
HAL Id: lirmm-01342203
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01342203v1

Submitted on 15 Jul 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-Objective Scheduling of Scientific Workflows in
Multisite Clouds

Ji Liu, Esther Pacitti, Patrick Valduriez, Daniel de Oliveira, Marta Mattoso

To cite this version:
Ji Liu, Esther Pacitti, Patrick Valduriez, Daniel de Oliveira, Marta Mattoso. Multi-Objective Schedul-
ing of Scientific Workflows in Multisite Clouds. Future Generation Computer Systems, 2016, 63,
pp.76-95. �10.1016/j.future.2016.04.014�. �lirmm-01342203�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01342203v1
https://hal.archives-ouvertes.fr


Multi-Objective Scheduling of Scientific Workflows in Multisite Clouds

Ji Liua, Esther Pacittia, Patrick Valdurieza, Daniel de Oliveirab, Marta Mattosoc

aInria, Microsoft-Inria Joint Centre, LIRMM and University of Monpellier, France
bInstitute of Computing, Fluminense Federal University, Niteroi, Brazil

cCOPPE, Federal University of Rio de Janeiro, Brazil

Abstract

Clouds appear as appropriate infrastructures for executing Scientific Workflows (SWfs). A cloud is typically made of several sites
(or data centers), each with its own resources and data. Thus, it becomes important to be able to execute some SWfs at more than
one cloud site because of the geographical distribution of data or available resources among different cloud sites. Therefore, a major
problem is how to execute a SWf in a multisite cloud, while reducing execution time and monetary costs. In this paper, we propose
a general solution based on multi-objective scheduling in order to execute SWfs in a multisite cloud. The solution includes a multi-
objective cost model including execution time and monetary costs, a Single Site Virtual Machine (VM) Provisioning approach
(SSVP) and ActGreedy, a multisite scheduling approach. We present an experimental evaluation, based on the execution of the
SciEvol SWf in Microsoft Azure cloud. The results reveal that our scheduling approach significantly outperforms two adapted
baseline algorithms (which we propose by adapting two existing algorithms) and the scheduling time is reasonable compared with
genetic and brute-force algorithms. The results also show that our cost model is accurate and that SSVP can generate better VM
provisioning plans compared with an existing approach.

Keywords: Scientific workflow; scientific workflow management system; multi-objective scheduling; parallel execution; multisite
cloud

1. Introduction

Large-scale in silico scientific experiments typically take ad-
vantage of Scientific Workflows (SWfs) to model data opera-
tions such as loading input data, data processing, data analysis,
and aggregating output data. SWfs enable scientists to model
the data processing of these experiments as a graph, in which
vertices represent data processing activities and edges represent
dependencies between them. A SWf is the assembly of scien-
tific data processing activities with data dependencies among
them [15]. An activity is a description of a piece of work that
forms a logical step within a SWf representation [22]. Since
SWf activities may process big data, we can exploit data paral-
lelism whereby one activity corresponds to several executable
tasks, each working in parallel on a different part of the input
data. Thus, a task is the representation of an activity within a
one-time execution of this activity, which processes a data par-
tition or chunk [22].

A SWf Management System (SWfMS) is the tool to manage
SWfs [22]. In order to execute SWfs efficiently, SWfMSs typ-
ically exploit High Performance Computing (HPC) resources
in a cluster, grid or cloud environment. Because of virtually
infinite resources, diverse scalable services, stable quality of
service and flexible payment policies, clouds have become an
interesting solution for SWf execution. In particular, the user
of Virtual Machines (VMs) makes it easy to deal with elasticity
and workloads that change rapidly. A cloud is typically made
of several sites (or data centers), each with its own resources
and data. Thus, in order to use more resources than available at

a single site or to access data at different sites, SWfs could also
be executed in a distributed manner at different sites. Nowa-
days, the computing resources or data of a cloud provider such
as Amazon or Microsoft are distributed at different sites and
should be used during the execution of SWfs. As a result, a
multisite cloud is an appealing solution for large scale SWf ex-
ecution. As defined in [21], a multisite cloud is a cloud with
multiple data centers, each at a different location (possibly in a
different region) and being explicitly accessible to cloud users,
typically in the data center close to them for performance rea-
sons.

To enable SWf execution in a multisite cloud, the execution
of each activity should be scheduled to a corresponding cloud
site (or site for short). Then, the scheduling problem is to de-
cide where to execute the activities. In general, to map the exe-
cution of activities to distributed computing resources is an NP-
hard problem [36]. The objectives can be to reduce execution
time or monetary cost, to maximize performance, reliability etc.
Since the SWf execution may take a long time and cost much
money, the scheduling problem may have multiple objectives,
i.e. multi-objective. Thus, the multisite scheduling problem
must take into account the impact of resources distributed at
different sites, e.g. different bandwidths and data distribution at
different sites, and different prices for VMs.

