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Abstract. Recently, some Scientific Workflow Management Systems
(SWIMSs) with provenance support (e.g. Chiron) have been deployed
in the cloud. However, they typically use a single cloud site. In this
paper, we consider a multisite cloud, where the data and computing
resources are distributed at different sites (possibly in different regions).
Based on a multisite architecture of SWMS, i.e. multisite Chiron, we
propose a multisite task scheduling algorithm that considers the time
to generate provenance data. We performed an experimental evaluation
of our algorithm using Microsoft Azure multisite cloud and two real-life
scientific workflows, i.e. Buzz and Montage. The results show that our
scheduling algorithm is up to 49.6% better than baseline algorithms in
terms of execution time.

Keywords: scientific workflow; scientific workflow management system; schedul-
ing; parallel execution; multisite cloud

1 Introduction

Many large-scale in silico scientific experiments take advantage of scientific work-
flows (SWfs) to model data operations such as loading input data, data process-
ing, data analysis and aggregating output data. SWfs enable scientists to model
the data processing of these experiments as a graph, in which vertices represent
data processing activities and edges represent dependencies between them. A
SWf{ is the assembly of scientific data processing activities with data dependen-
cies between them [5]. An activity is a description of a piece of work that forms
a logical step within a SWf representation [I1] and a task is the representation
of an activity within a one-time execution of this activity, which processes a
data chunk [II]. A Scientific Workflow Management System (SW{MS) is a tool
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to execute SWfs [I1]. Some implementations of SWfMSs are publicly available,
e.g. Pegasus [7] and Chiron [14]. A SWIMS generally supports provenance data,
which is the metadata that captures the derivation history of a dataset [11], dur-
ing SWf execution. In order to execute a data-intensive SW{ within reasonable
time, SW{MSs generally exploit High Performance Computing (HPC) resources
obtained from a computer cluster, grid or cloud environment.

Recently, some SWIMSs with provenance support (e.g. Chiron) have been
deployed in the cloud for the execution of a SWf at a single cloud site. How-
ever, the data necessary to run a SWf may well be distributed at different sites
(possibly in different regions), which may not be allowed to be transferred to
other sites because of big amounts or proprietary reasons. It may not be always
possible to move all the computing resources (including programs) to a single
site. In this paper, we consider a multisite cloud that is composed of several sites
(or data centers) of the same cloud provider, each with its own resources and
data. The difference between the multisite cloud and the classical large-scale
distributed environment is that the data or the computing resources are well
distributed and the network bandwidths among different sites are different.

To enable SWf execution in a multisite cloud with distributed input data,
the execution of the tasks of each activity should be scheduled to cloud sites
(or sites for short). The tasks of each activity can be scheduled independently.
Then, the scheduling problem is how to decide at which sites to execute the
tasks of each activity in order to reduce execution time of a SWf in a multisite
cloud. The mapping relationship between sites and tasks is a scheduling plan.
Since it may take much time to transfer data between two different sites, the
multisite scheduling problem should take into account the resources at different
sites and intersite data transfer, including the data to be processed by tasks and
the provenance data, during SWf execution.

Classic scheduling algorithms, e.g. Opportunistic Load Balancing (OLB) [13],
Minimum Completion Time (MCT) [13], min-min [10], max-min [I0] and Hetero-
geneous Earliest Finish Time (HEFT) [18], and some other scheduling solutions
[4][I6][I7] address the scheduling problem within a single site. A few multisite
scheduling approaches are proposed [9], but they do not consider the distribution
of input data at different sites and have no support for provenance data, which
may incur much time for intersite data transfer. In [I5], data transfer is ana-
lyzed in multi-site SWTf execution, stressing the importance of optimizing data
provisioning. However, this information is not yet explored on task scheduling.
In a previous work [I2], we proposed a solution of multisite activity scheduling
of SWfs according to data location. However, it can schedule the execution of
each activity to a site but cannot schedule tasks of one activity to different sites.

