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Abstract. A covering system of congruences can be defined as a set of congruence relations
of the form: {r1 (mod m1), r2 (mod m2), . . . , rt (mod mt)} for m1, . . . , mt ∈ N satisfying the
property that for every integer k in Z, there exists at least an index i ∈ {1, . . . , t} such that
k ≡ ri (mod mi). First, we show that most existing scalar multiplication algorithms can be
formulated in terms of covering systems of congruences. Then, using a special form of covering
systems called exact n-covers, we present a novel uniformly randomized scalar multiplication
algorithm that may be used to counter differential side-channel attacks, and more generally
physical attacks that require multiple executions of the algorithm. This algorithm can be an
alternative to Coron’s scalar blinding technique for elliptic curves, in particular when the
choice of a particular finite field tailored for speed compels to use a large random factor.

Keywords: Scalar multiplication, side-channel attacks, randomized algorithms, covering
systems of congruences

1 Introduction

Exponentiation in multiplicative subgroups of finite fields and jacobians of low genus hy-
perelliptic curves is a crucial operation for public key cryptosystems. It is used extensively
in the generation/verification of electronic signatures (e.g. using DSA/ECDSA) and in
the encryption/decryption phases of RSA or DL-based algorithms. In many cases, data
manipulated during these computations should be kept secret as even a small amount of
information may be maliciously exploited by an attacker, e.g. for forging one’s signature
or for acquiring some confidential information.

Over the past fifteen years, side-channel attacks (SCA), first proposed by Kocher in
96 [19], have kept improving. They have diversified (simple attacks [19], differential at-
tacks [20], collision attacks [11,3], template attacks [8], etc.), have exploited many sources
of leakages (computation time, power consumption, electromagnetic emanations, sound,
etc.) and have used increasingly sophisticated statistical tools, resulting in a vast side-
channel arsenal. In parallel, a lot of research have been conducted towards clever and
efficient countermeasures at various levels. As a result, most of today’s publicly known
SCA can be counteracted, at least when considered individually. However, in order to
safeguard implementations against all known attacks, several countermeasures must be
carefully stacked together, while ensuring that this combination of independent, yet good
countermeasures does not weaken the overall implementation. Inevitably, each of these
protection layers implies some overhead, e.g. computation time, circuit area, etc. Hence,
low-cost solutions and protections which impede several SCA at once should be considered
with great interest. The ultimate, all-in-one, protection is yet to be discovered!

The type and level of countermeasures that should be implemented depend on the
security model. In the software model, one mainly focuses on timing and cache attacks. In
the more advanced hardware model, and for software implementations that run on micro-
controllers, the adversary has entire control of the device. In order to retrieve (part of)
the secret manipulated by the cryptographic algorithm, she can monitor various sources



of leakage (power consumption, time, electromagnetic radiations, noise, etc.) and insert
faults. These two strategies are respectively classified into passive and active attacks.

This paper deals with passive attacks in the hardware model. In this case, the most
prominent attacks require multiple executions of the algorithm. They can be circumvented
using various randomization techniques. In the context of elliptic curves for example,
several randomization options proposed by Coron [12] (scalar randomization, base point
blinding, random projective coordinates) may be used to counteract differential power/EM
analysis, refined power analysis, zero-value analysis, etc. Timing attacks may be thwarted
using regular algorithms such as the Montgomery ladder and/or curves allowing a uni-
fied/complete group law. For a good survey on secure ECC implementations, see [14,15].

A less frequently considered alternative to Coron’s countermeasures is the randomiza-
tion of the scalar multiplication algorithm itself. This can be achieved by taking random
decisions in the course of the algorithm. This approach is not new ; the MIST algorithm by
Walter [25] or the Leak Resistant Arithmetic (LRA) concept by Bajard et al. [2] are two
examples of such randomized algorithms proposed in the RSA context. In the elliptic curve
setting, an approach of that type based on Binary Signed Digit (BSD) recodings [16,13],
initially regarded as very promising, was eventually broken in [23].

Among the randomization options proposed by Coron, scalar randomization is prob-
ably the most important. It may be used to block several type of passive attacks [14,15].
The private scalar is masked by adding a random multiple of the group order. Let E
be an elliptic curve of order #E and P a point on E. Instead of computing [k]P , one
computes the same point as [k + r#E]P for some random integer r. The bits of k are
thus masked using a different random value at each execution. At first, the computational
overhead of this simple countermeasure seems rather low. However, this is not always the
case and one has to be very careful. For the sake of efficiency, elliptic curves are usually
defined over particular finite fields, for example modulo primes that are very close to a
power of two. In this case, due to the Hasse bound, the order of the curve is also of that
special form. In order to blind all the bits of k, a random value r of roughly the size of k
may be needed. For example Bernstein recommends a 256-bit random value, i.e. a 512-bit
scalar, for curve25519 [4], yielding a 100% overhead! With that in mind, solutions based
on randomizing the addition chain may provide efficient alternatives.

