
HAL Id: lirmm-01341158
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01341158v1

Submitted on 17 Jul 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Query processing in multistore systems: an overview
Carlyna Bondiombouy, Patrick Valduriez

To cite this version:
Carlyna Bondiombouy, Patrick Valduriez. Query processing in multistore systems: an overview. IJCC
- International Journal of Cloud Computing, 2016, 5 (4), pp.309-346. �10.1504/IJCC.2016.080903�.
�lirmm-01341158�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01341158v1
https://hal.archives-ouvertes.fr


Query Processing in Multistore Systems: an overview 1

Query Processing in Multistore Systems: an overview

Carlyna Bondiombouy* and Patrick Valduriez

Inria and LIRMM,
University of Montpellier,
Montpellier,France
Email: carlyna.bondiombouy@inria.fr
Email: patrick.valduriez@inria.fr
*Corresponding author

Abstract: Building cloud data-intensive applications often requires using multiple data stores
(NoSQL, HDFS, RDBMS, etc.), each optimised for one kind of data and tasks. However, the
wide diversification of data store interfaces makes it difficult to access and integrate data from
multiple data stores. This important problem has motivated the design of a new generation of
systems, called multistore systems, which provide integrated or transparent access to a number
of cloud data stores through one or more query languages. In this paper, we give an overview of
query processing in multistore systems. We start by introducing the recent cloud data management
solutions and query processing in multidatabase systems. Then, we describe and analyse some
representative multistore systems, based on their architecture, data model, query languages and
query processing techniques. To ease comparison, we divide multistore systems based on the level
of coupling with the underlying data stores, i.e., loosely-coupled, tightly-coupled and hybrid. Our
analysis reveals some important trends, which we discuss. We also identify some major research
issues.

Keywords: cloud data stores; multistore systems; multidatabase systems; query processing.

Reference to this paper should be made as follows: Bondiombouy, C. and Valduriez, P. (xxxx)
‘Query processing in multistore systems: an overview’, Int. J. Cloud Computing, Vol. X, No. Y,
pp.xxx–xxx.

Biographical notes: Carlyna Bondiombouy is a Ph.D. student at University of Montpellier,
France. She is working on query processing in cloud. She holds a Master degree in information
security from University Cheikh Anta Diop, Dakar, Senegal.

Patrick Valduriez is a senior researcher at Inria, working on big data management. He has authored
over 250 technical papers and several textbooks, among which “Principles of Distributed Database
Systems”. He currently serves as associate editor of several journals, including VLDBJ, DAPD
and Internet and Databases. He has served as PC chair or general chair of major conferences such
as SIGMOD and VLDB. He obtained the best paper award at VLDB00. He was the recipient of
the 1993 IBM scientific prize in Computer Science in France and the 2014 Innovation Award from
Inria – French Academy of Science – Dassault Systems. He is an ACM Fellow.

1 Introduction

A major trend in data management for the cloud is the understanding that there is ‘no one size fits all’
solution. Thus, there has been a blooming of different cloud data management solutions, specialised
for different kinds of data and tasks and able to perform orders of magnitude better than traditional



2 C. Bondiombouy and P. Valduriez

relational DBMS (RDBMS). Examples of new data management technologies include distributed file
systems (e.g., GFS and HDFS), NoSQL data stores (e.g., Dynamo, Bigtable, Hbase, Mongodb, Neo4j),
and data processing frameworks (e.g., MapReduce, Spark).

This has resulted in a rich offering of services that can be used to build cloud data-intensive applications
that can scale and exhibit high performance. However, this has also led to a wide diversification of data
store interfaces and the loss of a common programming paradigm. Thus, this makes it very hard for a user
to build applications that use multiple data stores, e.g., relational, document and graph databases

The problem of accessing heterogeneous data sources, i.e. managed by different data management
systems such as RDBMS or XML DBMS, has long been studied in the context of multidatabase systems
[ÖV11] (also called federated database systems, or more recently data integration systems [DHI12]). Most
of the work on multidatabase query processing has been done in the context of the mediator-wrapper
architecture, using a declarative, SQL-like language. The mediator-wrapper architecture allows dealing
with three major properties of the data sources: distribution (i.e. located at different sites), heterogeneity
(i.e. with different data models and languages) and autonomy (i.e. under local control) [ÖV11].

The state-of-the-art solutions for multidatabase query processing can be useful to transparently access
multiple data stores in the cloud. However, operating in the cloud makes it quite different from accessing
data sources on a wide-area network or the Internet. First, the kinds of queries are different. For instance,
a web data integration query, e.g. from a price comparator, could access lots of similar web data sources,
whereas a cloud query should be on a few but quite different cloud data stores and the user needs to have
access rights to each data store. Second, both mediator and data source wrappers can only be installed at
one or more servers that communicate with the data sources through the network. However, operating in
a cloud, where data stores are typically distributed over the nodes of a computer cluster, provides more
control over where the system components can be installed and thus, more opportunities to design an
efficient architecture.

These differences have motivated the design of more specialized multistore systems [KVB+15] (also
called polystores [DES+15]) that provide integrated access to a number of cloud data stores through one or
more query languages. Several multistore systems are being built, with different objectives, architectures
and query processing approaches, which makes it hard to compare them. To ease comparison, we divide
multistore systems based on the level of coupling with the underlying data stores, i.e. loosely-coupled,
tightly-coupled and hybrid.

Loosely-coupled systems are reminiscent of multidatabase systems in that they can deal with
autonomous data stores, which can then be accessed through the multistore system common language as
well as separately through their local language.

Tightly-coupled systems trade autonomy for performance, typically in a shared-nothing cluster, so that
data stores can only be accessed through the multistore system, directly through their local language.

Hybrid systems tightly-couple some data stores, typically an RDBMS, and loosely-couple some others,
typically HDFS through a data processing framework like MapReduce or Spark.

In this paper, we give an overview of query processing in multistore systems. The objective is not to
give an exhaustive survey of all systems and techniques, but to focus on the main solutions and trends,
based on the study of nine representative systems (3 for each class). The rest of the paper is organized as
follows. In Section 2, we introduce cloud data management, including distributed file systems, NoSQL
systems and data processing frameworks. In Section 3, we review the main query processing techniques
for multidatabase systems, based on the mediator-wrapper architecture. Finally, in Section 4, we analyze
the three kinds of multistore systems, based on their architecture, data model, query languages and query
processing techniques. Section 5 concludes and discusses open issues.



Query Processing in Multistore Systems: an overview 3

2 Cloud Data Management

A cloud architecture typically consists of multiple sites, i.e. data centers at different geographic locations,
each one providing computing and storage resources as well as various services such as application (AaaS),
infrastructure (IaaS), platform (PaaS), etc. To provide reliability and availability, there is always some
form of data replication between sites.

For managing data at a cloud site, we could rely on RDBMS technology, all of which have a distributed
and parallel version. However, RDBMSs have been lately criticized for their “one size fits all” approach
[SAD+10]. Although they have been able to integrate support for all kinds of data (e.g. multimedia objects,
XML documents) and new functions, this has resulted in a loss of performance, simplicity and flexibility
for applications with specific, tight performance requirements. Therefore, it has been argued that more
specialized DBMS engines are needed. For instance, column-oriented DBMSs [AMH08], which store
column data together rather than rows in traditional row-oriented RDBMSs, have been shown to perform
more than an order of magnitude better on Online Analytical Processing (OLAP) workloads. Similarly,
Data Stream Management Systems (DSMSs) are specifically architected to deal efficiently with data
streams, which RDBMSs cannot even support [NPP13].

The “one size does not fit all” argument generally applies to cloud data management as well. However,
internal clouds used by enterprise information systems, in particular for Online Transaction Processing
(OLTP), may use traditional RDBMS technology. On the other hand, for OLAP workloads and web-based
applications on the cloud, RDBMSs provide both too much (e.g. transactions, complex query language,
lots of tuning parameters), and too little (e.g. specific optimizations for OLAP, flexible programming
model, flexible schema, scalability) [Ram09].

Some important characteristics of cloud data have been considered for designing data management
solutions. Cloud data can be very large, unstructured or semi structured, and typically append-only (with
rare updates). And cloud users and application developers may be in high numbers, but not DBMS experts.
Therefore, current cloud data management solutions have traded ACID (Atomicity, Consistency, Isolation,
Durability) transactional properties for scalability, performance, simplicity and flexibility.

The preferred approach of cloud providers is to exploit a shared-nothing cluster [ÖV11], i.e. a set of
loosely connected computer servers with a very fast, extensible interconnect (e.g. Infiniband). When using
commodity servers with internal direct-attached storage, this approach provides scalability with excellent
performance-cost ratio. Compared to traditional DBMSs, cloud data management uses a different software
stack with the following layers: distributed storage, database management and distributed processing. In
the rest of this section, we introduce this software stack and present the different layers in more details.

Cloud data management (see Figure 1) relies on a distributed storage layer, whereby data is typically
stored in files or objects distributed over the nodes of a shared-nothing cluster. This is one major difference
with the software stack of current DBMSs that relies on block storage. Interestingly, the software stack of
the first DBMSs was not very different from that used now in the cloud. The history of DBMSs is interesting
to understand the evolution of this software stack. The very first DBMSs, based on the hierarchical or
network models, were built as extensions of a file system, such as COBOL, with inter-file links. And the first
RDBMSs too were built on top of a file system. For instance, the famous Ingres RDBMS [SKWH76] was
implemented atop the Unix file system. But using a general-purpose file system was making data access
quite inefficient, as the DBMS could have no control over data clustering on disk or cache management in
main memory. The main criticism for this file-based approach was the lack of operating system support
for database management (at that time) [Sto81]. As a result, the architecture of RDBMSs evolved from
file-based to block-based, using a raw disk interface provided by the operating system. A block-based
interface provides direct, efficient access to disk blocks (the unit of storage allocation on disks). Today all
RDBMSs are block-based, and thus have full control over disk management.

The evolution towards parallel DBMSs kept the same approach, in particular, to ease the transition
from centralized systems. Parallel DBMSs use either a shared-nothing or shared-disk architecture. With



4 C. Bondiombouy and P. Valduriez

shared-nothing, each node (e.g. a server in a cluster) has exclusive access to its local disk through internal
direct-attached storage. Thus, big relational tables need be partitioned across multiple disks to favor parallel
processing. With shared-disk, the disks are shared among all nodes through a storage area network, which
eases parallel processing. However, since the same disk block can be accessed in concurrent mode by
multiple cluster nodes, a distributed lock manager [ÖV11] is necessary to avoid write conflicts and provide
cache coherency. In either architecture, a node can access blocks either directly through direct-attached
storage (shared-nothing) or via the storage area network (shared-disk).

In the context of cloud data management, we can identify two main reasons why the old DBMS
software stack strikes back. First, distributed storage can be made fault-tolerant and scalable (e.g. HDFS),
which makes it easier to build the upper data management layers atop (see Figure 1). Second, in addition
to the NoSQL layer (e.g. Hbase over HDFS), data stored in distributed files can be accessed directly by a
data processing framework (e.g. MapReduce or Spark), which makes it easier for programmers to express
parallel processing code. The distributed processing layer can then be used for declarative (SQL-like)
querying, e.g. with a framework like Hive over MapReduce. Finally, at the top layer, tools such as Pegasus
(graph mining), R (statistics) and Mahout (machine learning) can be used to build more complex big data
analytics.

Figure 1 Cloud data management software stack

2.1 Distributed Storage

The distributed storage layer of a cloud typically provides two solutions to store data, files or objects,
distributed over cluster nodes. These two solutions are complementary, as they have different purposes
and they can be combined.