In this paper, we propose a general solution based on multi-
objective scheduling in order to execute SWfs in a multisite
cloud. The solution includes a multi-objective cost model, a
Single Site VM Provisioning approach (SSVP) and ActGreedy,

Preprint submitted to Elsevier April 19, 2016

http://ees.elsevier.com/fgcs/download.aspx?id=263203&guid=dbf908cd-46c5-489f-bdb0-8bbfa937f7db&scheme=1
http://ees.elsevier.com/fgcs/viewRCResults.aspx?pdf=1&docID=8015&rev=2&fileID=263203&msid={3323BCE4-4D1C-4366-91AC-D61B6627F23D}


a multisite scheduling approach. The cost model includes two
objectives, namely reducing execution time and monetary costs,
under stored data constraints, which specify that some data
should not be moved, because it is either too big or for pro-
prietary reasons. Although useful for fixing some activities,
these constraints do not reduce much the complexity of activity
scheduling. We consider a homogeneous cloud environment,
i.e. from single provider. The case of federated clouds (with
multiple cloud providers) is beyond the scope of this paper and
not a reality (although there are some recent proposals). Act-
Greedy handles multiple objectives, namely reducing execution
time and monetary costs. In order to schedule a SWf in a mul-
tisite cloud, the SWf should be partitioned to SWf fragments,
which can be executed at a single site. A SWf fragment (or
fragment for short) is a subset of activities, dependencies and
associated input data of the original workflow [21]. Then, each
fragment can be scheduled by ActGreedy to the site that yields
the minimum cost among all available sites. When a fragment
is scheduled to a site, the execution of its associated activities
is scheduled to the site. ActGreedy is based on our dynamic
VM provisioning algorithm, called Single Site VM Provision-
ing (SSVP), which generates VM provisioning plans for the ex-
ecution of fragments with minimum cost at the scheduled site
based on a cost model. The cost model is used to estimate the
cost of the execution of SWfs [14] according to a scheduling
plan, which defines the schedule of fragments to execution sites.
A VM provisioning plan defines how to provision VMs. For in-
stance, it determines the types, corresponding number and the
order of VMs to provision, for the execution of a fragment. The
VM type determines some parameters such as the number of
virtual CPUs, the size of memory and the default storage size
of hard disk. The main contributions of this paper are:

1. The design of a multi-objective cost model that includes
execution time and monetary costs, to estimate the cost of
executing SWfs in a multisite cloud.

2. A single site VM provisioning approach (SSVP), to gen-
erate VM provisioning plans to execute fragments at each
single site.

3. ActGreedy multisite scheduling algorithm that uses the
cost model and SSVP to schedule and execute SWfs in
a multisite cloud.

4. An extensive experimental evaluation, based on the imple-
mentation of our approach in Microsoft Azure, and using
a real SWf use case (SciEvol [25], a bioinformatics Sci-
entific workflow for molecular evolution reconstruction)
that shows the advantages of our approach, compared with
baseline algorithms.

This paper is organized as follows. Section 2 discusses re-
lated work. Section 3 introduces the problems for workflow
scheduling. Section 4 describes the system architecture for
SWf execution in a multisite cloud. Section 5 describes our
multi-objective optimization approach. Section 6 describes our
scheduling approaches including the SciEvol SWf use case,
the approaches for SWf partitioning and three scheduling ap-
proaches, namely ActGreedy, LocBased and SGreedy. Section

7 is our experimental evaluation in Microsoft Azure cloud [2].
Section 8 concludes.

2. Related Work

To the best of authors’ knowledge, there is no solution to ex-
ecute SWfs in a multisite cloud environment that takes into ac-
count both multiple objectives and dynamic VM provisioning.
The related work either focuses on static VM provisioning [16],
single objective [9, 23, 29, 32, 34, 37, 35, 17, 17, 23, 21] or sin-
gle site execution [14, 18, 30]. Static VM provisioning refers
to the use of the existing VMs (before execution) for SWf ex-
ecution without changing the types of VMs during execution.
However, existing cost models are not suitable for the SWfs
that have a big part of the sequential workload. For instance,
the dynamic approach proposed in [13] ignores the sequential
part of the SWf and the cost of provisioning VMs, which may
generate VM provisioning plans that yield high cost.

Many solutions for workflow scheduling [9, 23, 29, 32, 34,
37] focus on a single objective, i.e. reducing execution time.
These solutions address the scheduling problem in a single site
cloud. Classic heuristics have been used in scheduling algo-
rithms, such as HEFT [35], min-min [17], max-min [17] and
Opportunistic Load Balancing (OLB) [23], but they only ad-
dress the single objective. Furthermore, they are designed for
static computing resources in grid or cluster environments. In
contrast, our algorithm handles multiple objectives, which are
reducing execution time and monetary costs, with dynamic VM
provisioning support. Although some general heuristics, e.g.
genetic algorithms [35], can generate near optimal scheduling
plans, it is not always feasible to design algorithms for every
possible optimization problem [35] and it is not trivial to con-
figure parameters for the problem. In addition, its may take
much time to generate scheduling plans. A brute-force method
can generate an optimal scheduling plan, but its complexity is
very high.

Some multi-objective scheduling techniques [14, 18, 30]
have been proposed. However, they do not take the distribu-
tion of resources at different sites into consideration, so they
are not suitable for a multisite environment. De Oliveira et al.
[14] propose a greedy scheduling approach for the execution
of SWfs at a single site. However, this approach is not appro-
priate for multisite execution of SWfs as it schedules the most
suitable activities to each VM, which may incur transferring
of big data transfer. Rodriguez and Buyya [30] introduce an
algorithm for scheduling dynamic bags of tasks and dynamic
VM provisioning for the execution of SWfs with multiple ob-
jectives in a single site cloud. Rather than using real execution,
they simulate the execution of SWfs , thus missing the hetero-
geneity among the activities of the same SWf, to evaluate their
proposed approaches. In real SWf execution, the activities gen-
erally correspond to different programs to process data. How-
ever, in simulations of SWf execution, the activities are typi-
cally made homogeneous, namely, they correspond to the same
program. Different from the existing approaches, our approach
is suitable for multisite execution and is evaluated by executing
a real-life SWf on a multisite cloud that is Azure.