The main contribution of this paper is a new randomized scalar multiplication al-
gorithm based on covering system of congruences (CSC). It is presented in Section 2.
Interestingly, many algorithms from the literature can be expressed in this CSC frame-
work. In Section 2.3 we analyze its complexity on the average from which we deduce a
theoretical operation counts per bit. We discuss its robustness against differential attacks
in Section 3 and suggest some possible implementation strategies to further harden simple
and timing attacks. Finally, in Section 5 we present a generic greedy approach to generate
such covering systems.

2 A new randomized scalar multiplication

In this section, we present our novel randomized scalar multiplication algorithm. It is
based on so-called covering systems of congruences.

2.1 Covering systems of congruences

A covering system of congruences (CSC) is a finite set {r1 (mod m1),. . . , rt (mod mt)}
such that every integer satisfies at least one of its congruence relations. In general, such



covering sets are not difficult to construct. A simple, non-trivial example of a distinct (all
moduli are different) covering system is the set:

{0 (mod 2); 0 (mod 3); 1 (mod 4); 1 (mod 6); 11 (mod 12)}

A covering system is called an n-cover if every integer is covered at least n times ; it
is called an exact n-cover if it covers each integer exactly n times. For example, the 10
congruence classes

{1 (mod 2); 2, 3 (mod 4); 0, 2, 4 (mod 6); 0, 1, 4, 5 (mod 8)}

form an exact 2-cover. It is illustrated in Figure 1. The covering property is guaranteed as
soon as all the integers modulo lcm(2, 4, 6, 8) = 24 are covered.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

1 (mod 2)
2 (mod 4)
3 (mod 4)
0 (mod 6)
2 (mod 6)
4 (mod 6)
0 (mod 8)
1 (mod 8)
4 (mod 8)
5 (mod 8)

Fig. 1. The set {1 (mod 2); 2, 3 (mod 4); 0, 2, 4 (mod 6); 0, 1, 4, 5 (mod 8)} is an exact 2-cover. Each row
corresponds to a congruence class ; the dots indicate which integers are covered by each class. The number
of dots in each column indicates the number of congruence classes covering the corresponding integer. One
may observe that there are exactly 2 dots per column.

Problems concerning covering systems of congruences were among Erdős’ favorites.
One of his conjectures, the minimum modulus problem, was only solved negatively by
Hough in 2013 using the Lovász local lemma [17]. The non-existence of a distinct covering
system whose moduli are all odd is still an open problem.

2.2 CSC-based scalar multiplication

The link between covering systems and scalar multiplication algorithms is immediate. Let
P ∈ E and k ∈ Z. Then it is clear that

k ≡ r (mod m)⇒ [k]P = [r]P + [m]([h]P ), where h = (k − r)/m. (1)

For example, the right-to-left double-and-add algorithm follows directly from the exact
1-cover given by the trivial covering set {0 (mod 2); 1 (mod 2)}. It instantly leads to

[k]P =
{

[k/2]([2]P ) if k is even
[(k − 1)/2]([2]P ) + P if k is odd

In the world of (hyper)elliptic curves, many scalar multiplication algorithms have been
proposed (m-ary, NAF, window methods, multi-base, etc.). It turns out that many of



Table 1. Scalar multiplication algorithms and their corresponding covering system of congruences

Algorithm Covering System of Congruences

m-ary 0, . . . , m− 1 (m)

NAF 0 (2); 1,−1 (4)

w-NAF [24] 0 (2); 1,−1 (2w); 3,−3 (2w); . . . ; 2w−1 − 1,−2w−1 + 1 (2w)

frac. win. [22] 0 (2); 1,−1 (2w+1); 3,−3 (2w+1); . . . ; 2w + m; −2w −m (2w+1)

wmbNAF [21] 0 (a1); . . . ; 0 (ak); 1,−1 (aw
1 ); 3,−3 (aw

1 ); . . . , (a1 − 1)/2 (aw
1 )

w-HBTF [1] 0 (2); 0 (3); 1,−1 (w); . . . ; w/2− 1,−w/2 + 1 (w)

them can be expressed using covering system of congruences. We list a few of them and
the corresponding covering system of congruences in Table 1.

Let S be a covering system of congruences. For all k ∈ Z, we denote by S(k) the set of
all the congruence classes covering k, i.e. the set of all the congruences r (mod m) ∈ S such
that k ≡ r (mod m). A generic CSC-based scalar multiplication is given in Algorithm 1.

