J. Dean and S. Ghemawat, MapReduce, 6th Symposium on Operating System Design and Implementation (OSDI), pp.137-150, 2004.
DOI : 10.1145/1327452.1327492

E. Deelman, D. Gannon, M. Shields, and I. Taylor, Workflows and e-Science: An overview of workflow system features and capabilities, Future Generation Computer Systems, vol.25, issue.5, pp.528-540, 2009.
DOI : 10.1016/j.future.2008.06.012

E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good, The cost of doing science on the cloud: The Montage example, 2008 SC, International Conference for High Performance Computing, Networking, Storage and Analysis, pp.1-12, 2008.
DOI : 10.1109/SC.2008.5217932

E. Deelman, G. Singh, M. Su, J. Blythe, Y. Gil et al., Pegasus: A Framework for Mapping Complex Scientific Workflows onto Distributed Systems, Scientific Programming, pp.219-237, 2005.
DOI : 10.1155/2005/128026

J. Dias, E. S. Ogasawara, D. De-oliveira, F. Porto, P. Valduriez et al., Algebraic dataflows for big data analysis, 2013 IEEE International Conference on Big Data, pp.150-155, 2013.
DOI : 10.1109/BigData.2013.6691567

R. Duan, R. Prodan, and X. Li, Multi-Objective Game Theoretic Schedulingof Bag-of-Tasks Workflows on Hybrid Clouds, IEEE Transactions on Cloud Computing, vol.2, issue.1, pp.29-42, 2014.
DOI : 10.1109/TCC.2014.2303077

K. Etminani and M. Naghibzadeh, A Min-Min Max-Min selective algorihtm for grid task scheduling, 2007 3rd IEEE/IFIP International Conference in Central Asia on Internet, pp.1-7, 2007.
DOI : 10.1109/CANET.2007.4401694

J. Liu, E. Pacitti, P. Valduriez, and M. Mattoso, A Survey of Data-Intensive Scientific Workflow Management, Journal of Grid Computing, vol.1, issue.Webserver-Issue, pp.1-37, 2015.
DOI : 10.1007/s10723-015-9329-8

URL : https://hal.archives-ouvertes.fr/lirmm-01144760

J. Liu, V. Silva, E. Pacitti, P. Valduriez, and M. Mattoso, Scientific workflow partitioning in multi-site clouds, BigDataCloud'2014: 3rd Workshop on Big Data Management in Clouds in conjunction with Euro-Par 2014, p.12, 2014.
URL : https://hal.archives-ouvertes.fr/lirmm-01073613

M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. F. Freund, Dynamic matching and scheduling of a class of independent tasks onto heterogeneous computing systems, Proceedings. Eighth Heterogeneous Computing Workshop (HCW'99), p.30, 1999.
DOI : 10.1109/HCW.1999.765094

E. S. Ogasawara, J. Dias, V. Silva, F. S. Chirigati, D. De-oliveira et al., Chiron: a parallel engine for algebraic scientific workflows, Concurrency and Computation: Practice and Experience, pp.252327-2341, 2013.
DOI : 10.1002/cpe.3032

URL : https://hal.archives-ouvertes.fr/lirmm-00806557

L. Pineda-morales, A. Costan, and G. Antoniu, Towards Multi-site Metadata Management for Geographically Distributed Cloud Workflows, 2015 IEEE International Conference on Cluster Computing, pp.294-303, 2015.
DOI : 10.1109/CLUSTER.2015.49

URL : https://hal.archives-ouvertes.fr/hal-01239150

S. Smanchat, M. Indrawan, S. Ling, C. Enticott, and D. Abramson, Scheduling Multiple Parameter Sweep Workflow Instances on the Grid, 2009 Fifth IEEE International Conference on e-Science, pp.300-306, 2009.
DOI : 10.1109/e-Science.2009.49

H. Topcuouglu, S. Hariri, and M. Wu, Performance-effective and low-complexity task scheduling for heterogeneous computing, IEEE Transactions on Parallel and Distributed Systems, vol.13, issue.3, pp.260-274, 2002.
DOI : 10.1109/71.993206

M. Wieczorek, R. Prodan, and T. Fahringer, Scheduling of scientific workflows in the ASKALON grid environment, ACM SIGMOD Record, vol.34, issue.3, pp.56-62, 2005.
DOI : 10.1145/1084805.1084816