File storage manages data within unstructured files (i.e. sequences of bytes) on top of which data
can be organized as fixed-length or variable-length records. A file system organizes files in a directory
hierarchy, and maintains for each file its metadata (file name, folder position, owner, length of the content,
creation time, last update time, access permissions, etc.), separate from the content of the file. Thus, the
file metadata must first be read for locating the file’s content. Because of such metadata management, file
storage is appropriate for sharing files locally within a cloud data center and when the number of files
are limited (e.g. in the hundreds of thousands). To deal with big files that may contain high numbers of
records, files need be partitioned and distributed, which requires a distributed file system.

Object storage manages data as objects. An object includes its data along with a variable amount of
metadata, and a unique identifier in in a flat object space. Thus, an object can be represented as a triple (oid,
data, metadata), and once created, it can be directly accessed by its oid. The fact that data and metadata
are bundled within objects makes it easy to move objects between distributed locations. Unlike in file
systems where the type of metadata is the same for all files, objects can have variable amounts of metadata.



Query Processing in Multistore Systems: an overview 5

This allows much user flexibility to express how objects are protected, how they can be replicated, when
they can be deleted, etc. Using a flat object space allows managing massive amounts e.g. billions or
trillions) of unstructured data. Finally, objects can be easily accessed with a simple REST-based API with
put and get commands easy to use on Internet protocols. Object stores are particularly useful to store a
very high number of relatively small data objects, such as photos, mail attachments, etc. Therefore, most
cloud providers leverage an object storage architecture, e.g. Amazon Web Services S3, Rackspace Files,
Microsoft Azure Vault Storage and Google Cloud Storage.

Distributed file systems in the cloud can then be divided between block-based, extending a traditional
file system, and object-based, leveraging an object store. Since these are complementary, there are also
systems that combine both. In the rest of this section, we illustrate these three categories with representative
systems.

2.1.1 Block-based Distributed File Systems

One of the most influential systems in this category is Google File System (GFS). GFS [GGL03] has been
developed by Google (in C++ on top of Linux) for its internal use. It is used by many Google applications
and systems, such as Bigtable and MapReduce, which we discuss next.

Similar to other distributed file systems, GFS aims at providing performance, scalability, fault-tolerance
and availability. However, the targeted systems, shared-nothing clusters, are challenging as they are made
of many (e.g. thousands of) servers built from inexpensive hardware. Thus, the probability that any server
fails at a given time is high, which makes fault-tolerance difficult. GFS addresses this problem. It is also
optimized for Google data-intensive applications, such as search engine or data analysis. These applications
have the following characteristics. First, their files are very large, typically several gigabytes, containing
many objects such as web documents. Second, workloads consist mainly of read and append operations,
while random updates are rare. Read operations consist of large reads of bulk data (e.g. 1 MB) and small
random reads (e.g. a few KBs). The append operations are also large and there may be many concurrent
clients that append the same file. Third, because workloads consist mainly of large read and append
operations, high throughput is more important than low latency.

GFS organizes files as a tree of directories and identifies them by pathnames. It provides a file system
interface with traditional file operations (create, open, read, write, close, and delete file) and two additional
operations: snapshot and record append. Snapshot allows creating a copy of a file or of a directory tree.
Record append allows appending data (the “record”) to a file by concurrent clients in an efficient way.
A record is appended atomically, i.e. as a continuous byte string, at a byte location determined by GFS.
This avoids the need for distributed lock management that would be necessary with the traditional write
operation (which could be used to append data).

The architecture of GFS is illustrated in Figure 2. Files are divided into fixed-size partitions, called
chunks, of large size, i.e. 64 MB. The cluster nodes consist of GFS clients that provide the GFS interface
to applications, chunk servers that store chunks and a single GFS master that maintains file metadata such
as namespace, access control information, and chunk placement information. Each chunk has a unique id
assigned by the master at creation time and, for reliability reasons, is replicated on at least three chunk
servers (in Linux files). To access chunk data, a client must first ask the master for the chunk locations,
needed to answer the application file access. Then, using the information returned by the master, the client
can request the chunk data to one of the replicas.

This architecture using single master is simple. And since the master is mostly used for locating chunks
and does not hold chunk data, it is not a bottleneck. Furthermore, there is no data caching at either clients
or chunk servers, since it would not benefit large reads. Another simplification is a relaxed consistency
model for concurrent writes and record appends. Thus, the applications must deal with relaxed consistency
using techniques such as checkpointing and writing self-validating records. Finally, to keep the system
highly available in the face of frequent node failures, GFS relies on fast recovery and replication strategies.



6 C. Bondiombouy and P. Valduriez

Figure 2 GFS architecture

There are open source implementations of GFS, such as Hadoop Distributed File System (HDFS), a
popular Java product. HDFS has been initially developed by Yahoo and is now the basis for the successful
Apache Hadoop project, which together with other products (MapReduce, Hbase) has become a standard
for big data processing. There are other important open source block-based distributed file systems for
cluster systems, such as GlusterFS for shared-nothing and Global File System 2 (GFS2) for shared-disk,
both being now developed by Red Hat for Linux.

2.1.2 Object-based Distributed File Systems

One of the first systems in this category is Lustre, an open source file system [Whi12]. Lustre was initially
developed (in C) at Carnegie Mellon University in the late 1990s, and has become very popular in High
Performance Computing (HPC) and scientific applications in the cloud, e.g. Intel Cloud Edition for Lustre.
The architecture of the Lustre file system has three main components:

• One or more metadata servers that store namespace metadata, such as filenames, directories, access
permissions, etc. Unlike block-based distributed file systems, such as GFS and HDFS, where the
metadata server controls all block allocations, the Lustre metadata server is only involved when
opening a file and is not involved in any file I/O operations, thus avoiding scalability bottlenecks.

• One or more object storage servers that store file data on one or more object storage targets (OSTs).
An object storage server typically serves between two and eight OSTs, with each OST managing a
single local disk file system.

• Clients that access and use the data. Lustre presents all clients with a unified namespace for all of the
files and data, using the standard file system interface, and allows concurrent and coherent read and
write access to the files in the file system.

These three components can be located at different server nodes in a shared-disk cluster, with disk
storage connected to the servers using storage area network. Clients and servers are connected with
the Lustre file system using a specific communication infrastructure called Lustre Networking (LNET).
Lustre provides cache consistency of files’ data and metadata by a distributed lock manager. Files can
be partitioned using data striping, a technique that segments logically sequential data so that consecutive
segments are stored on different disks. This is done by distributing objects across a number of object
storage servers and OSTs. To provide data reliability, objects in OSTs are replicated using primary-copy
replication and RAID6 disk storage technology.

When a client accesses a file, it completes a filename lookup on the metadata server and gets back
the layout of the file. Then, to perform read or write operations on the file, the client interprets the layout
to map the operation to one or more objects, each residing on a separate OST. The client then locks the
file range being operated on and executes one or more parallel read or write operations directly to the
OSTs. Thus, after the initial lookup of the file layout, unlike with block-based distributed file systems, the
metadata server is not involved in file accesses, so the total bandwidth available for the clients to read and
write data scales almost linearly with the number of OSTs in the file system.



Query Processing in Multistore Systems: an overview 7

Another popular open-source object-based distributed file system is XtreemFS [HCK+08]. XtreemFS
is highly fault-tolerant, handling all failure modes including network splits, and highly-scalable, allowing
objects to be partitioned or replicated across shared-nothing clusters and data centers.

2.1.3 Combining Block Storage and Object Storage

An important trend for data management in the cloud is to combine block storage and object storage
in a single system, in order to support both large files and high numbers of objects. The first system
that combined block and object storage is Ceph [WBM+06]. Ceph is an open source software storage
platform, now developed by Red Hat, that combines object, block, and file storage in a shared-nothing
cluster at exabyte scale. Ceph decouples data and metadata operations by eliminating file allocation tables
and replacing them with data distribution functions designed for heterogeneous and dynamic clusters of
unreliable object storage devices (OSDs). This allows Ceph to leverage the intelligence present in OSDs to
distribute the complexity surrounding data access, update serialization, replication and reliability, failure
detection, and recovery. Ceph and GlusterFS are now the two major storage platforms offered by Red Hat
for shared-nothing clusters.

HDFS, on the other hand, has become the De facto standard for scalable and reliable file system
management for big data. Thus, there is much incentive to add object storage capabilities to HDFS, in order
to make data storage easier for cloud providers and users. In Azure HDInsight, Microsoft’s Hadoop-based
solution for big data management in the cloud, HDFS is integrated with Azure Blob storage, the object
storage manager, to operate directly on structured or unstructured data. Blob storage containers store data
as key-value pairs, and there is no directory hierarchy.

Hortonworks, a distributor of Hadoop software for big data, has recently started a new initiative called
Ozone, an object store that extends HDFS beyond a file system, toward a more complete storage layer.
Similar to GFS, HDFS separates metadata management from a block storage layer. Ozone uses the HDFS
block storage layer to store objects identified by keys and adds a specific metadata management layer on
top of block storage.

2.2 NoSQL Systems

NoSQL systems are specialized DBMSs that address the requirements of web and cloud data management.
As an alternative to relational databases, they support different data models and different languages than
standard SQL. They emphasize scalability, fault-tolerance and availability, sometimes at the expense of
consistency. NoSQL (Not Only SQL) is an overloaded term, which leaves much room for interpretation
and definition. In this paper, we consider the four main categories of NoSQL systems that are used in the
cloud: key-value, wide column, document and graph. In the rest of this section, we introduce each category
and illustrate with representative systems.

2.2.1 Key-Value Stores

In the key-value data model, all data is represented as key-value pairs, where the key unlikely identifies
the value. Object stores, which we discussed above, can be viewed as a simple form of key-value store.
However, the keys in key-value stores can be sequences of bytes of arbitrary length, not just positive
integers, and the values can be text data, not just Blobs. Key-values stores are schemaless, which yields
great flexibility and scalability. They typically provide a simple interface such as put (key, value), value=get
(key), delete (key).

A popular key-value store is Dynamo [DHJ+07], which is used by some of Amazon’s core services that
need high availability. To achieve scalability and availability, Dynamo sacrifices consistency under some
failure scenarios and uses a synthesis of well known peer-to-peer techniques [PAD12]. Data is partitioned
and replicated across multiple cluster nodes in several data centers, which allows to handle entire data



8 C. Bondiombouy and P. Valduriez

center failures without a data outage. The consistency among replicas during updates is maintained by
a quorum-like technique and an asynchronous update propagation protocol. Dynamo employs a gossip
based distributed failure detection and membership protocol. To facilitate replica consistency, it makes
extensive use of object versioning and application-assisted conflict resolution in a manner that provides a
novel interface for developers to use. Other popular key-value stores are Memcached, Riak and Redis.

An extended form of key-value store is able to store records, as sets of key-value pairs. One key,
called major key or primary key, e.g. a social security number, uniquely identifies the record among a
collection of records, e.g. people. The keys are usually sorted, which enables range queries as well as
ordered processing of keys. Amazon SimpleDB and Oracle NoSQL Database are examples of advanced
key-value stores. Many systems provide further extensions so that we can see a smooth transition to wide
column store and document stores, which we discuss next.

2.2.2 Wide Column Stores

Wide column stores are advanced key-value stores, where key-value pairs can be grouped together in
columns within tables. They combine some of the nice properties of relational databases, i.e. representing
data as tables, with the flexibility of key-value stores, i.e. schemaless data.

Each row in a table is uniquely identified by a row key, which is like a mono-attribute key in a relational
table. But unlike in a relational table, where columns can only contain atomic values, tables contain wide
columns, called column families. A column family is a set of columns, each of which has a name, a value,
and a timestamp (used for versioning) and within a column family, we can have different columns in each
row. Thus, a column family is like a nested table within a column. Figure 3 shows a simple example of
wide column table with two rows. The first column is the row key. The two other columns are column
families.