Algorithm 1 Generic CSC-based scalar multiplication
Input: S, k ∈ Z, P ∈ E
Output: [k]P ∈ E
1: if k = 0 then
2: return O
3: Let r (mod m) ∈ S(k)
4: Compute Q := [(k − r)/m]P recursively
5: return [m]Q + [r]P

The validity of Algorithm 1 is based on the fact that, for any covering system S, we
have

[m]Q+ [r]P = [m(k − r)/m]P + [r]P = [k]P. (2)
Clearly, equation (2) is true regardless of how the congruence class (r,m) ∈ S(k) is selected
in line 3. Note that when |S(k)| > 1, i.e. when integer k is covered by strictly more than one
congruence class, several algorithms can be deduced depending on which class is chosen.
Therefore, the generic algorithm presented in Alg. 1 may be specialized in various ways.
The main characteristics of our randomized version are twofold:
– First, we require that the covering system S is an exact n-cover (with n ≥ 2). By doing

so, we ensure that there are exactly n possible congruence classes r (mod m) in S(k)
for every integer k.

– Second, in line 3 of Alg. 1, we select the congruence class r (mod m) ∈ S(k) uniformly
at random among the n different options. In practice, these n congruence classes in
S(k) are easily determined by computing k mod `, where ` = lcm(m1, . . . ,m|S|). In
Section 3 we shall see that this leads to exponentially many ways to compute Q in line
4.

An exact covering system S can be represented using a convenient data structure very
close to the graphical representation shown in Figure 1. More precisely, if

S = {r1 (mod m1); r2 (mod m2); . . . ; rt (mod mt)}

is an exact n-cover, it may be stored in memory as a two-dimensional array of size `× n,
where ` = lcm(m1, . . . ,mt). For each i ∈ {1, . . . , `}, the entry S[i] is a one-dimensional



array, of length exactly n, whose elements are the congruence classes covering the subset
i+ `Z. An example is given in Table 2.

Table 2. The array representation of the covering system {1 (mod 2); 2, 3 (mod 4); 0, 2, 4 (mod 6);
0, 1, 4, 5 (mod 8)}.

i S[i][0] S[i][1] i S[i][0] S[i][1]

0 0 (mod 8) 0 (mod 6) 12 4 (mod 8) 0 (mod 6)

1 1 (mod 8) 1 (mod 2) 13 5 (mod 8) 1 (mod 2)

2 2 (mod 4) 2 (mod 6) 14 2 (mod 4) 2 (mod 6)

3 1 (mod 2) 3 (mod 4) 15 1 (mod 2) 3 (mod 4)

4 4 (mod 8) 4 (mod 6) 16 0 (mod 8) 4 (mod 6)

5 5 (mod 8) 1 (mod 2) 17 1 (mod 8) 1 (mod 2)

6 2 (mod 4) 0 (mod 6) 18 2 (mod 4) 0 (mod 6)

7 1 (mod 2) 3 (mod 4) 19 1 (mod 2) 3 (mod 4)

8 0 (mod 8) 2 (mod 6) 20 4 (mod 8) 2 (mod 6)

9 1 (mod 8) 1 (mod 2) 21 5 (mod 8) 1 (mod 2)

10 2 (mod 4) 4 (mod 6) 22 2 (mod 4) 4 (mod 6)

11 1 (mod 2) 3 (mod 4) 23 1 (mod 2) 3 (mod 4)

We use this data structure in the description of Algorithm 2.

Algorithm 2 Exact n-cover scalar multiplication
Input: S as described above, ` = lcm(m1, . . . , m|S|), k ∈ N, P ∈ E
Output: [k]P ∈ E
1: if k = 0 then
2: return O
3: else if k = 1 then
4: return P
5: i := k mod `
6: Select j uniformly at random in {0, . . . , n− 1}
7: (r, m) := S[i][j]
8: compute R := [r]P
9: compute Q := [(k − r)/m]P recursively
10: return [m]Q + R

Remark 1. For convenience, we presented a recursive version of Algorithm 2. However
this recursion is a tail-end-recursion so that the algorithm can easily be reformulated
iteratively. It can thus be immediately implemented on small embedded devices which
may not support recursion. To do so, first compute a sequence (mi, ri) for k using the
covering system of your choice such that

k = r0 +m0(r1 +m1(. . . (rs +ms) . . . )). (3)

The scalar multiplication [k]P then simply consists of traversing this sequence in reverse
order. Initialize Q := O, then for each pair (mi, ri), set Q := [mi]Q+ [ri]P . Note that the
elements [ri]P may be precomputed. Generating the sequence (mi, ri) from k only requires
integer arithmetic.