2



Some scheduling techniques have been proposed for the mul-
tisite cloud, yet focusing on a single objective, i.e. reducing
execution time. For instance, Liu et al. [21] present a work-
flow partitioning approach and data location based scheduling
approach. But this approach does not take monetary cost into
consideration. Our approach uses an a priori method, where
preference information is given by users and then the best so-
lution is produced. Our approach is based on a multi-objective
scheduling algorithm focusing on minimizing a weighted sum
of objectives. The advantage of such approach is that it is au-
tomatically guided by predetermined weights while the disad-
vantage is that it is hard to determine the right values for the
weights [10]. In contrast, a posteriori methods produce a Pareto
front of solutions without predetermined values [10]. Each so-
lution is better than the others with respect to at least one ob-
jective and users can choose one from the produced solutions.
However, this method requires users to pick the most suitable
solution. In this paper, we assume that users have a clear idea of
the importance of objectives, and they can determine the value
for the weight of each objective. One advantage of using a
priori method is that we can produce optimal or near optimal
solutions without user interference at run-time. When we are
using the method of Pareto front, several solutions may be pro-
duced to be chosen by the user. Finally, when the weight of
each objective is positive, the minimum of the sum is already
a Pareto optimal solution [38] [24] and our proposed approach
can generate a Pareto optimal or near-optimal solution with the
predefined weights. Therefore, we do not consider a posteriori
methods.

The existing cost models for generating VM provisioning
plans [13] are not suitable for SWfs that have some sequen-
tial part in their workload. For instance, as presented in [13],
the real execution time of two SWfs (SciEvol and SciPhylomics
[27]) in Amazon EC2 [1] is two times the estimated time. In ad-
dition, some cost models [14][31] for SWf scheduling cannot be
used for generating a proper number of virtual CPUs (CPUs de-
signed to VMs) to instantiate for SWf execution at a multisite
cloud. The instantiation of virtual CPUs is realized by provi-
sioning corresponding VMs. Our cost model does consider the
cost to provision VMs and the sequential parts of the workload
in SWf execution. Furthermore, it can be used to estimate the
optimal number of virtual CPUs to instantiate, which is used
to generate different provisioning plans for different weights of
objectives.

Duan et al. [16] propose a multisite multi-objective schedul-
ing approach with consideration of different bandwidths in a
multisite environment. However, it is only suitable for static
computing resources. Coutinho et al. [13] propose a GraspCC
algorithm to generate a provisioning plan for fragment exe-
cution. However, GraspCC relies on the strong assumption
that the entire workload of SWfs can be executed in parallel.
Furthermore, it cannot reuse existing started VMs and its cost
model is too simple, e.g. does not consider the cost of starting
VMs, which may be high with many VMs to provision. In our
VM provisioning approach, we use a more precise cost model,
assuming that part of the workload can be executed only se-
quentially. We also consider the existing started VMs and the

cost to start VMs before fragment execution.

3. Problem Definition

This section introduces some important terms, i.e. SWf, SWf
fragment and multisite cloud and defines the scheduling prob-
lem in the multisite cloud.

A SWf is described as a Directed Acyclic Graph (DAG) de-
noted by W(V ,E). Let V = {v1, v2, ..., vn} be a set of vertices,
which are associated with the scientific data processing activi-
ties and E = {ei, j: vi, v j ∈ V and v j consumes the output data
of vi } be a set of edges that correspond to dependencies be-
tween activities in V . Activity v j is the following activity of
Activity vi and Activity vi is a preceding activity of Activity v j.
The dependencies can be data or control dependencies. Com-
pared to data dependencies, fewer data are transferred in con-
trol dependencies. The transferred data in a control dependency
is the configuration parameters for activity execution while the
transferred data in a data dependency is the input data to be
processed by the following activity. The activity that processes
control parameters is a control activity. Since the control activ-
ity takes little time to execute, we assume that a control activity
has no workload. In addition, we assume that the data stored
at a specific site may not be allowed to be transferred to other
sites because of proprietary or big amounts of data, which is de-
noted as stored data constraint. If an activity needs to read the
data from the stored data located at a specific site, this activity
is denoted as fixed activity.

A large-scale SWf and its input data can be partitioned into
several fragments [12] [21]. Thus, a SWf can be described
as the assembly of fragments and fragment dependencies, i.e.
W(WF, FE) where WF = {w f1, w f2, ..., w fn} represents a set
of fragments connected by dependencies in the set FE = { f ei, j:
w fi,w f j ∈ WF and w f j consumes the output data of w fi}. A
fragment dependency f ei, j represents that fragment w f j pro-
cesses the output data of fragment w fi. f ei, j is the input de-
pendency of w f j and output dependency of w fi. A fragment
can be denoted by w f (V , E, D). V represents the activities, E
represents the dependencies and D represents the input data of
the workflow fragment.