Figure 3 A wide column table with two rows

Wide column stores extend the key-value store interface with more declarative constructs that allow
scans, exact-match and range queries over column families. They typically provide an API for these
constructs to be used in a programming language. Some systems also provide an SQL-like query language,
e.g. Cassandra Query Language (CQL).

At the origin of wide column stores is Google Bigtable [CDG+08], a database storage system for
shared-nothing clusters. Bigtable uses GFS for storing structured data in distributed files, which provides
fault-tolerance and availability. It also uses a form of dynamic data partitioning for scalability. And like
GFS, it is used by popular Google applications, such as Google Earth, Google Analytics and Google+.

In a Bigtable row, a row key is an arbitrary string (of up to 64KB in the original system). A column
family is a unit of access control and compression. A column family is defined as a set of columns, each
identified by a column key. The syntax for naming column keys is family:qualifier, e.g. “email:gmail.com”
in Figure 3. The qualifier, e.g. “gmail.com”, is like a relational attribute value, but used as a name as part
of the column key to represent a single data item. This allows the equivalent of multi-valued attributes
within a relational table, but with the capability of naming attribute values. In addition, the data identified
by a column key within a row can have multiple versions, each identified by a timestamp (a 64 bit integer).

Bigtable provides a basic API for defining and manipulating tables, within a programming language
such as C++. The API offers various operators to write and update values, and to iterate over subsets of



Query Processing in Multistore Systems: an overview 9

data, produced by a scan operator. There are various ways to restrict the rows, columns and timestamps
produced by a scan, as in a relational select operator. However, there are no complex operators such as
join or union, which need to be programmed using the scan operator. Transactional atomicity is supported
for single row updates only.

To store a table in GFS, Bigtable uses range partitioning on the row key. Each table is divided into
partitions, each corresponding to a row range. Partitioning is dynamic, starting with one partition (the
entire table range) that is subsequently split into multiple partitions as the table grows. To locate the (user)
partitions in GFS, Bigtable uses a metadata table, which is itself partitioned in metadata tablets, with a
single root tablet stored at a master server, similar to GFS’s master. In addition to exploiting GFS for
scalability and availability, Bigtable uses various techniques to optimize data access and minimize the
number of disk accesses, such as compression of column families as in column stores, grouping of column
families with high locality of access and aggressive caching of metadata information by clients.

Bigtable builds on other Google technologies such as GFS and Chubby Lock Service. In May 2015,
a public version of Bigtable was launched as Google Cloud Bigtable. There are popular open source
implementations of Bigtable, such as: Hadoop Hbase that runs on top of HDFS; Cassandra that combines
ideas from Bigtable and DynamoDB; and Accumulo.

2.2.3 Document Stores

Document stores are advanced key-value stores, where keys are mapped into values of document type, such
as JSON, YAML or XML. Documents are typically grouped into collections, which play a role similar to
relational tables. However, documents are different than relational tuples. Documents are self-describing,
storing data and metadata (e.g. markups in XML) altogether and can be different from one another within
a collection. Furthermore, the document structures are hierarchical, using nested constructs, e.g. nested
objects and arrays in JSON. In addition to the simple key-value interface to retrieve documents, document
stores offer an API or query language that retrieve documents based on their contents. Document stores
make it easier to deal with change and optional values, and to map into program objects. This makes
them attractive for modern web applications, which are subject to continual change, and where speed of
deployment is important.

The most popular NoSQL document store is MongoDB [PHM10], an open source software written
in C++. MongoDB provides schema flexibility, high availability, fault-tolerance and scalability in shared-
nothing cluster. It stores data as documents in BSON (Binary JSON), an extension of JSON to include
additional types such as int, long, and floating point. BSON documents contain one or more fields, and
each field contains a value of a specific data type, including arrays, binary data and sub-documents.

MongoDB provides a rich query language to update and retrieve BSON data as functions expressed in
JSON. The query language can be used with APIs in various programming languages. It allows key-value
queries, range queries, geospatial queries, text search queries, and aggregation queries. Queries can also
include user-defined JavaScript functions.

To provide efficient access to data, MongoDB includes support for many types of secondary indexes
that can be declared on any field in the document, including fields within arrays. These indexes are used
by the query optimizer. To scale out in shared-nothing clusters of commodity servers, MongoDB supports
different kinds of data partitioning: range-based (as in Bigtable), hash-based and location-aware (whereby
the user specifies key-ranges and associated nodes). High-availability is provided through primary-copy
replication, with asynchronous update propagation. Applications can optionally read from secondary
replicas, where data is eventually consistent 1. MongoDB supports ACID transactions at the document
level. One or more fields in a document may be written in a single transaction, including updates to
multiple sub-documents and elements of an array. MongoDB makes extensive use of main memory to speed
up database operations and native compression, using its storage engine (WiredTiger). It also supports
pluggable storage engines, e.g. HDFS, or in-memory, for dealing with unique application demands.



10 C. Bondiombouy and P. Valduriez

Other popular document stores are CouchDB, Couchbase, RavenDB and Elasticsearch. High-level
query languages can also be used on top of document stores. For instance, the Zorba query processor
supports two different query languages, the standard XQuery for XML and JSONiq for JSON, which
can be used to seamlessly process data stored in different data stores such as: Couchbase, Oracle NoSQL
Database and SQLlite.

2.2.4 Graph Databases

Graph databases represent and store data directly as graphs which allows easy expression and fast
processing of graph-like queries, e.g. computing the shortest path between two nodes in the graph. This is
much more efficient than with a relational database where graph data need be stored as separated tables
and graph-like queries require repeated, expensive join operations. Graph databases have become popular
with data-intensive web-based applications such as social networks and recommender systems.

Graph databases represent data as nodes, edges and properties. Nodes represent entities such as people
or cities. Edges are lines that connect any two nodes and represent the relationship between the two. Edges
can be undirected, in which case the relationship is symmetric, or directed, in which case the relationship
is asymmetric. Properties provide information to nodes, e.g. a person’s name and address, or edges, e.g.
the name of the relationship such as “friend”. The data graph is typically stored using a specific storage
manager that places data on disk so that the time needed for graph-specific access patterns is minimized.
This is typically accomplished by storing nodes as close as possible to their edges and their neighbor
nodes, in the same or adjacent disk pages.

Graph databases can provide a flexible schema, as in object databases where objects are defined by
classes, by specifying node and edge types with their properties. This facilitates the definition of indexes
to provide fast access to nodes, based on some property value, e.g. a city’s name. Graph queries can be
expressed using graph operators through a specific API or a declarative query language, e.g. the Pixy
language that works on any graph database compatible with its API.

A popular graph database is Neo4j [Bru14], a commercially supported open-source software. It is a
robust, scalable and high-performance graph database, with full ACID transactions. It supports directed
graphs, where everything is stored in the form of either a directed edge, a node or an attribute. Each node
and edge can have any number of attributes. Neo4j enforces that all operations that modify data occur
within a transaction, guaranteeing data consistency. This robustness extends from single server embedded
graphs to shared-nothing clusters. A single server instance can handle a graph of billions of nodes and
relationships. When data throughput is insufficient, the graph database can be distributed and replicated
among multiple servers in a high availability configuration. However, graph partitioning among multiple
servers is not supported (although there are some projects working on it). Neo4j supports a declarative
query language called Cypher, which aims at avoiding the need to write traversals in code. It also provides
REST protocols and a Java API. As of version 2.0, indexing was added to Cypher with the introduction
of schemas.

Other popular graph databases are Infinite graph, Titan, GraphBase, Trinity and Sparksee.

2.3 Data Processing Frameworks

Most unstructured data in the cloud gets stored in distributed files such as HDFS and needs to be
analyzed using user programs. However, to make application programs scalable and efficient requires
exploiting parallel processing. But parallel programming of complex applications is hard. In the context of
HPC, parallel programming libraries such as OpenMP for shared-memory or Message Passing Interface
(MPI) for shared-nothing are used extensively to develop scientific applications. However, these libraries
are relatively low-level and require careful programming. In the context of the cloud, data processing
frameworks have become quite popular to make it easier for programmers to express parallel processing
code. They typically support the simple key-value data model and support operators that are automatically



Query Processing in Multistore Systems: an overview 11

parallelized. All the programmer has to do is to provide code for these operators. The most popular data
processing frameworks, MapReduce, Spark and now Flink, differ in the functionality they offer in terms
of operators, as well as in terms of implementation, for instance, disk-based versus in-memory. However,
they all target scalability and fault-tolerance in shared-nothing clusters.

MapReduce [DG04] is a popular framework for processing and generating large datasets. It was
initially developed by Google in C++ as a proprietary product to process large amounts of unstructured
or semi-structured data, such as web documents and logs of web page requests, on large shared-nothing
clusters of commodity nodes and produce various kinds of data such as inverted indices or URL access
frequencies. Different implementations of MapReduce are now available such as Amazon MapReduce (as
a cloud service) or Hadoop MapReduce (as a Java open source software).

MapReduce enables programmers to express in a simple, functional style their computations on
large data sets and hides the details of parallel data processing, load balancing and fault-tolerance. The
programming model includes only two operations, map and reduce, which we can find in many functional
programming languages such as Lisp and ML. The map operation is applied to each record in the input
data set to compute one or more intermediate (key, value) pairs. The reduce operation is applied to all
the values that share the same unique key in order to compute a combined result. Since they work on
independent inputs, map and reduce can be automatically processed in parallel, on different data partitions
using many cluster nodes.

Figure 4 gives an overview of MapReduce execution in a cluster. There is one master node (not shown
in the figure) in the cluster that assigns map and reduce tasks to cluster nodes, i.e. map and reduce nodes.
The input data set is first automatically split into a number of partitions, each being processed by a different
map node that applies the map operation to each input record to compute intermediate (key,value) pairs.
The intermediate result is divided into n partitions, using a partitioning function applied to the key (e.g.
hash(key) mod n).

Map nodes periodically write to disk their intermediate data into n regions by applying the partitioning
function and indicate the region locations to the master. Reduce nodes are assigned by the master to work
on one or more partitions. Each reduce node first reads the partitions from the corresponding regions on
the map nodes, disks, and groups the values by intermediate key, using sorting. Then, for each unique key
and group of values, it calls the user reduce operation to compute a final result that is written in the output
data set.

Figure 4 Overview of MapReduce execution

Fault-tolerance is important as there may be many nodes executing map and reduce operations. Input
and output data are stored in GFS that already provides high fault-tolerance. Furthermore, all intermediate
data are written to disk, which helps checkpointing map operations and thus provides tolerance to soft
failures. However, if one map node or reduce node fails during execution (hard failure), the task can be
scheduled by the master onto other nodes. It may also be necessary to re-execute completed map tasks,



12 C. Bondiombouy and P. Valduriez

since the input data on the failed node disk is inaccessible. Overall, fault-tolerance is fine-grained and well
suited for large jobs.

The often cited advantages of MapReduce are its ability to express various (even complicated) map
and reduce functions, and its extreme scalability and fault-tolerance. However, it has been criticized for its
relatively low-performance due to the extensive use of disk accesses, in particular compared with parallel
DBMSs [SAD+10]. Furthermore, the two functions map and reduce are well-suited for OLAP-like queries
with data selection and aggregation but not appropriate for interactive analysis or graph processing.

Spark is an Apache open-source data processing framework in Java originally developed at UC Berkeley
[ZCF+10]. It extends the MapReduce model for two important classes of analytics applications: iterative
processing (machine learning, graph processing) and interactive data mining (with R, Excel or Python).
Compared with MapReduce, it improves the ease of use with the Scala language (a functional extension
of Java) and a rich set of operators (map, reduce, filter, join, sortByKey, aggregateByKey, etc.). Spark
provides an important abstraction, called Resilient Distributed Dataset (RDD), which is a collection of
elements partitioned across cluster nodes. RDDs can be created from disk-based resident data in files or
intermediate data produced by transformations with Scala programs. They can also be made memory-
resident for efficient reuse across parallel operations.