2.3 Complexity analysis

The average complexity of Algorithm 2 can be analyzed using a first order Markov chain.
Let S = {s1, . . . , st} with si := ri (mod mi) and let ` = lcm(m1, . . . ,mt). We define the
transition graph of the Markov chain as follow:

– the vertices si are the ` congruence classes modulo `.
– the edges (si, sj) are oriented and labeled with probabilities: for every k > 0, there are

exactly1 n congruence classes si := ri (mod mi) in S(k) such that k ≡ ri (mod mi). In
line 9 of Alg. 2 (line 4 of Alg. 1 in the generic case), the algorithm is called recursively
with k′ = (k − ri)/mi as input. In turn, if k′ > 0, we select a congruence class sj :=
rj (mod mj) ∈ S(k′). The edge (si, sj) is labeled with the conditional probability
P (k′ ≡ rj (mod mj)|k ≡ ri (mod mi)).

In the general case we need to compute the transition matrix, say A, associated to S,
and then evaluate its stationary probability, i.e. the vector π∞ such that π∞A = π∞. When
S is an exact n-cover however, neither A nor π∞ need be computed. (For completeness, we
provide algorithms for computing both A and π∞ in Appendix A.) The following theorem
holds.

Theorem 1. The stationary probability obtained for an exact n-cover is uniform:

π∞ = (1/`, . . . , 1/`).

We need the following Lemma.

Lemma 1. The transition matrix associated to an exact n-cover is doubly stochastic, i.e.
each row and column adds up to 1.

Proof (Lemma). Let S be an exact n-cover and A its transition matrix. We want to show
that

∑
iAi,j = 1 for all j = 0, . . . , `−1. We will do so by showing that for all j = 0, . . . , `−1

∑
i

Ai,j =
∑

(r,m)∈S

1
nm

= 1
n

∑
(r,m)∈S

1
m
. (4)

Indeed, since each integer is covered exactly n times and each covering class covers exactly
`/m integers, we get that

∑
(r,m)∈S

1
m = n.

Now, in order to prove (4), observe that for each congruence class (r,m) ∈ S, there
are exactly `/m integers i in {0, . . . , ` − 1} that are covered by (r,m). For each of those,
there are exactly m integers j in {0, . . . , ` − 1} such that j ≡ (i − r)/m (mod `/m).
Thus, each (r,m) ∈ S contributes to exactly ` columns (not necessarily distinct) of A.
To prove that there are no zero-columns, observe that for (r,m) ∈ S, letting i = (r +
m(j mod `/m)) mod `, we get that i ∈ (r,m), 0 ≤ i < ` and j ≡ (i − r)/m (mod `/m)
for all j ∈ {0, . . . , `− 1}. This confirms that each congruence class (r,m) ∈ S contributes
to each column exactly once. Finally, since S is an exact n-cover, |S(i)| = n for all i =
0, . . . , `− 1 so that each contribution amounts to 1/nm. ut

Proof (Theorem). Since A is doubly stochastic, 1A = 1. Thus, the uniform probability
distribution π = (1/`)1 satisfies πA = π. ut

1 Note that when S is a covering set but not an exact n-cover, there still exists at least one such class.



Let us now explain how this uniform stationary probability can be turned into an
average operation count per bit. We shall first compute the average number of point
doubling, tripling, quintupling, etc., as well as the average number of point addition per
iteration ; then per bit. We will then put together these numbers with the cost of each
curve operation to get the average number of field operations per bit.

Let σ = ((ri,mi))i=0...s, be a precomputed sequence for the given scalar k. The iterative
version of Algorithm 2 rewrites: set Q = O and repeat Q = [mi]Q + [ri]P , for i ranging
from s down to 0. For each iteration, we aim at computing the average number of point
additions, and for each m in S, the average number of scalar multiplications by m. More
precisely, we seek the average number of multiplications by p for each prime factor p in
the prime decomposition of m.

First, observe that at each step, i.e. for each (ri,mi) ∈ σ, a point addition is performed
exactly when ri 6= 0. For each congruence class (r,m) ∈ S, there are exactly `/m integers
in {0, . . . , ` − 1} which belong to that class. Thus, the probability to perform a point
addition is

P1 = 1/`n

 ∑
(r,m)∈S,r 6=0

`/m

 = 1/n

 ∑
(r,m)∈S,r 6=0

1/m

 .

For the scalar multiplication [mi]Q, several options are possible. Here, we consider the
prime decomposition of mi. For example, we compute [12]Q = [22 · 3]Q using two point
doublings and one point tripling. For each (r,m) ∈ S, let m =

∏
i p
αi
i be the prime

decomposition of m. We denote by Npi the average number of scalar multiplications by
pi. Then, using the same arguments as above we get

Npi = 1/n
∑

(r,m)∈S
αi/m.

In order to convert these values to an average number of point operations per bit, one
needs to evaluate the average number of iterations. A slight difficulty here comes from
the fact that the scalar is not divided by the same integer at every step. If ` =

∏
i p
αi
i ,

the scalar is divided by the average value β =
∏
i p
Npi
i so that the average number of

iterations is obtained by multiplying the bitlength of k by ρ = log 2/ log β. The above
values P1, Npi may be scaled accordingly to get an average number of point operations
(addition, doubling, tripling, etc.) per bit. Finally, by plugging in the cost of each curve
operation, we get an average number of field operations per bit.