We denote the SWf execution environment by a configured
multisite cloud1 MS (S ), which consists of a set of sites S . A
multisite cloud configuration defines the instances of VMs and
storage resources for cloud users in a multisite cloud. One site
si ∈ S is composed of a set of Web domains. A Web domain
contains a set of VMs, shared storage resources, and stored
data. In this paper, we assume that one site contains only one
Web domain for the execution of a SWf. We assume that the
available VMs for the execution of SWfs in a multisite cloud
have the same virtual CPUs, i.e. the virtual CPUs have the
same computing capacity, but the number of virtual CPUs in
each VM may be different. In addition, we assume that the
price to instantiate VMs of the same type are the same at the

1The multisite cloud environment configured for the quota of resources that
can be used by a cloud user.

3



same site while the prices at different sites can be different. The
price is the monetary cost to use a VM during a time quantum
(the quantum varies according to the cloud provider, e.g. one
hour or one minute). Time quantum is the smallest possible
discrete unit to calculate the cost of using a VM. For instance,
if the time quantum is one minute and the price of a VM is 0.5
dollar per hour, the cost to use the VM for the time period of T
(T ≥ N − 1 minutes and T < N minutes) will be N∗0.5

60 dollars.
Scheduling fragments requires choosing a site to execute a

fragment, i.e. mapping each fragment to an execution site. A
fragment scheduling plan defines the map of fragments and
sites. When a fragment is scheduled at a site, the activities
of the fragment are also scheduled at that site. Based on a
multi-objective cost model, the problem we address has the
following form [28]:

min(Cost(S ch(S W f , S )))
subject to

stored data constraint
The decision variable is S chedule(w f , s), which is defined as

S chedule(w f , s) =

{
1 if Fragment w f is scheduled at Site s
0 otherwise

Thus, the scheduling problem is, given a multi-objective
cost model, how to generate a fragment scheduling plan
S ch(S W f , S ), for which the corresponding SWf execution has
minimum Cost(S ch(S W f , S )) while respecting the stored data
constraints Const(data) with data ∈ input(S W f ). The cost is
the value calculated based on formulas defined in a cost model,
e.g. Formulas 5.1.1 and 5.1.2, which depends on a schedul-
ing plan and VM provisioning plans at scheduled sites. In the
scheduling plan, for each Fragment w f and site s, only if Frag-
ment w f is scheduled at Site s, the decision variable is 1; other-
wise, the variable is 0. One fragment can be scheduled at only
one site. The search space of scheduling plans contains all the
possible scheduling plans, i.e. for any combination of w f and
s, we can find a scheduling plan in the search space that con-
tains the decision variable S chedule(w f , s) = 1. If the cost is
composed of just one objective, the problem is a single objec-
tive optimization problem. Otherwise, the problem is a multi-
objective problem. The cost model is detailed in Section 5.1. In
the paper, we use SSVP (see Section 5.2) to generate VM pro-
visioning plans. The stored data constraints can be represented
as a matrix (as the one presented below), and its cell values are
known before execution, where each row ai represents an ac-
tivity, each column s j represents a cloud site, and (ai, s j) = 1
means that ai needs to read the data stored at s j.

s1 s2 s3
a1 1 0 0
a2 0 0 1
a3 0 1 0

4. Multisite SWfMS Architecture

In this section, we present the architecture of a multisite
SWfMS. This architecture (see Figure 1) has four modules:

workflow partitioner, multisite scheduler, single site initializa-
tion, and single site execution. The workflow partitioner par-
titions a SWf into fragments (see Section 6.2). After SWf
partitioning, the fragments are scheduled to sites by the mul-
tisite scheduler. After scheduling, in order to avoid restarting
VMs for the execution of continuous activities, all the activi-
ties scheduled at the same site are grouped as a fragment to be
executed. Then, the single site initialization module prepares
the execution environment for the fragment, using two compo-
nents, i.e. VM provisioning and multisite data transfer. At each
site, the VM provisioning component deploys and initializes
VMs for the execution of SWfs. The deployment of a VM is to
create a VM under a user account in the cloud. The deployment
of the VM defines the type and location, namely the cloud site,
of the VM. The initialization of a VM is the process of starting
the VM, installing programs and configuring parameters of the
VM, so that the VM can be used for executing the tasks of frag-
ments. The multisite data transfer module transfers the input
data of fragments to the site. Finally, the single site execution
module starts the execution of the fragments at each site. This
can be realized by an existing single site SWfMS, e.g. Chiron
[26]. Within a single site, when the execution of its fragment
is finished and the output data is moved to other sites, the VMs
are shut down. When the execution of the fragment is waiting
for the output data produced by other sites and the output data
at this site are transferred to other corresponding sites, the VMs
are also shut down to avoid the useless monetary cost. When
the necessary data is ready, the VMs are restarted to continue
the execution of the fragment.

Figure 1: System Architecture.

In a multisite cloud, there are two types of sites, i.e. coor-
dinator and participant. The coordinator is responsible for co-
ordinating the execution of fragments at different participants.
Two modules, namely workflow partitioner and multisite sched-
uler, are implemented at the coordinator site. Both the coordi-
nator and participants execute the scheduled fragments. The
initialization module and single site execution module are im-
plemented at both the coordinator and participants.

5. Multi-objective Optimization

This section focuses on multi-objective optimization, which
is composed of a multi-objective cost model, used to estimate

4



the cost of executing SWfs in a multisite cloud, our algorithm
(SSVP) to generate VM provisioning plans to execute frag-
ments at each single site and a cost estimation method for the
scheduling process.