Flink is the latest Apache open-source data processing framework. Based on the Stratosphere prototype
[EST+13], it differs from Spark by its in-memory runtime engine which can be used for real time data
streams as well as batch data processing. It runs on HDFS and supports APIs for Java and Scala.

2.3.1 Concluding Remarks

The software stack for data management in the cloud, with three main layers (distributed storage, database
management and distributed processing) has led to a rich ecosystem with many different solutions and
technologies, which are still evolving. Although HDFS has established itself as the standard solution
for storing unstructured data, we should expect evolutions of distributed file systems that combine block
storage and object storage in a single system. For data management, most NoSQL data stores, except
graph databases, rely on (or extend) the key-value data model, which remains the best option for data
whose structure needs to be flexible. There is also a rapid evolution of data processing frameworks on top
of distributed file systems. For example, the popular MapReduce framework is now challenged by more
recent systems such as Spark and Flink. Multistore systems should be able to cope with this evolution.

3 Multidatabase Query Processing

A multidatabase system provides transparent access to a collection of multiple, heterogeneous data sources
distributed over a computer network [ÖV11]. In addition to be heterogeneous and distributed, the data
sources can be autonomous, i.e. controlled and managed independently (e.g. by a different database
administrator) of the multidatabase system.

Since the data sources already exist, one is faced with the problem of providing integrated access to
heterogeneous data. This requires data integration, which consists in defining a global schema for the
multidatabase over the existing data and mappings between the global schema and the local data source
schemas. Once data integration is done, the global schema can be used to express queries over multiple
data sources as if it were a single (global) database.

Most of the work on multidatabase query processing has been done in the context of the mediator-
wrapper architecture. This architecture and related techniques can be used for loosely-coupled multistore
systems, which is why we introduce them. In the rest of this section, we describe the mediator-wrapper
and multidatabase query processing architectures, and the query processing techniques.



Query Processing in Multistore Systems: an overview 13

3.1 Mediator-Wrapper Architecture

In this architecture (see Figure 5), there is a clear separation of concerns: the mediator deals with data
source distribution while the wrappers deal with data source heterogeneity and autonomy. This is achieved
by using a common language between mediator and wrappers, and the translation to the data source
language is done by the wrappers.

Each data source has an associated wrapper that exports information about the source schema, data and
query processing capabilities. To deal with the heterogeneous nature of data sources, wrappers transform
queries received from the mediator, expressed in a common query language, to the particular query language
of the source. A wrapper supports the functionality of translating queries appropriate to the particular
server, and reformatting answers (data) appropriate to the mediator. One of the major practical uses of
wrappers has been to allow an SQL-based DBMS to access non SQL databases.

The mediator centralizes the information provided by the the wrappers in a unified view of all available
data (stored in a global catalog). This unified view can be of two fundamental types [Len02]: local-as-
view (LAV) and global-as-view (GAV). In LAV, the global schema definition exists, and each data source
schema is treated as a view definition over it. In GAV on the other hand, the global schema is defined as
a set of views over the data source schemas. These views indicate how the elements of the global schema
can be derived, when needed, from the elements of the data source schemas. The main functionality of
the mediator is to provide uniform access to multiple data sources and perform query decomposition and
processing using the wrappers to access the data sources.

Figure 5 Mediator-Wrapper architecture

3.2 Multidatabase Query Processing Architecture

We assume the input is a query on relations expressed on a global schema in a declarative language, e.g.
SQL. This query is posed on global relations, meaning that data distribution and heterogeneity are hidden.
Three main layers are involved in multidatabase query processing.

The first two layers map the input query into an optimized query execution plan (QEP). They perform
the functions of query rewriting, query optimization and some query execution. The first two layers are
performed by the mediator and use meta-information stored in the global catalog (global schema, data
source location, cost information, etc.). Query rewriting rewrites the input query into a query on local
relations, using the global schema. Thus, the global schema provides the view definitions (i.e. GAV or
LAV mappings between the global relations and the local relations stored in the data sources) and the
query is rewritten using the views.

The second layer performs distributed query optimization and (some) execution by considering the
location of the relations and the different query processing capabilities of the data sources exported by
the wrappers. The distributed QEP produced by this layer groups within subqueries the operations that



14 C. Bondiombouy and P. Valduriez

Figure 6 Generic layering scheme for multidatabase query processing (modified after [ÖV11]).

can be performed by the data sources and wrappers. As in centralized DBMSs, query optimization can
be static or dynamic. However, the lack of homogeneity in multidatabase systems (e.g. some data sources
may have unexpected long delays in answering) make dynamic query optimization important. In the case
of dynamic optimization, there may be subsequent calls to this layer after execution by the next layer. This
is illustrated by the arrow showing results coming from the next layer. Finally, this layer integrates the
results coming from the different wrappers to provide a unified answer to the users query. This requires
the capability of executing some operations on data coming from the wrappers. Since the wrappers may
provide very limited execution capabilities, e.g. in the case of very simple data sources, the mediator must
provide the full execution capabilities to support the mediator interface.

The third layer performs query translation and execution using the wrappers. Then it returns the results
to the mediator which can perform result integration from different wrappers and subsequent execution.
Each wrapper maintains a wrapper schema that includes the local schema and mapping information to
facilitate the translation of the input subquery (a subset of the QEP) expressed in a common language into
the language of the data source. After the subquery is translated, it is executed by the data source and the
local result is translated back in the common format.

3.3 Multidatabase Query Processing Techniques

The three main problems of query processing in multidatabase systems are: heterogeneous cost modeling,
heterogeneous query optimization, to deal with different capabilities of data sources’ DBMSs and adaptive
query processing, to deal with strong variations in the environment (failures, unpredictable delays, etc.).

3.3.1 Heterogeneous Cost Modeling

Heterogeneous cost modeling refers to cost function definition, and the associated problem of obtaining
cost-related information from the data sources. Such information is important to estimate the costs of
executing subqueries at the data sources, which in turn are used to estimate the costs of alternative QEPs
generated by the multidatabase query optimizer. There are three alternative approaches for determining
the cost of executing queries in a multidatabase system: black-box, customized and dynamic.



Query Processing in Multistore Systems: an overview 15

The black-box approach treats the data sources as a black box, running some test queries on them,
and from these determines the necessary cost information. It is based on running probing queries on data
sources to determine cost information. Probing queries can, in fact, be used to gather a number of cost
information factors. For example, probing queries can be issued to retrieve data from data sources to
construct and update the multidatabase catalog. Statistical probing queries can be issued that, for example,
count the number of tuples of a relation. Finally, performance measuring probing queries can be issued to
measure the elapsed time for determining cost function coefficients.

The customized approach uses previous knowledge about the data sources, as well as their external
characteristics, to subjectively determine the cost information. The basis for this approach is that the query
processors of the data sources are too different to be represented by a unique cost model. It also assumes
that the ability to accurately estimate the cost of local subqueries will improve global query optimization.
The approach provides a framework to integrate the data sources cost model into the mediator query
optimizer. The solution is to extend the wrapper interface such that the mediator gets some specific cost
information from each wrapper. The wrapper developer is free to provide a cost model, partially or entirely.

The above approaches assume that the execution environment is stable over time. However, on
the Internet for instance, the execution environment factors are frequently changing. The dynamic
approach consists in monitoring the run-time behavior of data sources and dynamically collecting the cost
information Three classes of environmental factors can be identified based on their dynamicity. The first
class for frequently changing factors (every second to every minute) includes CPU load, I/O throughput,
and available memory. The second class for slowly changing factors (every hour to every day) includes
DBMS configuration parameters, physical data organization on disks, and database schema. The third
class for almost stable factors (every month to every year) includes DBMS type, database location, and
CPU speed. To face dynamic environments where network contention, data storage or available memory
change over time, a solution is to extend the sampling method and consider user queries as new samples.

3.3.2 Heterogeneous Query Optimization

In addition to heterogeneous cost modeling, multidatabase query optimization must deal with the issue
of the heterogeneous computing capabilities of data sources. For instance, one data source may support
only simple select operations while another may support complex queries involving join and aggregate.
Thus, depending on how the wrappers export such capabilities, query processing at the mediator level can
be more or less complex. There are two main approaches to deal with this issue depending on the kind of
interface between mediator and wrapper: query-based and operator-based.

Query-based Approach

In the query-based approach, the wrappers support the same query capability, e.g. a subset of SQL, which is
translated to the capability of the data source. This approach typically relies on a standard DBMS interface
such as Open Database Connectivity (ODBC) or its many variations (e.g. JDBC). Thus, since the data
sources appear homogeneous to the mediator, query processing techniques designed for homogeneous
distributed DBMS can be reused. However, if the data sources have limited capabilities, the additional
capabilities must be implemented in the wrappers, e.g. join queries may need to be handled at the mediator,
if the data source does not support join.

Since the data sources appear homogeneous to the mediator, a solution is to use a traditional distributed
query optimization algorithm with a heterogeneous cost model. However, extensions are needed to convert
the distributed execution plan into subqueries to be executed by the data sources and subqueries to be
executed by the mediator. The hybrid two-step optimization technique is useful in this case: in a first step,
a static plan is produced by a centralized cost-based query optimizer; in a second step, at startup time, an
execution plan is produced by carrying out site selection and allocating the subqueries to the sites.



16 C. Bondiombouy and P. Valduriez

Operator-based Approach

In the operator-based approach, the wrappers export the capabilities of the data sources through
compositions of relational operators. Thus, there is more flexibility in defining the level of functionality
between the mediator and the wrapper. In particular, the different capabilities of the data sources can be
made available to the mediator.

Expressing the capabilities of the data sources through relational operators allows tighter integration
of query processing between mediator and wrappers. In particular, the mediator-wrapper communication
can be in terms of sub plans. We illustrate the operator-based approach with planning functions proposed
in the Garlic project [HKWY97]. In this approach, the capabilities of the data sources are expressed by
the wrappers as planning functions that can be directly called by a centralized query optimizer. It extends
a traditional query optimizer with operators to create temporary relations and retrieve locally stored data.
It also creates the PushDown operator that pushes a portion of the work to the data sources where it will
be executed.

The execution plans are represented, as usual, with operator trees, but the operator nodes are
annotated with additional information that specifies the source(s) of the operand(s), whether the results
are materialized, and so on. The Garlic operator trees are then translated into operators that can be directly
executed by the execution engine. Planning functions are considered by the optimizer as enumeration rules.
They are called by the optimizer to construct sub plans using two main functions: accessPlan to access a
relation, and joinPlan to join two relations using access plans. There is also a join rule for bind join. A bind
join is a nested loop join in which intermediate results (e.g. values for the join predicate) are passed from
the outer relation to the wrapper for the inner relation, which uses these results to filter the data it returns.
If the intermediate results are small and indexes are available at data sources, bindings can significantly
reduce the amount of work done by a data source. Furthermore, bindings can reduce communication cost.

Using planning functions for heterogeneous query optimization has several advantages. First, planning
functions provide a flexible way to express precisely the capabilities of data sources. In particular, they can
be used to model non relational data sources such as web sites. Second, since these rules are declarative,
they make wrapper development easier. Finally, this approach can be easily incorporated in an existing,
centralized query optimizer.

The operator-based approach has also been used in DISCO, a multidatabase system designed to access
data sources over the web [TRV98]. DISCO uses the GAV approach and an object data model to represent
both mediator and data source schemas and data types. This allows easy introduction of new data sources
with no type mismatch or simple type mismatch. The data source capabilities are defined as a subset of an
algebraic machine (with the usual operators such as scan, join and union) that can be partially or entirely
supported by the wrappers or the mediator. This gives much flexibility for the wrapper implementers to
decide where to support data source capabilities (in the wrapper or in the mediator).