As an example, let us consider the following covering system, denoted u3c-48-24 for
n = 3, ` = 48, |S| = 24. (We explain the terminology in Section 5).

S = {0 (mod 2);
−1, 0 (mod 4);
−1, 1, 3 (mod 6);

−2,−1, 0, 1 (mod 8);
−3,−2, 1, 2, 5, 6 (mod 12);

−6,−5,−4,−3, 2, 3, 4, 5 (mod 16)}

We have P1 = 17/24, N2 = 13/6, N3 = 1/3, and thus β = 213/6 × 31/3 ≈ 6.47548.
According to the explicit formula database [5], the smallest multiplication counts for a
point addition, a point doubling and a point tripling on a short Weierstrass curve (assuming
a = −3, S = 0.8M) are 10.2M (with Z2 = 1), 7M and 12.6M respectively. The average



cost is thus (10.2P1 +7N2 +12.6N3)× logβ(2) ≈ 9.87M per bit. Note that u3c-48-24 only
requires two precomputed points, namely 3P and 5P . If these precomputed points are not
converted to affine coordinates, the point addition costs 15M and average cost increases
to ≈ 11.13M per bit.

In Table 3, we give the average operation counts for short Weierstrass curves. In com-
parison, the Montgomery ladder on Weierstrass curves, using the differential co-Z addition-
and-doubling algorithm reported in [18, Algo. 5] costs 10M + 5S ' 14M per bit; the
NAF, 3-NAF and 4-NAF algorithms: 10.4M , 9.55M and 9.04M per bit respectively. The
number of precomputations corresponds to the number of different group elements [r]P
that may appear. In order to save some precomputations, observe that when computing
[m]Q+[r]P , bothm and r can be divided by h = gcd(m, r); the computation thus becomes
[h]([m/h]Q + [r/h]P ). As usual, only one of any pair of opposite points is required. For
u3c-48-24, the only points that needs to be precomputed are thus 3P and 5P .

Table 3. Average operation counts per bit and number of precomputed points for short Weierstrass curves.

Covering system #mult./bit #Precomputations

u12c-2304-3315 8.84 355

u8c-432-600 9.33 66

cs3-48-48 9.84 8

u3c-48-24 9.87 2

cs3-48-38 9.95 7

cs6-72-103 9.95 12

u4c-48-60 9.96 7

u6c-120-168 10.48 19

cs3-54-47 10.61 8

cs4-24-37 10.64 4

cs3-24-23 10.93 2

u2c-24-10 11.23 1

cs5-60-73 11.5 8

cs2-30-19 11.8 4

2.4 Integer arithmetic

Our theoretical analysis does not take into account the cost of integer arithmetic. Other
classical algorithms like double-and-add, fixed- and sliding-window methods, the Mont-
gomery ladder etc. process the scalar bit-by-bit or in blocks of bits. Conversely, our algo-
rithm needs integer division with remainder where the divisor is not a power of two.

In Algorithm 2, two operations deserve some attention: the integer division with re-
mainder k mod ` in line 5 and the exact division by m in line 9. Although, it is possible to
build a covering system of congruences such that ` = lcm(m1, . . . ,m|S|) factors into many
different primes, it seems more advantageous – at least in the context of elliptic curve for
which there exists efficient explicit formula for point doubling and tripling – to consider
moduli that only contain powers of 2 and 3 (maybe 5). In that case, the operation k mod `
can be greatly sped up. For example, by independently computing the remainders modulo



the largest powers of 2 and 3 (possibly 5) in ` and by Chinese remaindering. We point the
interested reader to the very fast mod3 implementation based on historic Pascal’s tapes
proposed in [7]. The exact division by m in line 9 can also be implemented very efficiently,
for example using Jebelean’s exact division2.

3 Resistance to differential attacks

Algorithms based on randomizing the sequence of operations to compute [k]P are rather
scarce. As already mentioned in the introduction, the BSD randomization attempt [16,13]
has been broken; its inherent weakness was established in [23]. In that paper Fouque et
al. presented a collision attack using the fact that the probabilities of the j-th BSD digit
(trit) when kj = kj+1 can be distinguished from the probabilities of that same digit when
kj 6= kj+1. Although a given scalar k may have many different BSD representations, the
authors of [23] proved that the number of internal states remain very small. At each step
of computation, at most two intermediate values can be reached. This is illustrated in
Fig. 2 for k = 10273.

0

1

-1

-31

33

-3

-7

-15 -95

-2015

2081-223

-479

-991
-6111

10273

Fig. 2. The graph of internal states of the BSD randomized scalar multiplication for k = 10273.