5.1. Multi-objective Cost Model
We propose a multi-objective cost model, which is composed

of time cost, i.e. execution time, and monetary cost for the
execution of SWfs. In order to choose a good scheduling plan,
we need a cost model to estimate the cost of executing a SWf in
a multisite cloud. A cost model is composed of a set of formulas
to estimate the cost of the execution of SWfs [14] according to a
scheduling plan. It is generally implemented in the scheduling
module and under a specific execution environment. In the case
of this paper, the execution environment is a multisite cloud.
Our proposed cost model is an extension of the model proposed
in [14] and [31]. In addition, the cost model is also used to
calculate the real cost by replacing estimated parameters by real
values obtained from the real execution in the evaluation part,
i.e. Section 7.

The cost of executing a SWf can be defined by:

Cost(S ch(S W f , S )) =ωt ∗
Time(S ch(S W f , S ))

DesiredT ime

+ ωm ∗
Money(S ch(S W f , S ))

DesiredMoney

(5.1.1)

, where DesiredT ime represents the desired execution time to
execute the SWf and DesiredMoney is the desired monetary
cost for the execution. Both DesiredT ime and DesiredMoney
are configured by the users. Note that these may be unfeasible
to obtain for the execution of the SWf. We take the desired
execution time and monetary costs into consideration in the cost
model while the real execution time and monetary costs may be
bigger or smaller depending on the real execution environment.
Time(S W f ) and Money(S W f ) is the real execution time and
real monetary cost for the execution of the SWf. ωt and ωm

represent the weights for execution time and monetary costs,
which are positive.

However, it is difficult to estimate the execution time and
monetary costs for the whole SWf even with a scheduling plan
according to Formula 5.1.1 since it is hard to generate a VM
provisioning plan for each site with global desired execution
time and monetary costs. As shown in Formula 5.1.2, we de-
compose the cost model as the sum of the cost of executing each
fragment.

Cost(S ch(S W f , S )) =

S chedule(w fi,s j)=1∑
w fi∈S W f

Cost(w fi, s j) (5.1.2)

The cost of executing a fragment at a site can be defined as:

Cost(w f , s) = ωt ∗ Timen(w f , s) + ωm ∗ Moneyn(w f , s)
(5.1.3)

The box represents that the formula is referred in the follow-
ing sections and the meaning of boxes of other formulas are
the same. ωt and ωm, which are the same as that in Formula

5.1.1, represent the weights for the execution time and the mon-
etary cost to execute Fragment w f at Site s. Timen(w f , s) and
Moneyn(w f , s) are normalized values that are defined in Sec-
tions 5.1.1 and 5.1.2. Since the value of time and money is
normalized, the cost has no unit. In the rest of this paper, cost
represents the normalized cost, which has no real unit. And we
use SSVP (see Section 5.2) to generate VM provisioning plans
at each site for the execution of SWf fragments.

5.1.1. Time Cost
In this section, we present the method to estimate the time to

execute Fragment w f at Site s with scheduling plan S P. The
normalized time cost used in Formula 5.1.3 can be defined as:

Timen(w f , s) =
Time(w f , s)

DesiredT ime(w f )
(5.1.4)

, where Time(w f , s) represents the entire time for the execu-
tion of Fragment w f at Site s and DesiredT ime(w f ) is the de-
sired time to execute Fragment w f . Assuming that each activity
has a user estimated workload Workload(a, inputData) with a
specific amount of input data inputData, we can calculate the
desired execution time of Fragment w f with the user defined
desired time for the whole SWf by Formula 5.1.5.

DesiredT ime(w f ) =

∑
ai∈CP(w f ) workload(ai, inputData)∑

a j∈CP(S W f ) workload(a j, inputData)

∗ DesiredT ime
(5.1.5)

In this formula, CP(S W f ) represents the critical path of Work-
flow S W f , which can be generated by the method proposed by
Chang et al. [11]. A critical path is a path composed of a set
of activities with the longest average execution time from the
start activity to the end activity [11]. In a SWf, the start ac-
tivity is the activity that has no input dependency and the end
activity is the activity that has no output dependency. Similarly,
CP(w f ) represents the critical path of Fragment w f . The work-
load workload(ai, inputData) of an activity ai with a specific
amount of data inputData is estimated by users according to
the features of the SWf. DesiredT ime is the desired execution
time for the whole workflow, defined by user. Since the time to
execute a fragment or a SWf is similar to that of the executing
the activities in the critical path, we calculate the desired time
for a fragment as the part of the time to execute the same work-
load of activities in the critical path of the SWf as that of the
fragment.

In order to execute Fragment w f at Site s, the system needs
to initialize the corresponding execution site, to transfer the cor-
responding input data of Fragment w f to Site s and to run the
program in the VMs of the site. The initialization of the site is
explained in Section 4. This way, the entire time for the execu-
tion of Fragment w f at Site s can be estimated by the following
formula:

Time(w f , s) =InitializationT ime(w f , s)
+ Trans f erT ime(w f , s)
+ ExecutionT ime(w f , s)

(5.1.6)

5



, where s represents the site to execute Fragment w f accord-
ing to the scheduling plan S P, InitializationT ime represents the
time to initialize Site s, Trans f erT ime is the time to transfer
input data from other sites to Site s and ExecutionT ime is the
time to execute the fragment. In order to simplify the problem,
we ignore the cost (both time cost and monetary cost) to restart
VMs at a site to wait for the output data produced by other sites.
In this formula, the time to wait for the input data produced by
the activities executed at another site (Site so) is not considered
since this time is considered in that of the fragment executed at
Site so.