3.3.3 Adaptive Query Processing

Multidatabase query processing, as discussed so far, follows essentially the principles of traditional query
processing whereby an optimal QEP is produced for a query based on a cost model, and then this QEP is
executed. The underlying assumption is that the multidatabase query optimizer has sufficient knowledge
about query runtime conditions in order to produce an efficient QEP and the runtime conditions remain
stable during execution. This is a fair assumption for multidatabase queries with few data sources running
in a controlled environment. However, this assumption is inappropriate for changing environments with
large numbers of data sources and unpredictable runtime conditions as on the Web.

Adaptive query processing is a form of dynamic query processing, with a feedback loop between
the execution environment and the query optimizer in order to react to unforeseen variations of runtime
conditions. A query processing system is defined as adaptive if it receives information from the execution
environment and determines its behavior according to that information in an iterative manner [AH00]. In



Query Processing in Multistore Systems: an overview 17

the context of multidatabase systems, the execution environment includes the mediator, wrappers and data
sources. In particular, wrappers should be able to collect information regarding execution within the data
sources.

Adaptive query processing adds to the traditional query processing process the following activities:
monitoring, assessing and reacting. These activities are logically implemented in the query processing
system by sensors, assessment components, and reaction components, respectively. These components
may be embedded into control operators of the QEP, e.g. an Exchange operator. Monitoring involves
measuring some environment parameters within a time window, and reporting them to the assessment
component. The latter analyzes the reports and considers thresholds to arrive at an adaptive reaction plan.
Finally, the reaction plan is communicated to the reaction component that applies the reactions to query
execution.

4 Multistore Systems

Multistore systems provide integrated access to a number of cloud data stores such as NoSQL, RDBMS
or HDFS, sometimes through a data processing framework such as Spark. They typically support only
read-only queries, as supporting distributed transactions across data stores is a hard problem. We can
divide multistore systems based on the level of coupling with the underlying data stores: loosely-coupled,
tightly-coupled and hybrid. In this section, we introduce for each class a set of representative systems,
with their architecture and query processing. We end the section with a comparative analysis.

In presenting these systems, we strive to use the same terminology we used so far in this paper. However,
it is not easy as we often need to map the specific terminology used in the original papers and ours. When
necessary, to help the reader familiar with some systems, we make precise this terminology mapping.

4.1 Loosely-Coupled Multistore Systems

Loosely-coupled multistore systems are reminiscent of multidatabase systems in that they can deal with
autonomous data stores, which can be accessed through the multistore system common interface as well as
separately through their local API. They follow the mediator-wrapper architecture with several data stores
(e.g. NoSQL and RDBMS) as depicted in Figure 7. Each data store is autonomous, i.e. locally controlled,
and can be accessed by other applications. Like web data integration systems that use the mediator-wrapper
architecture, the number of data stores can be very high.

There are two main modules: one query processor and one wrapper per data store. The query processor
has a catalog of data stores, and each wrapper has a local catalog of its data store. After the catalogs
and wrappers have been built, the query processor can start processing input queries from the users, by
interacting with wrappers. The typical query processing is as follows:

1. Analyze the input query and translate it into subqueries (one per data store), each expressed in a
common language, and an integration subquery.

2. Send the subqueries to the relevant wrappers, which trigger execution at the corresponding data stores
and translate the results into the common language format.

3. Integrate the results from the wrappers (which may involve executing operators such union and
join), and return the results to the user. We describe below three loosely-coupled multistore systems:
BigIntegrator, Forward and Qox.



18 C. Bondiombouy and P. Valduriez

Figure 7 Loosely-coupled multistore systems

BigIntegrator

BigIntegrator [ZR11] supports SQL-like queries that combines data in Bigtable data stores in the cloud
and data in relational data stores. Bigtable is accessed through the Google Query Language (GQL), which
has very limited query expressions, e.g. no join and only basic select predicates. To capture GQL’s limited
capabilities, BigIntegrator provides a novel query processing mechanism based on plugins, called absorber
and finalizer, which enable to pre and post-process those operations that cannot be processed by Bigtable.
For instance, a “LIKE” select predicate on a Bigtable or a join of two Bigtables will be processed through
operations in BigIntegrator’s query processor.

BigIntegrator uses the LAV approach for defining the global schema of the Bigtable and relational data
sources as flat relational tables. Each Bigtable or relational data source can contain several collections, each
represented as a source table of the form “table-name_source-name”, where table-name is the name of the
table in the global schema and source-name is the name of the data source. For instance, “Employees_A”
represents an Employees table at source A, i.e. a local view of Employees. The source tables are referenced
as tables in the SQL queries.

Figure 8 BigIntegrator

Figure 8 illustrates the architecture of BigIntegrator with two data sources, one relational database
and one Bigtable data store. Each wrapper has an importer module and absorber and finalizer plug-ins.
The importer creates the source tables and stores them in the local catalog. The absorber extracts a
subquery, called access filter, from a user query that selects data from a particular source table, based on



Query Processing in Multistore Systems: an overview 19

the capabilities of the source. The finalizer translates each access filter (produced by the absorber) into an
operator called interface function, specific for each kind of source. The interface function is used to send
a query to the data source (i.e. a GQL or SQL query).

Query processing is performed in three steps, using an absorber manager, a query optimizer and a
finalizer manager. The absorber manager takes the (parsed) user query and, for each source table referenced
in the query, calls the corresponding absorber of its wrapper. In order to replace the source table with
an access filter, the absorber collects from the query the source tables and the possible other predicates,
based on the capabilities of the data source. The query optimizer reorders the access filters and other
predicates to produce an algebra expression that contains calls to both access filters and other relational
operators. It also performs traditional transformations such as select push down and bind join The finalizer
manager takes the algebra expression and, for each access filter operator in the algebra expression, calls
the corresponding finalizer of its wrapper. The finalizer transforms the access filters into interface function
calls.

Finally, query execution is performed by the query processor that interprets the algebra expression, by
calling the interface functions to access the different data sources and executing the subsequent relational
operations, using in-memory techniques.

Forward

The Forward multistore system, or so-called Forward middleware in [OPV14], supports SQL++, an SQL-
like language designed to unify the data model and query language capabilities of NoSQL and relational
databases. SQL++ has a powerful, semi-structured data model that extends both the JSON and relational
data models. FORWARD also provides a rich web development framework [FOPZ14], which exploits its
JSON compatibility to integrate visualization components (e.g. Google Maps).

The design of SQL++ is based on the observation that the concepts are similar across both data models,
e.g. a JSON array is similar to an SQL table with order, and an SQL tuple to a JSON object literal. Thus, an
SQL++ collection is an array or a bag, which may contain duplicate elements. An array is ordered (similar
to a JSON array) and each element is accessible by its ordinal position while a bag is unordered (similar
to a SQL table). Furthermore, SQL++ extends the relational model with arbitrary composition of complex
values and element heterogeneity. As in nested data models, a complex value can be either a tuple or
collection. Nested collections can be accessed by nesting SELECT expressions in the SQL FROM clause
or composed using the GROUP BY operator. They can also be unnested using the FLATTEN operator.
And unlike an SQL table that requires all tuples to have the same attributes, an SQL++ collection may
also contain heterogeneous elements comprising a mix of tuples, scalars, and nested collections.

Forward uses the GAV approach, where each data source (SQL or NoSQL) appears to the user as an
SQL++ virtual view, defined over SQL++ collections. Thus, the user can issue SQL++ queries involving
multiple virtual views. The Forward architecture is that of Figure 7, with a query processor and one
wrapper per data source. The query processor performs SQL++ query decomposition, by exploiting the
underlying data store capabilities as much as possible. However, given an SQL++ query that is not directly
supported by the underlying data source, Forward will decompose it into one or more native queries that
are supported and combine the native query results in order to compensate for the semantics or capabilities
gap between SQL++ and the underlying data source. Although not described in the original paper [OPV14]
cost-based optimization of SQL++ queries is possible, by reusing techniques from multidatabase systems
when dealing with flat collections. However, it would be much harder considering the nesting and element
heterogeneity capabilities of SQL++.

QoX

QoX [SWCD12] is a special kind of loosely-coupled multistore system, where queries are analytical
data-driven workflows (or data flows) that integrate data from relational databases, and various execution



20 C. Bondiombouy and P. Valduriez

engines such as MapReduce or Extract-Transform-Load (ETL) tools. A typical data flow may combine
unstructured data (e.g. tweets) with structured data and use both generic data flow operations like filtering,
join, aggregation and user-defined functions like sentiment analysis and product identification. In a previous
work [SWCD09], the authors proposed a novel approach to ETL design that incorporates a suite of
quality metrics, termed QoX, at all stages of the design process. The QoX Optimizer deals with the QoX
performance metrics, with the objective of optimizing the execution of dataflows that integrate both the
back-end ETL integration pipeline and the front-end query operations into a single analytics pipeline.

The QoX Optimizer uses xLM, a proprietary XML-based language to represent data flows, typically
created with some ETL tool. xLM allows capturing the flow structure, with nodes showing operations and
data stores and edges interconnecting these nodes, and important operation properties such as operation
type, schema, statistics, and parameters. Using appropriate wrappers to translate xLM to a tool-specific
XML format and vice versa, the QoX Optimizer may connect to external ETL engines and import or export
dataflows to and from these engines.

Given a data flow for multiple data stores and execution engines, the QoX Optimizer evaluates
alternative execution plans, estimates their costs, and generates a physical plan (executable code). The
search space of equivalent execution plans is defined by flow transformations that model data shipping
(moving the data to where the operation will be executed), function shipping (moving the operation to
where the data is), and operation decomposition (into smaller operations). The cost of each operation is
estimated based on statistics (e.g. cardinalities, selectivities). Finally, the QoX Optimizer produces SQL
code for relational database engines, Pig and Hive code for MapReduce engines, and creates Unix shell
scripts as the necessary glue code for orchestrating different subflows running on different engines. This
approach could be extended to access NoSQL engines as well, provided SQL-like interfaces and wrappers.

4.2 Tightly-Coupled Multistore Systems

Tightly-coupled multistore systems aim at efficient querying of structured and unstructured data for (big)
data analytics. They may also have a specific objective, such as self-tuning or integration of HDFS and
RDBMS data. However, they all trade autonomy for performance, typically in a shared-nothing cluster,
so that data stores can only be accessed through the multistore system, directly through their local API.

Like loosely-coupled systems, they provide a single language for querying of structured and
unstructured data. However, the query processor directly uses the data store local interfaces (see Figure
9), or in the case of HDFS, it interfaces a data processing framework such as MapReduce or Spark. Thus,
during query execution, the query processor directly accesses the data stores. This allows efficient data
movement across data stores. However, the number of data stores that can be interfaced is typically very
limited.

Figure 9 Tightly-coupled multistore systems



Query Processing in Multistore Systems: an overview 21

In the rest of this section, we describe three representative tightly-coupled multistore systems: Polybase,
HadoopDB and Estocada. Two other interesting systems are Odyssey and JEN. Odyssey [HST+13] is a
multistore system that can work with different analytic engines, such as parallel OLAP system or Hadoop.
It enables storing and querying data within HDFS and RDBMS, using opportunistic materialized views,
based on MISO [LSH+14]. MISO is a method for tuning the physical design of a multistore system
(Hive/HDFS and RDBMS), i.e. deciding in which data store the data should reside, in order to improve
the performance of big data query processing. The intermediate results of query execution are treated
as opportunistic materialized views, which can then be placed in the underlying stores to optimize the
evaluation of subsequent queries. JEN [YZÖ+15] is a component on top of HDFS to provide tight-coupling
with a parallel RDBMS. It allows joining data from two data stores, HDFS and RDBMS, with parallel join
algorithms, in particular, an efficient zigzag join algorithm, and techniques to minimize data movement.
As the data size grows, executing the join on the HDFS side appears to be more efficient.