The difference between our work and others is multisite execution with prove-
nance support. In the paper, we make the following contributions. First, we pro-
pose multisite Chiron, with a novel architecture to execute SWfs in multisite
cloud environments with provenance support. Second, we propose a novel mul-
tisite task scheduling algorithm, i.e. Data-Intensive Multisite task scheduling
(DIM), for SWf execution in multisite Chiron. Third, we carry out an experi-
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mental evaluation, based on the implementation of multisite Chiron in Microsoft
Azure using two SWis, i.e. Buzz [§] and Montage [2].

This paper is organized as follows. Section [2] explains the design of a multi-
site SWMS. Section [3| proposes our scheduling algorithm. Section {4] gives our
experimental evaluation. Section [5| concludes.

2 System Design

Chiron [I4] is a data-centric SWIMS for the execution of SWfs at a single site,
with provenance support. We extend Chiron to multisite, i.e. multisite Chiron,
which can manage the communication of Chiron instances at each site and au-
tomatically take advantage of distributed resources at each site to process the
distributed data. In the execution environment of multisite Chiron, there is a
master site (site 1 in Figure [1)) and several slave sites (Sites 2 and 3 in Figure
. The master site is composed of several Virtual Machines (VMs), a shared file
system and a provenance database. The synchronization is achieved by master-
worker model while the data transferring is realized by peer-to-peer model. A
slave site is composed of a cluster of VMs with a deployed shared file system.
In the multisite environment, each VM is a computing node (or node for short).
A node is selected as a master node at each site. In this paper, we assume that
there is a Web domain at each site for SWf execution and that all the resources
related to the SWf execution are in the Web domain at that site.

@ Master node
@ Slave node

& Provenance Database

Shared File System

o,
Site 3

Fig. 1: Architecture of multisite Chiron.

During SWf execution, Chiron analyzes the data dependencies of each ac-
tivity. When the input data of an activity is ready [I4], Chiron generates tasks.
Then, the tasks of each activity are independently scheduled to each site. All the
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previous processes are realized at the master node of the master site. Then, the
data of the scheduled tasks is transferred to the scheduled sites and the tasks
are executed at the scheduled sites. After the execution of tasks, the provenance
data [I4] of each site are transferred to the provenance database. When the tasks
of all the activities are executed, the execution of a SWf is finished.

3 Task Scheduling

In this section, we propose our two Level (2L) scheduling approach for multisite
execution of SWfs and multisite scheduling algorithm, i.e. DIM. The first level
performs multisite scheduling, where each task is scheduled to a site. DIM works
at this level. The second level performs single site scheduling, where each task is
scheduled to a VM by the default scheduling strategy (Round-Robin) of Chiron
[14]. In this paper, we focus on the first level.

Algorithm 1 Data-Intensive Multisite task scheduling (DIM)

Input: T': a bag of tasks to be scheduled; S: a set of cloud sites
Output: SP: the scheduling plan for T in S

1: SP«+ 0

2: for each t € T do

3: s < GetDataSite(t)

4: SP « SPU{Schedule(t,s)}

5: EstimateTime( T, s, SP )

6: while MaxunbalanceTime( T, s, SP ) is reduced in the last loop do
7 sMin < MinTime(S)

8: sMax < MaxTime(S)

9: TaskReschedule(sMin, sMaz, SP)
end

Our multisite scheduling algorithm, i.e. DIM, schedules a bag of tasks, i.e.
the tasks of an activity, onto multiple sites (see Algorithm . First, the tasks are
scheduled according to the location of input data (lines 2-5), which is similar to
the scheduling algorithm of MapReduce [4]. Line 3 searches the site s that stores
the biggest part of input data corresponding to task t. Line 4 schedules task ¢
at site s. Line 5 estimates the execution time of all the tasks scheduled at site
s with consideration of generating provenance data and intersite data transfer.
Then, the execution time at each site is balanced by adjusting the whole bag of
tasks scheduled at that site (lines 6-9). Line 6 checks if the maximum difference
of the estimated execution time of tasks at each site can be reduced by verifying
if the difference is reduced in the previous loop or if this is the first loop. While
the maximum difference of execution time can be reduced, the tasks of the two
sites are exchanged as described in lines 7-9. Line 7 and 8 choose the site that
has the minimal execution time and the site that has the maximum execution
time, respectively. Then, the scheduler calls the function TaskReschedule to
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exchange the tasks scheduled at the two selected sites to reduce the maximum
difference of execution time.