The multisite SWfMS needs to provision m (determined by
SSVP) VMs to execute Fragment w f at a single site. As ex-
plained in Section 4, to provision a VM is to deploy and to
initialize a VM at a cloud site. The time to provision the VMs
at a single site is estimated by Formula 5.1.7.

InitializationT ime(w f , s) = m ∗ InitializationT ime (5.1.7)

InitializationT ime represents the average time to provision a
VM. The value of InitializationT ime can be configured by users
according to the cloud environment, which can be obtained by
measuring the average time to start, install the required pro-
grams and configure 2 - 3 VMs. We assume that there is only
one VM being started at a Web domain at the same time, which
is true in Azure.

The time for data transfer is the sum of the time to transfer
input data stored in other sites to Site s. The data transfer time
can be estimated by formula 5.1.8.

Trans f erT ime(w f , s) =
∑
si,s

DataTrans f erAmount(w f , si)
DataTrans f erRate(si, s)

(5.1.8)
DataTrans f erAmount(w f , si) is the amount of input data of
Fragment w f stored at Site si, which is defined later (see For-
mula 5.1.9). DataTrans f erRate(si, s) represents the data trans-
fer rate between Site si and Site s, which can be roughly ob-
tained by measuring the amount of data transferred by Linux
SCP command during a specific period of time between two
VMs located at the two sites.

We assume that the amount of input data for each dependency
is estimated by the user. The amount of data to be transferred
from another site (si) to the site (s) to execute the fragment can
be estimated by Formula 5.1.9.

DataTrans f erAmount(w f , si)

=
∑

a j∈w f

ak∈activities(si)∑
ak∈preceding(a j)

AmountO f Data(ek, j)
(5.1.9)

where preceding(a j) represents the preceding activities of Ac-
tivity a j at Site so. si represents the site that originally stores
a part of the input data of Fragment w f . activities(si) repre-
sents the activities in the fragments that are scheduled at Site
si. As defined in Section 3, ek, j represents the data dependency
between Activity ak and a j.

Assuming that one site has n (determined by SSVP) virtual
CPUs to execute a fragment, according to Amdahl’s law [33],
the execution time can be estimated by Formula 5.1.10.

ExecutionT ime(n,w f , s)

=
(αn + (1–α)) ∗Workload(w f , InputData)

ComputingS peedPerCPU

(5.1.10)

α1 represents the percentage of the workload that can be ex-
ecuted in parallel. ComputingS peedPerCPU2 represents the
average computing performance of each virtual CPU, which
is measured by FLOPS (FLoating-point Operations Per Sec-
ond) [13]. Workload represents the workload of Fragment
w f with specific amounts of input data InputData, which can
be measured by the number of FLOP (FLoat-point Opera-
tions) [13]. α, the function of Workload and the parameter
ComputingS peedPerCPU should be configured by the user ac-
cording to the features of site and the SWf to be executed. In
this paper, we calculate the workload of a fragment by the fol-
lowing function:

Workload(w f , InputData) =
∑

a j∈w f

workload(a j, inputData)

(5.1.13)

The workload of an activity with a specific amount of input data
is estimated according to the SWf.

The parameters n and m can be determined by a dynamic VM
provisioning algorithm, which is detailed in Section 5.2.

5.1.2. Monetary Cost
In this section, we present the method to estimate the mon-

etary cost to execute Fragment w f at Site s with a scheduling
plan S P. The normalized monetary cost used in Formula 5.1.3
can be defined by the following formula:

Moneyn(w f , s) =
Money(w f , s)

DesiredMoney(w f )
(5.1.14)

Let us assume that each activity has a user defined workload
Workload(a, inputData) similar to that of time cost. Inspired
by Fard et al. [18], we calculate the desired monetary cost of
executing a fragment w f by Formula 5.1.15, which is the part

1 α can be obtained by measuring the execution time of executing the frag-
ment with a small amount of input data two times with different number of
virtual CPUs. For instance, assume that we have t1 for n virtual CPUs and t2
for m virtual CPUs,

α =
m ∗ n ∗ (t2 − t1)

m ∗ n ∗ (t2 − t1) + n ∗ t1 − m ∗ t2
(5.1.11)

2 According to [4], we use the following formula to calculate the comput-
ing speed of a virtual CPU. The unit of CPU Frequency is GHz and the unit of
Computing speed is GFLOPS.

ComputingS peedPerCPU = 4 ∗CPUFrequency (5.1.12)

6



of the monetary cost to execute the workload of Fragment w f
in the SWf. In Formula 5.1.15, ai and a j represent an activity.

DesiredMoney(w f ) =

∑
ai∈w f workload(ai, inputData)∑

a j∈S W f workload(a j, inputData)

∗ DesiredMoney
(5.1.15)

Similar to Formula 5.1.6 for estimating the time cost, the
monetary cost also contains three parts, i.e. site initialization,
data transfer and fragment execution, as defined in Formula
5.1.16.

Money(w f , s) =InitializationMoney(w f , s)
+ Trans f erMoney(w f , s)
+ ExecutionMoney(w f , s)

(5.1.16)

where s represents the site to execute Fragment w f .
InitializationMoney represents the monetary cost to provision
the VMs at Site s, Trans f erMoney is the monetary cost to
transfer input data of Fragment w f from other sites to Site s
and ExecutionMoney is the monetary cost to execute the frag-
ment.