Polybase

Polybase [DHN+13] is a feature of the SQL Server Parallel Data Warehouse (PDW) product, which allows
users to query unstructured (HDFS) data stored in a Hadoop cluster using SQL and integrate them with
relational data in PDW. The HDFS data can be referenced in Polybase as external tables, which make the
correspondence with the HDFS file on the Hadoop cluster, and thus be manipulated together with PDW
native tables using SQL queries Polybase leverages the capabilities of PDW, a shared-nothing parallel
DBMS. Using the PDW query optimizer, SQL operators on HDFS data are translated into MapReduce
jobs to be executed directly on the Hadoop cluster. Furthermore, the HDFS data can be imported/exported
to/from PDW in parallel, using the same PDW service that allows shuffling PDW data among compute
nodes.

Figure 10 Polybase architecture

The architecture of Polybase, which is integrated within PDW, is shown in Figure 10. Polybase takes
advantage of PDW’s Data Movement Service (DMS), which is responsible for shuffling intermediate data
across PDW nodes, e.g. to repartition tuples, so that any matching tuples of an equi-join be collocated
at the same computing node that performs the join. DMS is extended with an HDFS Bridge component,
which is responsible for all communications with HDFS. The HDFS Bridge enables DMS instances to
also exchange data with HDFS in parallel (by directly accessing HDFS splits).

Polybase relies on the PDW cost-based query optimizer to determine when it is advantageous to push
SQL operations on HDFS data to the Hadoop cluster for execution. Thus, it requires detailed statistics on
external tables, which are obtained by exploring statistically significant samples of HDFS tables. The query
optimizer enumerates the equivalent QEPs and select the one with least cost. The search space is obtained



22 C. Bondiombouy and P. Valduriez

by considering the different decompositions of the query into two parts: one to be executed as MapReduce
jobs at the Hadoop cluster and the other as regular relational operators at the PDW side. MapReduce jobs
can be used to perform select and project operations on external tables, as well as joins of two external
tables. However, no bind join optimization is supported. The data produced by the MapReduce jobs can
then be exported to PDW to be joined with relational data, using parallel hash-based join algorithms.

One strong limitation of pushing operations on HDFS data as MapReduce jobs is that even simple
lookup queries have long latencies. A solution proposed for Polybase [VTP+14] is to exploit an index built
on the external HDFS data using a B+-tree that is stored inside PDW. This method leverages the robust
and efficient indexing code in PDW without forcing a dramatic increase in the space that is required to
store or cache the entire (large) HDFS data inside PDW. Thus, the index can be used as a pre-filter by the
query optimizer to reduce the amount of work that is carried out as MapReduce jobs. To keep the index
synchronized with the data that is stored in HDFS, an incremental approach is used which records that
the index is out-of-date, and lazily rebuilds it. Queries posed against the index before the rebuild process
is completed can be answered using a method that carefully executes parts of the query using the index
in PDW, and the remaining part of the query is executed as a MapReduce job on just the changed data in
HDFS.

HadoopDB

The objective of HadoopDB [ABA+09] is to provide the best of both parallel DBMS (high-performance
data analysis over structured data) and MapReduce-based systems (scalability, fault-tolerance, and
flexibility to handle unstructured data) with an SQL-like language (HiveQL). To do so, HadoopDB tightly
couples the Hadoop framework, including MapReduce and HDFS, with multiple single-node RDBMS
(e.g. PostgreSQL or MySQL) deployed across a cluster, as in a shared-nothing parallel DBMS.

HadoopDB extends the Hadoop architecture with four components: database connector, catalog, data
loader, and SQL-MapReduce-SQL (SMS) planner. The database connector provides the wrappers to the
underlying RDBMS, using JDBC drivers. The catalog maintains information about the databases as an
XML file in HDFS, and is used for query processing. The data loader is responsible for (re)partitioning (key,
value) data collections using hashing on a key and loading the single-node databases with the partitions (or
chunks). The SMS planner extends Hive, an Hadoop component that transforms HiveQL into MapReduce
jobs that connect to tables stored as files in HDFS. This architecture yields a cost-effective parallel RDBMS,
where data is partitioned both in RDBMS tables and in HDFS files, and the partitions can collocated at
cluster nodes for efficient parallel processing.

Query processing is simple, relying on the SMS planner for translation and optimization, and
MapReduce for execution. The optimization consists in pushing as much work as possible into the single
node databases, and repartitioning data collections whenever needed. The SMS planner decomposes a
HiveQL query to a QEP of relational operators. Then the operators are translated to MapReduce jobs, while
the leaf nodes are again transformed into SQL to query the underlying RDBMS instances. In MapReduce,
repartitioning should take place before the reduce phase. However, if the optimizer detects that an input
table is partitioned on a column used as aggregation key for Reduce, it will simplify the QEP by turning
it to a single Map-only job, leaving all the aggregation to be done by the RDBMS nodes. Similarly,
repartitioning is avoided for equi-joins as well, if both sides of the join are partitioned on the join key.

Estocada

Estocada [BBD+15] is a self-tuning multistore system with the goal of optimizing the performance of
applications that must deal with data in multiple data models, including relational, key-value, document
and graph. To obtain the best possible performance from the available data stores, Estocada automatically
distributes and partitions the data across the different data stores, which are entirely under its control and
hence not autonomous. Hence, it is a tighly-coupled multistore system.



Query Processing in Multistore Systems: an overview 23

Data distribution is dynamic and decided based on a combination of heuristics and cost-based decisions,
taking into account data access patterns as they become available. Each data collection is stored as a set
of partitions, whose content may overlap, and each partition may be stored in any of the underlying data
stores. Thus, it may happen that a partition is stored in a data store that has a different data model than its
native one. To make Estocada applications independent of the data stores, each data partition is internally
described as a materialized view over one or several data collections. Thus, query processing involves
view-based query rewriting.

Estocada support two kinds of requests, for storing data and querying, with three main modules:
storage advisor, catalog, query processor and execution engine. These components can directly access
the data stores through their local interface. The query processor deals with single model queries only,
each expressed in the query language of the corresponding data source. However, to integrate various data
sources, one would need a common data model and language on top of Estocada. The storage advisor is
responsible for partitioning data collections and delegating the storage of partitions to the data stores. For
self-tuning the applications, it may also recommend repartitioning or moving data from one data store to
the other, based on access patterns. Each partition is defined as a materialized view expressed as a query
over the collection in its native language. The catalog keeps track of information about partitions, including
some cost information about data access operations by means of binding patterns which are specific to the
data stores.

Using the catalog, the query processor transforms a query on a data collection into a logical QEP on
possibly multiple data stores (if there are partitions of the collection in different stores). This is done by
rewriting the initial query using the materialized views associated with the data collection, and selecting
the best rewriting, based on the estimated execution costs. The execution engine translates the logical QEP
into a physical QEP which can be directly executed by dividing the work between the data stores and
Estocada’s runtime engine, which provides its own operators (select, join, aggregate, etc.).

4.3 Hybrid systems

Hybrid systems try to combine the advantages of loosely-coupled systems, e.g. accessing many different
data stores, and tightly-coupled systems, e.g. accessing some data stores directly through their local
interface for efficient access. Therefore, the architecture (see Figure 11) follows the mediator-wrapper
architecture, while the query processor can also directly access some data stores, e.g. HDFS through
MapReduce or Spark.

Figure 11 Hybrid architecture

We describe below the three hybrid multistore systems: Spark SQL, CloudMdsQL and BigDAWG.

Spark SQL

Spark SQL [AXL+15] is a recent module in Apache Spark that integrates relational data processing with
Spark’s functional programming API. It supports SQL-like queries that can integrate HDFS data accessed



24 C. Bondiombouy and P. Valduriez

through Spark and external data sources (e.g. relational databases) accessed through a wrapper. Thus, it is a
hybrid multistore system with tight-coupling of Spark/HDFS and loose-coupling of external data sources.

Spark SQL uses a nested data model that includes tables and DataFrames. It supports all major SQL
data types, as well as user-defined types and complex data types (structs, arrays, maps and unions), which
can be nested together. A DataFrame is a distributed collection of rows with the same schema, like a
relational table. It can be constructed from a table in an external data source or from an existing Spark
RDD of native Java or Python objects. Once constructed, DataFrames can be manipulated with various
relational operators, such as WHERE and GROUPBY, which take expressions in procedural Spark code.

Figure 12 Spark SQL architecture

Figure 12 shows the architecture of Spark SQL, which runs as a library on top of Spark, The query
processor directly accesses the Spark engine through the Spark Java interface, while it accesses external
data sources (e.g. an RDBMS or a key-value store) through the Spark SQL common interface supported by
wrappers (JDBC drivers). The query processor includes two main components: the DataFrame API and the
Catalyst query optimizer. The DataFrame API offers tight integration between relational and procedural
processing, allowing relational operations to be performed on both external data sources and Spark’s
RDDs. It is integrated into Spark’s supported programming languages (Java, Scala, Python) and supports
easy inline definition of user-defined functions, without the complicated registration process typically
found in other database systems. Thus, the DataFrame API lets developers seamlessly mix relational and
procedural programming, e.g. to perform advanced analytics (which is cumbersome to express in SQL)
on large data collections (accessed though relational operations).

Catalyst is an extensible query optimizer that supports both rule-based and cost-based optimization. The
motivation for an extensible design is to make it easy to add new optimization techniques, e.g. to support
new features of Spark SQL, as well as to enable developers to extend the optimizer to deal with external
data sources, e.g. by adding data source specific rules to push down select predicates. Although extensible
query optimizers have been proposed in the past, they have typically required a complex language to
specify rules, and a specific compiler to translate the rules into executable code. In contrast, Catalyst uses
standard features of the Scala functional programming language, such as pattern-matching, to make it easy
for developers to specify rules, which can be complied to Java code.

Catalyst provides a general transformation framework for representing query trees and applying rules
to manipulate them. This framework is used in four phases: (1) query analysis, (2) logical optimization, (3)
physical optimization, and (4) code generation. Query analysis resolves name references using a catalog
(with schema information) and produces a logical plan. Logical optimization applies standard rule-based
optimizations to the logical plan, such as predicate pushdown, null propagation, and Boolean expression
simplification. Physical optimization takes a logical plan and enumerates a search space of equivalent
physical plans, using physical operators implemented in the Spark execution engine or in the external
data sources. It then selects a plan using a simple cost model, in particular, to select the join algorithms.
Code generation relies on the Scala language, in particular, to ease the construction of abstract syntax trees



Query Processing in Multistore Systems: an overview 25

(ASTs) in the Scala language. ASTs can then be fed to the Scala compiler at runtime to generate Java
bytecode to be directly executed by compute nodes.

To speed up query execution, Spark SQL exploits in-memory caching of hot data using a columnar
storage (i.e. storing data collections as sections of columns of data rather than as rows of data). Compared
with Spark’s native cache, which simply stores data as Java native objects, this columnar cache can reduce
memory footprint by an order of magnitude by applying columnar compression schemes (e.g. dictionary
encoding and run-length encoding). Caching is particularly useful for interactive queries and for the
iterative algorithms common in machine learning.

CloudMdsQL

The CloudMdsQL multistore system [KVB+15, KBV+16] supports a powerful functional SQL-like
language, designed for querying multiple heterogeneous data sources (e.g. relational and NoSQL) A
CloudMdsQL query may contain nested subqueries, and each subquery addresses directly a particular
data store and may contain embedded invocations to the data store native query interface. Thus, the major
innovation is that a CloudMdsQL query can exploit the full power of local data stores, by simply allowing
some local data store native queries (e.g. a breadth-first search query against a graph database) to be called
as functions, and at the same time be optimized based on a simple cost model, CloudMdsQL has been
extended [BKLV15] to address distributed processing frameworks such as Apache Spark by enabling the
ad-hoc usage of user defined map/filter/reduce operators as subqueries.

