B ( 7 
)
Let e be an edge of G. Each end-vertex of e is non-adjacent to at most δn vertices of G. Hence, the edge e is contained in at least n -2δn triangles. Since e cannot be contained in more than n triangles, we get that n -2δn ≤ T e ≤ n. Consequently, we have n -2δn ≤ T A , T B ≤ n.

A standard analytic argument shows that the left hand side of ( 7) is minimized when T A = n and the right hand side is maximized when T B = n -2δn. Consequently, it must hold that

n(n -δn) -3(1 -δ)n 2 + 3n < 2m -(n -2δn)(n -3δn) -3n(1 -δ)(n -2δn) + 3n -6δn. Therefore (2 -12δ + 12δ 2 )n 2 < 2m -6δn. (8) 
Recall that we assumed that in G there is no triangle with three vertices of degree at least (1-δ)n+2. Let V b be the set of vertices of degree at least (1-δ) 

Assume n < 20. Since G has minimum degree at least (1 -δ)n = 0.9n, the graph G is a complete graph. Then giving the same weight to every triangle leads to a fractional triangle decomposition of G.

Therefore we can assume that n ≥ 20, and thus 4 + n -12δn ≤ 0. We get from ( 9) that (1 -10δ)(1 -δ) = 1 -11δ + 10δ 2 < 0. Since δ = 0.1, this leads to a contradiction. Therefore, there must exist a flow of value M in G, and hence, as described previously, the weights of the triangles can be adjusted in such a way that these weights now form a fractional decomposition of G. This finishes the proof of Theorem 5.

Conclusion

In this paper we proved that every graph on n vertices with minimum degree at least 9 10 n is fractionally triangle decomposable. Together with a result of Barber, Kühn, Lo and Osthus [START_REF] Barber | Edge-decompositions of graphs with high minimum degree[END_REF], this implies that, for all > 0, there exists a constant n 0 such that every triangle divisible graph on n ≥ n 0 vertices with minimum degree at least (0.9 + ) n is triangle decomposable.
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 1 Figure1: By removing some weight w from the two triangles containing the thick edge and adding w to the two triangles containing the dashed edge, we remove 2w from weight of the dashed edge and add 2w to the weight of the thick edge.

  δ)n-3 . Let E c be the set of these edges. If T e w ∆ > 1, then the vertex of G corresponding to e is joined to the supersource and the capacity of the corresponding edge of G is T e w ∆ -1. Likewise, if T e w ∆ < 1, then the vertex of G corresponding to e is joined to the supersink and the capacity of the corresponding edge is 1 -T e w ∆ . The vertices of G adjacent to the supersource are referred to as sources and those adjacent to the supersink as sinks. Let M = e source (T e w ∆ -1) = e sink (1 -T e w ∆ ) .
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 242111 Let e be a vertex of A. It is adjacent to at least Te(Te-δn) k vertices of B. Therefore the cut contains at least e∈A T e (T e -δn) 2 -k edges of E c . Similarly, it contains at least e∈B T e (T e -δn) 2 -(m -k)edges of E c . Moreover, for each source e that is in B and each sink e that is in A, the cut contains the edge between e and the supersource or the supersink. Recall that the capacities of the edges ofE 1 is c = 2w ∆ 3(1-δ)n .Therefore the sum of the capacities of the edges of G is at least e∈A T e (T e -δn) 2 -k c + e source∈B (T e w ∆ -1) + e sink∈A T e w ∆ ) . At the same time, it is also at least e∈B T e (T e -δn) 2 -(m -k) c + e source∈B (T e w ∆ -1) + e sink∈A T e w ∆ ) . Since the sum of the capacities of the edges in the considered cut is less than M , we get that e∈A T e (T e -δn) 2 -k c + e source∈B (T e w ∆ -1) + e sink∈A (1 -T e w ∆ ) < M (1) and e∈B T e (T e -δn) 2 -(m -k) c + e source∈B (T e w ∆ -1) + e sink∈A T e w ∆ ) < M. (2)
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 2 n+2 in G, and let n b be the number of vertices in V b . Let us prove that n b ≤ 2δn -4. Assume by contradiction that n b ≥ 2δn -3. Since every vertex in V b has at most δn -3 non-neighbours in V (G), every vertex in V b has at most δn-3 non-neighbours in V b , and thus has at least n b -δn+2 neighbours in V b . The graph induced by V b is triangle-free, has n b ≥ 2δn -3 vertices, and has minimum degree at least n b -δn + 2. A triangle-free graph on k vertices has at most k edges, thus it has minimum degree at most k 2 . This implies that n b -δn + 2 ≤ n b /2, i.e. n b /2 ≤ δn -2, and thus δn -1.5 ≤ δn -2, a contradiction. Therefore there are at most 2δn -4 vertices in V b . We have 2m ≤ (2δn -4)n + ((1 -2δ)n + 4)((1 -δ)n + 1) = (1 -δ + 2δ 2 )n 2 + 4 + n -6δn and thus, with (8), (2 -12δ + 12δ 2 )n 2 < (1 -δ + 2δ 2 )n 2 + 4 + n -12δn.
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