In order to achieve load balancing of two sites, we propose TaskReschedule
algorithm. Let us assume that there are two sites, i.e. sites s; and s;. For the
tasks scheduled at each site, we assume that the execution time of site s; is
bigger than site s;. In order to balance the execution time at sites s; and s;,
some of the tasks scheduled at site s; should be rescheduled at site s;. Algorithm
gives the method to reschedule a bag of tasks from site s; to site s; in order
to balance the load between the two sites. Line 1 calculates the difference of
the execution time of two sites with a scheduling plan. Line 2 gets all the tasks
scheduled at site s;. For each task ¢ in T; (line 3), it is rescheduled at site s;
if the difference of execution time of the two sites can be reduced (lines 4-8).
Line 4 reschedules task t at site s;. Line 5 calculates the execution time at sites
s; and s; with consideration of the time to generate provenance data. Lines 6-7
updates the scheduling plan if it can reduce the difference of execution time of
the two sites by rescheduling task t.

Algorithm 2 Exchange Tasks

Input: s;: a site that has bigger execution time for its scheduled tasks; s;: a site that
has smaller execution time for its scheduled tasks; SP: original scheduling plan for
a bag of tasks T'
Output: SP: modified scheduling plan
1: Diff < CalculateExecTimeDif f(ss, s;, SP)
2: T; < GetScheduledTasks(s;, SP)
3: for each ¢t € T; do

4: SP' + ModifySchedule(SP,{Schedule(t, s;)}
5: Diff' + CalculateExecTimeDif f(si, sj, SP')
6: if Diff' < Diff then
7 SP « SP’
8: Diff «+ Diff’

end

Let us assume n tasks to be scheduled at m sites. The complexity of the DIM
algorithm O(m - n-logn) is only a little bit higher than that of OLB and MCT
(O(m - n)), but yields high reduction in SWf execution.

4 Experimental Evaluation

This section gives our experimental evaluation of the DIM algorithm, within
Microsoft Azure [I]. We instantiated three A4 [3] (8 CPU cores) VMs at each
of three site, i.e. Central US (CUS), West Europe (WEU) and North Europe
(NEU). We deployed an A2 [3] (2 CPU cores) VM and install PostgreSQL
database as provenance database in that VM. WEU is selected as master site.
We compare our proposed algorithm with two representative baseline scheduling
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algorithms, i.e. Opportunistic Load Balancing (OLB) and Minimum Completion
Time (MCT). In the multisite environment, OLB randomly selects a site for a
task while MCT schedules a task to the site that can finish the execution first.

Table 1: Execution results. The unit of execution time is minute. The data
transfer represents the size of intersite transferred data. The unit of data is MB.
The scheduling time represent the time to execute the scheduling algorithms.
The unit of scheduling time is second.

Algorithm SWf |DIM|MCT|OLB SWf DIM |[MCT|OLB
Buzz 0/35.5] 39.3 | 70.4 |Montage 0| 6.13 | 8.57 {11.98
Buzz 1| 389 | 514 | 719 |Montage 1]18.12|21.68|22.05
Buzz 0| 4.8 | 6.7 [10.0 |[Montage 0| 411 | 237 | 576

Buzz 1| 172 | 1408 {1492 |Montage 11299 | 1173|1951
Scheduling Time|Buzz 1| 633 | 109 | 17 |Montage 1| 29.2 | 28.8 | 1.5