The monetary cost to initialize a single site is estimated by
Formula 5.1.17, i.e. the sum of the monetary cost for provi-
sioning each VM.

InitializationMoney(w f , s) =

m∑
i=1

(MonetaryCost(V Mi, s) ∗
(m − i) ∗ InitializationT ime

TimeQuantum
)

(5.1.17)
MonetaryCost(V Mi, s) is the monetary cost to use a VM V Mi

per time quantum at Site s. InitializationT ime represents the
average time to provision a VM. TimeQuantum is the time
quantum in the cloud. m (determined by SSVP) represents that
there are m VMs to execute Fragment w f . Similar to the time
cost estimation, we assume that there is only one VM being
started at a Web domain at the same time. In addition, during
the provisioning of VMs at a single site, the VM that has less
virtual CPUs is provisioned first in order to reduce the monetary
cost for waiting for the provisioning of other VMs. Thus, the
order of V Mi is also in this order in Formula 5.1.17, i.e. V Mi

begins with the VM that has less virtual CPUs.
The monetary cost for data transfer should be estimated

based on the amount of transferred data and the price to
transfer data among different sites, which is defined by the
cloud provider. In this paper, the monetary cost of data
transfer is estimated according to Formula 5.1.18, where
DataTrans f erUnitCost represents the monetary cost to trans-
fer a unit, e.g. gigabyte(GB), of data from the original site (so)
to the destination site (s). DataTrans f erUnitCost is provided
by the cloud provider.

Trans f erMoney(w f , s) =
∑
si,s

(DataTrans f erAmount(w f , si)

∗ DataTrans f erUnitCost(si, s))
(5.1.18)

DataTrans f erAmount(w f , si, s) is defined in Formula 5.1.9.
The monetary cost for the fragment execution can be esti-

mated by Formula 5.1.19, i.e. the monetary cost of using n
virtual CPUs during the Fragment execution.

ExecutionMoney(n,w f , s)

= n ∗ MCostPerCPU(s) ∗ b
ExecutionT ime(n,w f , s)

TimeQuantum
c

(5.1.19)
ExecutionT ime(n,w f , s) is defined in Formula 5.1.10. The pa-
rameter MCostPerCPU represents the average monetary cost
to use one virtual CPU in one time quantum at Site s, which can
be the price of VMs divided by the number of virtual CPUs. We
assume that the monetary cost of each virtual CPU in the VMs
of available different types are the same at a site. TimeQuantum
represents the time quantum in the cloud.

The original parameters mentioned in this section are listed
in Table 1. The other parameters that are not listed in Table 1
are derived based on the listed original parameters.

5.2. Single Site VM Provisioning
We propose a single site VM provisioning algorithm, called

SSVP, to generate VM provisioning plans. In order to execute a
fragment at a site, the multisite SWfMS system needs to provi-
sion a set of VMs to construct a cluster at a site. The problem of
how to provision VMs, i.e. to determine the number, type and
order of VMs to provision, is critical to the cost of workflow
execution.

Based on the aforementioned formulas, we can calculate the
execution cost to execute Fragment w f at Site s without consid-
ering the cost of site initialization and data transfer according
to Formula 5.2.1. This formula is used to calculate an optimal
number, which is used to generate a VM provisioning plan in
SSVP, of virtual CPUs to instantiate for the execution of frag-
ments.

ExecutionCost(N,w f , s) = ωt ∗
ExecutionT ime(n,w f , s)

DesiredT ime(w f )

+ ωm ∗
ExecutionMoney(n,w f , s)

DesiredMoney(w f )
(5.2.1)

In Formula 5.2.1, ExecutionT ime(n,w f , s) is defined in For-
mula 5.1.10, DesiredT ime(w f ) is defined in Formula 5.1.5,
ExecutionMoney(n,w f , s) is defined in Formula 5.1.19 and
DesiredMoney(w f ) is defined in Formula 5.1.15. In order to
get a general formula to calculate the optimal number of virtual
CPUs, we use Formula 5.2.2, which has no floor function, for
ExecutionMoney(n,w f , s).

ExecutionMoney(n,w f , s)

= n ∗ MCostPerCPU(s) ∗
ExecutionT ime(n,w f , s)

TimeQuantum
(5.2.2)

Finally, the execution cost can be expressed as Formula 5.2.3
with the parameters defined in Formula 5.2.4.

7



Table 1: Parameter summary. Original represents where the value of the parameter comes from. UD: that the parameter value is defined by users; ESWf: that
the parameter value is estimated according to the SWf; Measure: that the parameter value is measured by user with the SWf and in a cloud environment; Cloud: the
parameter value is obtained from the cloud provider; Execution: measured during the execution of SWf in a multisite cloud.