As pointed out in their conclusion:

“Any reasonable countermeasure based on randomizing the multiplication algorithm
should guarantee locally a large number of possible internal states and a large num-
ber of possible transitions from each state”.

Our algorithm satisfies both conditions. From each internal state, there exists exactly
n transitions3 given by the n congruence classes covering that integer. By choosing one of
these n possible transitions uniformly at random, i.e. with probability 1/n, our algorithm
is locally robust. In Fig. 3, we give the transition graph for k = 10273 obtained with an
exact 3-cover. It should be compared to the graph in Fig. 2 obtained for the same scalar
using the BSD randomization.

The Markov analysis from Section 2.3 provides some insight into the global randomness
aspects of the algorithm. It is known that the stationary distribution π∞ = limn→∞ πA

n

for any probability distribution π. A corollary of theorem 1 is that any infinite walk across
the transition graph of the Markov chain ends on any congruence classes modulo ` with
equal probability 1/`. Therefore, the class of congruence modulo (any factor of) ` of the

2 See for example GMP’s exact division by 3 in mpn_divexact_by3.
3 For small values, although an integer, say j, is still covered by exactly n congruence classes, there might
be fewer transitions (see Fig. 3 for the states 1, 2, 3, 5, 6, 10, 17). This is because when k is small, it
happens that k = r for some (m, r) ∈ S(j).
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Fig. 3. The graph of internal states of an exact 3-cover for k = 10273.

internal state reached after sufficiently many steps is independent from the starting value
k. This alone may not be sufficient, but certainly reinforce the resistance of our algorithm
against attacks that require multiple executions of the algorithm.

The level of randomization of a given covering system can be evaluated by counting
the number of paths from k to 0 in the transition graph corresponding to k. It is equal to
Bk,0, where B = A+A2 + · · ·+Av, and where v is the length of the longest path in that
direct acyclic graph (easily obtained by topological ordering). Our numerical experiments
suggest that this number of paths grows exponentially in both k and the degree n of the
covering system. For example, an exact 4-cover produces roughly 244 paths for a 64-bit
scalar and 289 paths for a 128-bit scalar, whereas an exact 8-cover leads to 249 and 2101

paths respectively for scalars of the same sizes. Even for small values of n, the number of
paths seems large enough to guarantee a high level of randomization randomization: an
exact 2-cover produces 261 paths for a 128-bit scalar and 2121 paths for a 256-bit scalar.

4 What about other attacks?

4.1 Timing attacks

In general timing attacks are mainly considered in the software model. However, as pointed
out in [14] the threat should not be ignored in the hardware model.

Timing attacks require multiple execution of the algorithm. They exploit dependencies
between the execution time of the algorithm and the secret data manipulated through
its running. Such attacks may be prevented by ensuring that the computation time is
independent from that secret value; a property commonly guaranteed using constant time
algorithms.

Clearly, in the present form, our algorithm does not run in constant time. The time
for computing [k]P may vary depending on the path from k to 0 taken at random in the
course of the algorithm (see Figure 3). Let us recall Kocher’s advices from [19, page 7]:

“The most obvious way to prevent timing attacks is to make all operations take
exactly the same amount of time. Unfortunately this is often difficult. [...] Another
approach is to make timing measurements so inaccurate that the attack becomes
unfeasible.”

Therefore, a natural question is: how much information can be deduced from the vary-
ing running time of our algorithm?



In [6], Brumley and Tuveri presented a successful timing attack on an OpenSSL im-
plementation of the signature phase of ECDSA, in particular a scalar multiplication [k]P ,
where nonce k is selected uniformly at random. The attack exploits the dependency be-
tween the computation time and the bitlength of k. It operates in two phases: first, using
the time dependency, a certain amount of signatures coming from “short” scalars are col-
lected. Then, the missing bits are recovered using lattice based techniques. The attack
works because the first phase is effective. The filtered signatures correspond to scalars
shorter than some fixed threshold with very high probability. As mentioned in [6], the at-
tack success rate decreases dramatically with the increase of false positives. The proposed
countermeasure consists in replacing k by an equivalent value k̂ of fixed bitlength. This
can be achieved by adding independently m and 2m to k and choosing for k̂ that result
of bitlength 1 + |m|, where m = ord(P ) and |m| stands for the bitlength of m. Obviously,
the same countermeasure does apply to any scalar multiplication algorithm.

So the above question becomes: how much information can be deduced from the run-
ning time of our algorithm for scalars of the same size?