Execution Time

Data Transfer

We performed experiments with the Buzz SWf using a DBLP 2013 XML file
of 1.29GB as input data and the other with the Montage SWf using 5.5 GB
input data. For Buzz SWI, 0 represents 60 MB input data and 1 represents 1.29
GB input data. For Montage, 0 represents 0.5 degree and 1 represents 1 degree
[6]. The input data of each SWf is evenly partitioned and stored at the three
sites while the configuration data is present at all the three sites. The execution
results (see Table [1) show that the execution time corresponding to DIM is up
to 24.3% smaller than that corresponding to MCT and up to 49.6% smaller than
that corresponding to OLB although it corresponds to bigger time to execute
the scheduling algorithm, i.e. scheduling time. The size of the data transferred
between different sites corresponding to MCT is up to 7.19 times bigger than
that corresponding to DIM and the size corresponding to OLB is up to 7.67
times bigger than that corresponding to DIM.

Table 2: Provenance data distribution of the execution of Buzz. All
represents the size of all the provenance data. The distribution represents the
percentage of provenance data generated at each site. The unit of data is MB
Algorithm|DIM|MCT|OLB
All 301 | 280 | 279
WEU 43 | 22 | 35
NEU 34 | 36 | 33
CUS 23 | 42 | 32

Furthermore, we measured the distribution of the provenance data during
the execution of the Buzz SWf with 1.29 GB input data, which shows bigger
advantage of DIM over MCT and OLB compared with that of Montage SWH{.
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The amount of the provenance data corresponding to the three scheduling al-
gorithms are similar (the difference is less than 8%). The bandwidth between
the provenance database and the site is in the following order: WEU > NEU >
CUS. As shown in Table [2| the percentage of provenance data at WEU corre-
sponding to DIM is much bigger than MCT (up to 95% bigger) and OLB (up to
97% bigger). This indicates that DIM can schedule tasks with provenance data
to the site (WEU) that has bigger bandwidth with the provenance database.
This reduces the time to generate provenance data in order to reduce the overall
multisite execution time of SWfs.

Since the DIM algorithm considers the time to transfer intersite provenance
data and makes optimization for a bag of tasks, it can reduce the total execution
time. Because DIM schedules the tasks to where the input data is located at
the beginning, DIM can reduce the amount of intersite transferred data. MCT
only optimizes the load balancing for each task among different sites without
consideration of the time to transfer intersite provenance data. It is a greedy
algorithm that can reduce the execution time by balancing the execution time of
each site while scheduling each task. However, it cannot optimize the scheduling
for the whole execution of all the tasks of an activity. In addition, compared
with OLB, MCT cannot reduce much the transferred data among different sites.
Since OLB simply tries to keep all the sites working on arbitrary tasks, it has the
worst performance. Because of the interaction with the provenance database and
higher complexity, the scheduling time of DIM is much bigger than MCT and
OLB. However, the scheduling time of the three scheduling algorithms is always
small compared with the total execution (less than 3%), which is acceptable
for the task scheduling during SWf execution. Although the scheduling time of
DIM is much bigger than MCT and OLB, the total execution time of SWfs
corresponds to DIM is much smaller than that of MCT and OLB, which means
that DIM generates better scheduling plans compared with MCT and OLB.

5 Conclusion

In this paper, we proposed a solution, based on multisite Chiron to execute
SWifs in a multisite cloud with geographically distributed input data. We pro-
posed the architecture of multisite Chiron and a global method to gather the
distributed provenance data in a centralized database. Based on this architec-
ture, we proposed a new scheduling algorithm, i.e. DIM, which considers the
latency to transfer data and to generate provenance data in multisite cloud. The
complexity of DIM (O(m - n -logn)) is quite acceptable for scheduling bags of
tasks. We used the Buzz SWf and the Montage SWf to evaluate the DIM al-
gorithm in Microsoft Azure with three sites. The experiments show that DIM
is much better than two representative baseline algorithms, i.e. MCT (up to
24.3%) and OLB (up to 49.6%), in terms of execution time and that DIM can
also reduce significantly data transfer between sites, compared with MCT (up
to 719%) and OLB (up to 767%).
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