The CloudMdsQL language is SQL-based with the extended capabilities for embedding subqueries
expressed in terms of each data store’s native query interface. The common data model is table-based,
with support of rich datatypes that can capture a wide range of the underlying data store datatypes, such
as arrays and JSON objects, in order to handle non-flat and nested data, with basic operators over such
composite datatypes. CloudMdsQL allows named table expressions to be defined as Python functions,
which is useful for querying data stores that have only API-based query interface. A CloudMdsQL query
is executed in the context of an ad-hoc schema, formed by all named table expressions within the query.
This approach fills the gap produced by the lack of a global schema and allows the query compiler to
perform semantic analysis of the query.

The design of the CloudMdsQL query engine [KBV+16] takes advantage of the fact that it operates in
a cloud platform, with full control over where the system components can be installed. The architecture of
the query engine is fully distributed, so that query engine nodes can directly communicate with each other,
by exchanging code (query plans) and data. This distributed architecture yields important optimization
opportunities, e.g. minimizing data transfers by moving the smallest intermediate data for subsequent
processing by one particular node. Each query engine node consists of two parts – master and worker – and
is collocated at each data store node in a computer cluster. Each master or worker has a communication
processor that supports send and receive operators to exchange data and commands between nodes. A
master takes as input a query and produces, using a query planner and calatog (with metadata and cost
information on data sources) a query plan, which it sends to one chosen query engine node for execution.
Each worker acts as a lightweight runtime database processor atop a data store and is composed of three
generic modules (i.e. same code library) - query execution controller, operator engine, and table storage -
and one wrapper module that is specific to a data store.

The query planner performs cost-based optimization. To compare alternative rewritings of a query,
the optimizer uses a simple catalog, which provides basic information about data store collections such as
cardinalities, attribute selectivities and indexes, and a simple cost model. Such information can be exposed
by the wrappers in the form of cost functions or database statistics. The query language also provides a
possibility for the user to define cost and selectivity functions whenever they cannot be derived from the
catalog, mostly in the case of using native subqueries. The search space of alternative plans is obtained
using traditional transformations, e.g. by pushing down select predicates, using bind join, performing join
ordering, or planning intermediate data shipping.



26 C. Bondiombouy and P. Valduriez

BigDAWG

Like multidatabase systems, all the multistore systems we have seen so far provide transparent access
across multiple data stores with the same data model and language. The BigDAWG (Big Data Analytics
Working Group) multistore system (called polystore) [DES+15] takes a different path, with the goal of
unifying querying over a variety of data models and languages, Thus, there is no common data model and
language. A key user abstraction in BigDAWG is an island of information, which is a collection of data
stores accessed with a single query language. And there can be a variety of islands, including relational
(RDBMS), Array DBMS, NoSQL and Data Stream Management System (DSMS). Within an island, there
is loose-coupling of the data stores, which need to provide a wrapper (called shim) to map the island
language to their native one. When a query accesses more than one data store, objects may have to be
copied between local databases, using a CAST operation, which provides a form of tight-coupling. This
is why BigDAWG can be viewed as a hybrid multistore system.

The architecture of BigDAWG is highly distributed, with a thin layer that interfaces the tools (e.g.
visualization) and applications, with the islands of information. Since there is no common data model and
language, there is no common query processor either. Instead, each island has its specific query processor.
Query processing within an island is similar to that in multidatabase systems: most of the processing is
pushed to the data stores and the query processor only integrates the results. The query optimizer does not
use a cost model, but heuristics and some knowledge of the high performance of some data stores. For
simple queries, e.g. select-project-join, the optimizer will use function shipping, in order to minimize data
movement and network traffic among data stores. For complex queries, e.g. analytics, the optimizer may
consider data shipping, to to move the data to a data store that provides a high-performance implementation.

A query submitted to an island may involve multiple islands. In this case, the query must be expressed
as multiple subqueries, each in a specific island language. To specify the island for which a subquery is
intended, the user encloses the subquery in a SCOPE specification. Thus, a multi-island query will have
multiple scopes to indicate the expected behavior of its subqueries. Furthermore, the user may insert CAST
operations to move intermediate datasets between islands in an efficient way. Thus, the multi-island query
processing is dictated by the way the subqueries, SCOPE and CAST operations are specified by the user.

4.4 Comparative Analysis

The multistore systems we presented above share some similarities, but do have important differences.
The objective of this section is to compare these systems along important dimensions and identify the
major trends. We divide the dimensions between functionality and implementation techniques.

Table 1 compares the functionality of multistore systems along four dimensions: objective, data model,
query language, and data stores that are supported. Although all multistore systems share the same overall
goal of querying multiple data stores, there are many different paths toward this goal, depending on the
functional objective to be achieved. And this objective has important impact on the design choices. The
major trend that dominates is the ability to integrate relational data (stored in RDBMS) with other kinds of
data in different data stores, such as HDFS (Polybase, HadoopDB, SparkSQL, JEN) or NoSQL (BigTable
only for BigIntegrator, document stores for Forward). Thus, an important difference lies in the kind of
data stores that are supported. For instance, Estocada, BigDAWG and CLoudMdsQL can support a wide
variety of data stores while Polybase and JEN target the integration of RDBMS with HDFS only. We can
also note the growing importance of accessing HDFS within Hadoop, in particular, with MapReduce or
Spark, which corresponds to major use cases in structured/unstructured data integration.

Another trend is the emergence of self-tuning multistore systems, such as Estocada and Odyssey, with
the objective of leveraging the available data stores for performance. In terms of data model and query
language, most systems provide a relational/ SQL-like abstraction. However, QoX has a more general
graph abstraction to capture analytic data flows. And both Estocada and BigDAWG allow the data stores



Query Processing in Multistore Systems: an overview 27

Table 1 Functionality of multistore systems.

Mutistore system Objective Data model Query language Data stores
Loosely-coupled
BigIntegrator Querying relational Relational SQL-like BigTable,RDBMS

and cloud data
Forward Unifying relational JSON-based SQL++ RDBMS, NoSQL

and NoSQL
QoX Analytic data Graph XML-based RDBMS,

flows MapReduce, ETL
Tightly-coupled
Polybase Querying Hadoop Relational SQL HDFS, RDBMS

from RDBMS
HadoopDB Querying RDBMS Relational SQL-like (HiveQL) HDFS, RDBMS

from Hadoop
Estocada Self-tuning No common Native query RDBMS, NoSQL

model languages
Hybrid
SparkSQL SQL on top of Nested SQL-like HDFS, RDBMS

Spark
BigDAWG Unifying relational No common Island query RDBMS,

and NoSQL model languages, with NoSQL, Array DBMS,
CAST and SCOPE DSMSs
operators

CloudMdsQL Querying relational JSON-based SQL-like with RDBMS, NoSQL
and NoSQL native subqueries HDFS

to be directly accessed with their native (or island) languages. CloudMdsQL also allows native queries,
but as subqueries within an SQL-like language.

Table 2 Implementation techniques of multistore systems.

Mutistore system Special modules Schemas Query processing Query optimization
Loosely-coupled
BigIntegrator Importer, LAV Access filters Heuristics

absorber, finalizer
Forward Query processor GAV Data store Cost-based

capabilities
QoX Dataflow engine No Data/function Cost-based

shipping,
operation
decomposition

Tightly-coupled
Polybase HDFS bridge GAV Query splitting Cost-based
HadoopDB SMS planer, db GAV Query splitting Heuristics

connector
Estocada Storage advisor Materialized View-based query Cost-based

views rewriting
Hybrid
SparkSQL Catalyst Data frames In-memory Cost-based

extensible caching
optimizer using columnar

storage
BigDAWG Island query GAV within Function/data Heuristics

processors islands shipping
CloudMdsQL Query planner No Bind join Cost-based



28 C. Bondiombouy and P. Valduriez

Table 2 compares the implementation techniques of multistore systems along four dimensions: special
modules, schema management, query processing, and query optimization. The first dimension captures
the system modules that either refine those of the generic architecture (e.g. importer, absorber and finalizer,
which refine the wrapper module, Catalyst extensible optimizer or QoX’s data flow engine, which replace
the query processor) or bring new functionality (e.g. Estocada’s storage advisor). Most multistore systems
provide some support for managing a global schema, using the GAV or LAV approaches, with some
variations (e.g. BigDAWG uses GAV within (single model) islands of information). However, QoX,
Estocada, SparkSQL and CloudMdsQL do not support global schemas, although they provide some way
to deal with the data stores local schemas.

The query processing techniques are extensions of known techniques from distributed database
systems, e.g. data/function shipping, query decomposition (based on the data stores’s capabilities, bind join,
select pushdown). Query optimization is also supported, with either a (simple) cost model or heuristics.

5 Conclusion

Building cloud data-intensive applications often requires using multiple data stores (NoSQL, HDFS,
RDBMS, etc.), each optimized for one kind of data and tasks. In particular, many use cases exhibit the
need to combine loosely structured data (e.g. log files, tweets, web pages) which are best supported by
HDFS or NoSQL with more structured data in RDBMS. However, the wide diversification of data store
interfaces makes it difficult to access and integrate data from multiple data stores.

Although useful, the solutions devised for multidatabase systems (also called federated database
systems) or Web data integration systems need be extended in major ways to deal with the specific context
of the cloud. This has motivated the design of multistore systems (also called polystores) that provide
integrated or transparent access to a number of cloud data stores through one or more query languages.
As NoSQL and related technologies such as Hadoop and Spark, multistore systems is a recent, important
topic in data management, and we can expect much evolution in the coming years.

In this paper, we gave an overview of query processing in multistore systems, focusing on the main
solutions and trends. We started by introducing cloud data management, including distributed file systems
such as HDFS, NoSQL systems and data processing frameworks (such as MapReduce and Spark) and
query processing in multidatabase systems. Then, we described and analyzed representative multistore
systems, based on their architecture, data model, query languages and query processing techniques. To
ease comparison, we divided multistore systems based on the level of coupling with the underlying data
stores, i.e. loosely-coupled, tightly-coupled and hybrid.

We analyzed three multistore systems for each class: BigIntegrator, Forward and QoX (loosely-
coupled); Polybase, HadoopDB and Estocada (tightly-coupled); SparkSQL, BigDAWG and CloudMdsQL
(hybrid). Our comparisons reveal several important trends. The major trend that dominates is the ability
to integrate relational data (stored in RDBMS) with other kinds of data in different data stores, such as
HDFS or NoSQL. However, an important difference between multistore systems lies in the kind of data
stores that are supported. We also note the growing importance of accessing HDFS within Hadoop, in
particular, with MapReduce or Spark. Another trend is the emergence of self-tuning multistore systems,
with the objective of leveraging the available data stores for performance. In terms of data model and query
language, most systems provide a relational/ SQL-like abstraction. However, QoX has a more general
graph abstraction to capture analytic data flows. And both Estocada and BigDAWG allow the data stores
to be directly accessed with their native (or island) languages.

The query processing techniques are extensions of known techniques from distributed database
systems, e.g. data/function shipping, query decomposition (based on the data stores capabilities, bind join,
select pushdown). And query optimization is supported, with either a (simple) cost model or heuristics.



Query Processing in Multistore Systems: an overview 29

Since multistore systems is a relatively recent topic, there are important research issues ahead of us,
which we briefly discuss.

• Query languages. Designing a query language for a multistore system is a major issue as there is a
subtle trade-off between ease of use for the upper layers (e.g. analytics) and efficient access to the
data stores. An SQL-like query language as provided by most current multistore systems will make
it easier the integration with standard analytics tools, but at the expense of efficiency. An alternative
towards more efficiency (at the expense of ease of use) is to allow the data stores to be directly
accessed with their native (or island) languages as with Estocada and BigDAWG. A compromise is
to use a functional query language that allows native subqueries as functions within SQL-like queries
as in CloudMdsQL.