Exploring the correlations between the computation time of our algorithm and some
useful information on the scalar is certainly a question of utmost importance. A possible
strategy towards a more regular algorithm would be to implement each step using the
same sequence of operations. For instance, this could be achieved by defining, for each
i ∈ {0, . . . , `− 1}, a dedicated sequence of operation, possibly not optimal, for computing
[mi]Q+ [ri]P for each (mi, ri) ∈ S(i). The computational cost and effectiveness of such an
approach will be the subject of further research.

4.2 Simple attacks:

In order to protect an algorithm against SPA-type attacks, one needs to guarantee that the
observation of a single trace does not provide any hint to an attacker. For example, double-
and-add algorithms are vulnerable to SPA when the execution trace allows to distinguish
segments which correspond to doublings from those which correspond to general additions.

As stated in Section 2, a CSC-based algorithm reduces to a sequence of operations of
the form [mi]Q + [ri]P , where the set of possible values (ri,mi) depends on the covering
system. For example, with the exact 3-cover used to produce Figure 3, a possible sequence
for k = 10273 is: (1 (mod 12), 0 (mod 4), 10 (mod 12), 5 (mod 12), 1 (mod 12)). It
correspond to the path

10273→ 856→ 214→ 17→ 1→ 0.

The tail-end-recursion can easily be rewritten as: 10273 = 1 + 12(0 + 4(10 + 12(5 + 12(1 +
12.0)))) so that:

[10273]P = P + [12]([4]([10]P + [12]([5]P + [12](P + [12]O)))) (5)

If one assumes that the points [ri]P are precomputed and if one uses a left-to-right
double-and-add algorithm to evaluate the terms [mi]P , the execution trace T (k) looks
like:

T (10273) = D A D D A D A D D A D A D D A D D D A D D A. (6)

Clearly, the mapping T from k to the pattern of the trace is not injective. For example,
with the same exact 3-cover, the above pattern could be attained starting from

43455 = 3 + 4(7 + 8(1 + 12(5 + 12(9 + 12.0)))),



or
14649 = 9 + 12(0 + 4(5 + 12(1 + 12(2 + 12.0)))),

and many other scalars. It is not difficult to check that the above expressions map to the
trace given in (6).

However, this property might not be sufficient to guarantee that the mapping T cannot
be inverted. From the congruence classes of u3c-48-24, one remarks that the pattern
D A D D A, which repeats three times at the beginning of trace (6), can only correspond to
one of the 6 congruence classes modulo 12. The ending pattern D D D A D D A however, may
be split into D D followed by D A D D A or into D D D A followed by D D A. The former option
corresponds to any combination of the form 0 (mod 4), a 6= 0 (mod 12), whereas the
latter agrees with any combination of the form a 6= 0 (mod 8), 3 (mod 4). For large k, the
combinatorial explosion will probably be too important to recover the correct scalar with
reasonably high probability. Nevertheless, for some covering systems, pattern matching
techniques may be applied to significantly reduce the complexity of a brute force attack.
It is therefore important to add some countermeasures against simple attacks, for instance
using any of the following implementation options. Note that the later two are specific to
our algorithm.

Unified/complete group law: If the group admits a complete group law, no particular
care seems to be necessary since addition and doubling cannot be differentiated. Hence,
the computation trace only shows a sequence of identical operations, namely A A A ... A A.
There are several recognized families of elliptic curves that enjoy this property.

Side-channel atomicity: For (hyper)elliptic curves, another option is to use the concept
of side-channel atomicity first suggested by Chevalier-Mames et al. [9]. An atomic block Γ
is a sequence of (possibly dummy) field operations, such that all curve operations (addition,
doubling, tripling, etc.) can be expressed using a repetition of that block Γ . The different
curve operations involved in the scalar multiplication are thus indistinguishable. Note
that this approach offers the ability to implement optimized formulæ for small scalar
multiplication [mi]P for each modulo appearing in the covering system. For example, the
fast m-tupling formulæ proposed in the literature [5], mainly for genus 1 curves, may be
used to increase efficiency.

Regular double ladder: If one does not precompute the point [ri]P , a third (virtual)
approach would be to implement [mi]Q + [ri]P using a regular double ladder. Such a
regular variant of the Straus-Shamir double ladder was proposed in [10] by Ciet and Joye;
unfortunately their algorithm is incorrect. The various known alternatives require at least
one extra register and are thus much less efficient. If such a regular efficient double ladder
does exist, it seems perfectly suited to our CSC-based algorithm.

Low level randomization: The trace T (10273) in (6) was obtained by considering a
left-to-right double-and-add algorithm for computing [mi]Q and precomputed points [ri]P .
To further randomize the algorithm, we could implement several addition chains for those
small values (mi, ri) and select one of those at random at each step.