• Query optimization. This issue is directly related to the query language issue. With an SQL-like
query language , it is possible to rely on a simple cost model and simple heuristics such as using
bind join or select push down. However, updating the cost model or adding heuristics as new data
stores are added may be difficult. An interesting solution is extensible query optimization as in the
SparkSQL Catalyst. Finally, using the native data store languages directly makes the issue difficult,
as native queries should be treated as a black box.

• Distributed transactions. Multistore systems have focused on read-only queries as it satisfies the
requirements of analytics. However, as more ad more complex cloud data-intensive are built, the need
for updating data across data stores will become important. Thus, the need for distributed transactions
will arise. The issue is much harder as the transaction models of the data stores may be very different.
In particular, most NoSQL data stores do not provide ACID transaction support.

• Efficient data movement. Exchanging data between data stores and the multistore system must be
made efficient in order to deal with big data. Data could also be moved and copied across data stores as
in Estocada and BigDAWG. To make data movement efficient will require clever data transformation
techniques and the use of new memory access techniques, such as Remote Direct Memory Access.

• Automatic load balancing. If efficient data movement is provided across data stores, then a related
issue is automatic load balancing, in order to maximize the performance of cloud data-intensive
applications. This requires the development of a real-time monitoring system of resource usage
integrated with all the components of the platform (the query processor and the underlying data
stores).

Acknowledgements

This work was partially funded by the European Commission under the Integrated Project Coherent PaaS.

References

[ABA+09] A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi, A. Rasin, and A. Silberschatz. Hadoopdb: An
architectural hybrid of mapreduce and DBMS technologies for analytical workloads. Proceedings of the
Very Large Data Bases (PVLDB), 2(1):922–933, 2009.

[AH00] R. Avnur and J. Hellerstein. Eddies: Continuously adaptive query processing. In ACM SIGMOD Int.
Conf. on Data Management, pages 261–272, 2000.

[AMH08] D. J. Abadi, S. Madden, and N. Hachem. Column-stores vs. row-stores: how different are they really?
In ACM SIGMOD Int. Conf. on Data Management, pages 967–980, 2008.



30 C. Bondiombouy and P. Valduriez

[AXL+15] M. Armbrust, R. Xin, C. Lian, Y. Huai, D. Liu, J. Bradley, X. Meng, T. Kaftan, M. Franklin, A. Ghodsi,
and M. Zaharia. Spark SQL: relational data processing in spark. In ACM SIGMOD Int. Conf. on Data
Management, pages 1383–1394, 2015.

[BBD+15] F. Bugiotti, D. Bursztyn, A. D., I. Ileana, and I. Manolescu. Invisible glue: Scalable self-tuning multi-
stores. In Int. Conf. on Innovative Data Systems Research (CIDR), page 7, 2015.

[BKLV15] C. Bondiombouy, B. Kolev, O. Levchenko, and P. Valduriez. Integrating big data and relational data
with a functional sql-like query language. In Int. Conf. on Database and Expert Systems Applications
(DEXA), pages 170–185, 2015.

[Bru14] R. Van Bruggen. Learning Neo4j. Packt Publishing Limited, 2014.
[CDG+08] F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach, M. Burrows, T. Chandra, A. Fikes, and R. Gruber.

Bigtable: A distributed storage system for structured data. ACM Trans. Comput. Syst., 26(2), 2008.
[DES+15] J. Duggan, A. Elmore, M. Stonebraker, M. Balazinska, B. Howe, J. Kepner, S. Madden, D. Maier,

T. Mattson, and S. Zdonik. The bigdawg polystore system. ACM SIGMOD Int. Conf. on Data
Management, 44(2):11–16, 2015.

[DG04] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters. In Symposium on
Operating Systems Design and Implementation (OSDI), pages 137–150, 2004.

[DHI12] A. Doan, A. Y. Halevy, and Z. G. Ives. Principles of Data Integration. Morgan Kaufmann, 2012.
[DHJ+07] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S. Sivasubramanian,

P. Vosshall, and W. Vogels. Dynamo: amazon’s highly available key-value store. In ACM Symposium on
Operating Systems Principles (SOSP), pages 205–220, 2007.

[DHN+13] D. DeWitt, A. Halverson, R. Nehme, S. Shankar, J. Aguilar-Saborit, A. Avanes, M. Flasza, and
J. Gramling. Split query processing in polybase. In ACM SIGMOD Int. Conf. on Data Management,
pages 1255–1266, 2013.

[EST+13] S. Ewen, S. Schelter, K. Tzoumas, D. Warneke, and V. Markl. Iterative parallel data processing with
stratosphere: an inside look. In ACM SIGMOD Int. Conf. on Data Management, pages 1053–1056, 2013.

[FOPZ14] Yupeng Fu, Kian Win Ong, Yannis Papakonstantinou, and Erick Zamora. FORWARD: data-centric uis
using declarative templates that efficiently wrap third-party javascript components. Proceedings of the
Very Large Data Bases (PVLDB), 7(13):1649–1652, 2014.

[GGL03] S. Ghemawat, H. Gobioff, and S. Leung. The google file system. In ACM Symposium on Operating
Systems Principles (SOSP), pages 29–43, 2003.

[HCK+08] F. Hupfeld, T. Cortes, B. Kolbeck, J. Stender, E. Focht, M. Hess, J. Malo, J. Martí, and E. Cesario. The
xtreemfs architecture - a case for object-based file systems in grids. Concurrency and Computation:
Practice and Experience, 20(17):2049–2060, 2008.

[HKWY97] L. Haas, D. Kossmann, E. Wimmers, and J. Yang. Optimizing queries across diverse data sources. In
Proceedings of the Very Large Data Bases (PVLDB), pages 276–285, 1997.

[HST+13] H. Hacigümüs, J. Sankaranarayanan, J. Tatemura, J. LeFevre, and N. Polyzotis. Odyssey: A multi-store
system for evolutionary analytics. Proceedings of the Very Large Data Bases (PVLDB), 6(11):1180–
1181, 2013.

[KBV+16] B. Kolev, C. Bondiombouy, P. Valduriez, R. Jimenez-Peris, R. Pau, and J. Pereira. The cloudmdsql
multistore system. ACM SIGMOD/PODS (Principles of Database Systems) Conf., page 4, 2016.

[KVB+15] B. Kolev, P. Valduriez, C. Bondiombouy, R. Jimenez-Peris, R. Pau, and J. Pereira. Cloudmdsql: Querying
heterogeneous cloud data stores with a common language. Distributed and Parallel Databases, page 41,
2015.

[Len02] M. Lenzerini. Data integration: A theoretical perspective. In ACM SIGMOD/PODS (Principles of
Database Systems) Conf., pages 233–246, 2002.

[LSH+14] J. LeFevre, J. Sankaranarayanan, H. Hacigümüs, J. Tatemura, N. Polyzotis, and J. Carey. MISO: souping
up big data query processing with a multistore system. In ACM SIGMOD Int. Conf. on Data Management,
pages 1591–1602, 2014.

[NPP13] A. Nayak, A. Poriya, and D. Poojary. Type of nosql databases and its comparison with relational
databases. Int. Journal of Applied Information Systems, 5(4):16–19, 2013.



Query Processing in Multistore Systems: an overview 31

[OPV14] K. Win Ong, Y. Papakonstantinou, and R. Vernoux. The SQL++ semi-structured data model and query
language: A capabilities survey of sql-on-hadoop, nosql and newsql databases. ACM Computing Research
Repository (CoRR), abs/1405.3631, 2014.

[ÖV11] M. T. Özsu and P. Valduriez. Principles of Distributed Database Systems, Third Edition. Springer, 2011.
[PAD12] E. Pacitti, R. Akbarinia, and M. El Dick. P2P Techniques for Decentralized Applications. Synthesis

Lectures on Data Management. Morgan & Claypool Publishers, 2012.
[PHM10] E. Plugge, T. Hawkins, and P. Membrey. The Definitive Guide to MongoDB:The NoSQL Database for

Cloud and Desktop Computing. Apress, 2010.
[Ram09] R. Ramakrishnan. Data management in the cloud. In IEEE Int. Conf. on Data Engineering, page 5,

2009.
[SAD+10] M. Stonebraker, D. Abadi, D. DeWitt, S. Madden, E. Paulson, A. Pavlo, and A. Rasin. Mapreduce and

parallel dbmss: friends or foes? Communications of the ACM, 53(1):64–71, 2010.
[SKWH76] M. Stonebraker, P. Kreps, W. Wong, and G. Held. The design and implementation of ingres. ACM Trans.

on Database Systems, 1(3):198–222, 1976.
[Sto81] M. Stonebraker. Operating system support for database management. Communications of the ACM,

24(7):412–418, 1981.
[SWCD09] A. Simitsis, K. Wilkinson, M. Castellanos, and U. Dayal. Qox-driven ETL design: reducing the cost of

ETL consulting engagements. In ACM SIGMOD Int. Conf. on Data Management, pages 953–960, 2009.
[SWCD12] A. Simitsis, K. Wilkinson, M. Castellanos, and U. Dayal. Optimizing analytic data flows for multiple

execution engines. In ACM SIGMOD Int. Conf. on Data Management, pages 829–840, 2012.
[TRV98] A. Tomasic, L. Raschid, and P. Valduriez. Scaling access to heterogeneous data sources with DISCO.

IEEE Trans. Knowl. Data Eng., 10(5):808–823, 1998.
[VTP+14] V.Gankidi, N. Teletia, J. Patel, A. Halverson, and D. DeWitt. Indexing HDFS data in PDW: splitting the

data from the index. Proceedings of the Very Large Data Bases (PVLDB), 7(13):1520–1528, 2014.
[WBM+06] S. Weil, S. Brandt, E. Miller, D. Long, and C. Maltzahn. Ceph: A scalable, high-performance distributed

file system. In Symposium on Operating Systems Design and Implementation (OSDI), pages 307–320,
2006.

[Whi12] T. White. Hadoop - The Definitive Guide: Storage and Analysis at Internet Scale. O’Reilly, 2012.
[YZÖ+15] T. Yuanyuan, T. Zou, F. Özcan, R. Gonscalves, and H. Pirahesh. Joins for hybrid warehouses: Exploiting

massive parallelism and enterprise data warehouses. In Int. Conf. on Extending Database Technology
(EDBT), pages 373–384, 2015.

[ZCF+10] M. Zaharia, M. Chowdhury, M. Franklin, S. Shenker, and I. Stoica. Spark: Cluster computing with
working sets. In USENIX Workshop on Hot Topics in Cloud Computing (HotCloud), pages 10–10, 2010.

[ZR11] M. Zhu and T. Risch. Querying combined cloud-based and relational databases. In Int. Conf. on Cloud
and Service Computing (CSC), pages 330–335, 2011.


	Introduction
	Cloud Data Management
	Distributed Storage
	Block-based Distributed File Systems
	Object-based Distributed File Systems
	Combining Block Storage and Object Storage

	NoSQL Systems
	Key-Value Stores
	Wide Column Stores
	Document Stores
	Graph Databases

	Data Processing Frameworks
	Concluding Remarks


	Multidatabase Query Processing
	Mediator-Wrapper Architecture
	Multidatabase Query Processing Architecture
	Multidatabase Query Processing Techniques
	Heterogeneous Cost Modeling
	Heterogeneous Query Optimization
	Adaptive Query Processing


	Multistore Systems
	Loosely-Coupled Multistore Systems
	Tightly-Coupled Multistore Systems
	Hybrid systems
	Comparative Analysis

	Conclusion