5 Covering systems generation

In order to run our numerical experiments, we had to generate exact n-covers. For that pur-
pose we chose to generate them randomly. Given a set of predefined moduli {m1, . . . ,mt}



and a covering degree n, the problem consists of assigning integer values to r1, . . . , rt such
that:

i ) ri ∈ {0, . . . ,mi − 1} for all i ∈ {1, . . . , t};
ii ) mi = mj ⇒ ri 6= rj for all i, j ∈ {1, . . . , t}; and
iii ) for all k ∈ {0, . . . , `}, |S(k)| = n.

We used a very elementary greedy approach. Starting with the smallest moduli, we selected
values ri at random until a solution is found. When the value assigned to a residue produces
an integer in {0, . . . , `} that is covered by more than n congruence classes, we backtrack
by selecting another value for the most recently assigned residue. To speed up the process,
we use a restart heuristic after a small number of backtrack steps. The resulting covering
systems such as those listed in Table 3 are denoted csn-`-t, where n stands for the covering
degree, and ` = lcm(m1, . . . ,mt).

In order to simplify the generation of exact n-covers, we may require that each modulo
should cover the same proportion of integers. We called the resulting covering systems
“uniform” and named them unc-`-t. In our experiments, all the uniform covering systems
contain exactly 2n moduli, all of which are even, so that each modulo covers exactly
half of the integers as illustrated in Figure 4. This way, we also ensure that our covering

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

1 (2)
2, 3 (4)

0, 2, 4 (6)
0, 1, 4, 5 (8)

Fig. 4. 1 (mod 2); 2, 3 (mod 4); 0, 2, 4 (mod 6); 0, 1, 4, 5 (mod 8) is a uniform exact 2-cover. Each modulo
covers exactly 12 integers out of 24.

systems do not contain the whole set of congruence classes for a given modulo such as
0 (mod 2); 1 (mod 2). We acknowledge that this generation strategy is pretty basic. It
proved sufficient to generate exact n-covers of reasonably large covering degree4 but can
certainly be improved using more sophisticated tools, for example using efficient CSP5

heuristics.

6 Conclusions

In this paper, we proposed a new randomized scalar multiplication algorithm with built-in
protection against differential side-channel attacks. Randomization is provided by the use
of exact covering systems of congruences. Even for small covering degrees, we showed that
it guarantees a very large number of possible internal states and a large number of possible
transitions from each state. Our analysis is presented for elliptic curves but the approach
immediately translates to other types of finite groups used in public key cryptography.

It is well known that Coron’s scalar blinding procedure may oblige to use a random
factor r of size roughly equivalent to that of the group order #E if one wants k + r#E
to mask all the bits of k. This is in general the case when the prime chosen to define the
elliptic curve is very close to a power of 2. In this case, a randomized 256-bit scalar yields

4 Our largest covering system is an exact 12-cover comprised of more than 3000 congruence classes.
5 constraint satisfaction problem



a 512-bit scalar multiplication. Regarding differential attacks, the built-in randomization
of our algorithm may not necessitate such a large random factor r. The extra cost implied
by integer arithmetic could then be largely compensated.

How much information can be deduced from the varying running time of our algo-
rithm remains a question of primary importance currently under investigation. For our
experiments, we generated exact n-covers using a greedy strategy. This can certainly be
improved. Short-term future work also includes an optimized implementation and the
generation of optimal covering systems.
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A Transition matrix and stationary probability

Given any covering system S, the corresponding transition matrix can be computed using
Algorithm 3. If integer i is covered by more than one congruence class, we assume that
the choice of which covering class is selected is computed uniformly at random, hence with
probability 1/|S(i)|.

Algorithm 3 Transition matrix of Markov chain
Input: S a covering system of congruences
Output: The transition matrix A associated to S
1: A := (0)
2: for i = 0, . . . , `− 1 do
3: for (r, m) ∈ S(i) do
4: for j = 0, . . . , `− 1; j ≡ (i− r)/m (mod `/m) do
5: Ai,j := Ai,j + 1/(|S(i)|m)
6: return A

The stationary probability vector of A is the vector π∞ such that π∞A = π∞. It is
known that π∞ = limn→∞ πA

n, for any probability distribution π. Let B = limn→∞A
n.

We have
BA = lim

n→∞
AnA = lim

n→∞
An+1 = lim

n→∞
An = B.

And thus B(A−Id) = 0. This equality can be seen as the union of several linear systems of
equations of the form BCj = 0. Since B is stochastic, we also have a system of stochastic
equations given by B1t = 1t, where 1 is the 1-vector. A known trick6 then consists of
replacing the last system of equations BCj = 0 by these stochastic equations. Denoting by
f the application which replaces the last column of a matrix by 1t, we get Bf(A− Id) =
f(0) so that

B = f(0) (f(A− Id))−1 . (7)

If, in addition, the Markov chain is irreducible and aperiodic, π∞ is unique and satisfies

π∞ = (0, . . . , 0, 1) (f(A− Id))−1 . (8)

6 Yet rarely explained clearly!
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