Parameter Meaning Original
DesiredTime Desired execution time UD
DesiredMoney Desired monetary cost UD
workload The workload of an activity ESWf
AmountOfData The amount of data in a data dependency ESWf
InitializationTime The time to initialize a VM Measure
DataTransferRate Data transfer rate between two sites Measure
α The percentage of the workload that can be executed in parallel Measure
CPUFrequency Computing performance of virtual CPUs Cloud
MonetaryCost Monetary cost of a VM Cloud
TimeQuantum The time quantum of a cloud Cloud
DataTransferUnitCost The monetary cost to transfer a unit of data between two sites Cloud
MCostPerCPU The monetary cost to use a virtual CPU at a site Cloud
ExecutionTime The execution time of a fragment at a site Execution

ExecutionCost(N,w f , s) = a ∗ n +
b
n

+ c (5.2.3)

where

a =
ωt ∗ (1 − α) ∗Workload(w f , InputData)

ComputingS peedPerCPU(s) ∗ TimeQuantum

∗
1

DesiredMoney
∗

∑
ai∈CP(S W f ) workload(ai))∑

a j∈CP(w f ) workload(a j)

b =
ωm ∗ α ∗Workload(w f , InputData) ∗ MCostPerCPU(s)

ComputingS peedPerCPU(s) ∗ DesiredT ime

∗

∑
ai∈S W f workload(ai))∑

a j∈w f workload(a j)

c =(
ωm ∗ α ∗ MCostPerCPU(s) ∗

∑
a j∈S W f workload(a j)

DesiredMoney ∗
∑

ai∈w f workload(ai)

+
ωt ∗ (1 − α) ∗

∑
a j∈CP(S W f ) workload(a j)

DesiredT ime ∗
∑

ai∈CP(w f ) workload(ai)
)

∗
Workload(w f , InputData)

ComputingS peedPerCPU(s)
(5.2.4)

Based on Formula 5.2.3, we can calculate a minimal execution
cost Costmin and an optimal number of virtual CPUs, i.e. nopt,
according to Formula 5.2.5 and Formula 5.2.6.

Costmin(w f , s) = 2 ∗
√

a ∗ b + c (5.2.5)

Nopt =

√
b
a

(5.2.6)

When the system provisions VMs of nopt virtual CPUs, the cost
is the minimal1 based on Formula 5.2.1, namely Costmin, for the
execution of Fragment w f at Site s.

1 Considering that a, b and n are positive numbers, we can calculate the
derivative of function 5.2.3 as:

ExecutionCost′(N,w f , s) =
d
dn

ExecutionCost(n,w f , s) = a −
b
n2

(5.2.7)

Algorithm 1 Single Site VM Provisioning (SSVP)

Input: s: the site to execution a fragment; w f : the fragment
to execute; m: the number of existing virtual CPUs; EV M:
existing VMs; limit: the maximum number of virtual CPUs
to instantiate at Site s;

Output: PP: provisioning plan of VMs
begin

1: PP← ∅
2: CPUNumber ← CalculateOptimalNumber(w f , s)
3: do
4: CurrentCost ← CalculateCost(w f , s,m, EV M, PP)
5: PP′ ←improve(PP,m, EV M, limit,CPUNumber)
6: Cost ← CalculateCost(w f , s,m, EV M, PP′)
7: if Cost < CurrentCost then
8: PP← PP′

9: while Cost < CurrentCost
end

In order to provision VMs at a site, the system can exploit
Algorithm 1 to generate a provisioning plan, which minimizes
the cost based on the cost model and nopt. In Algorithm 1, Line
2 calculates the optimal number of virtual CPUs to instanti-
ate according to Formulas 5.2.4 and 5.2.6. Since the number

of virtual CPUs should be a positive integer, we take d
√

b
a e

as the optimal number of virtual CPUs to instantiate. Lines
4 − 9 optimize the provisioning plan to reduce the cost to exe-
cute Fragment w f at Site s. Lines 4 and 6 calculate the cost to
execute the fragment at the site based on Formulas 5.1.3, 5.1.6
and 5.1.16. Line 5 improves the provisioning plan by inserting

When n is smaller than
√

b
a , ExecutionCost′(n,w f , s) is negative and

ExecutionCost(n,w f , s) declines when n grows. When n is bigger than
√

b
a ,

ExecutionCost′(n,w f , s) is positive and ExecutionCost(n,w f , s) increases
when n grows. So ExecutionCost(n,w f , s) has a minimum value when

ExecutionCost′(n,w f , s) equals zero, i.e. n =

√
b
a . And we can calculate the

corresponding value of ExecutionCost′(n,w f , s) as shown in Formula 5.2.5.

8



a new VM, modifying an existing VM or removing an existing
VM. If the optimal number of virtual CPUs CPUNumber is
bigger than the number ExistingCPUNumber of virtual CPUs
with consideration of current provisioning plan, and existing
virtual CPUs, a VM is planed to be inserted in the provision-
ing plan. The VM is of the type that can reduce the dif-
ference between CPUNumber and ExistingCPUNumber. If
CPUNumber is smaller than ExistingCPUNumber, the differ-
ence between CPUNumber and ExistingCPUNumber is not
big and the difference can be reduced by modifying the type
of an existing VM, the type of the VM is planed to be mod-
ified in the provisioning plan. Otherwise, an existing VM is
planed to be removed in the provisioning plan. The VM to
be removed is selected among all the existing VMs in order
to reduce the most the difference between CPUNumber and
ExistingCPUNumber. If the cost to execute Fragment w f at
Site s can be reduced by improving the provisioning plan, the
provisioning will be updated (Line 8), and the improvement of
provisioning plan continues (Line 9). Note that the direction
in the improve function of SSVP is determined by comparing
CPUNumber and ExistingCPUNumber, while the function in
GraspCC [13] compares the current provisioning plan with all
the possible solutions by changing one VM in the provisioning
plan, which has no direction, i.e. insert, modify or remove, and
which is less efficient. While choosing the type of VM to be
inserted, modified or removed, storage constraints1, specifying
that the scheduled site should have enough storage resources
for executing SWf fragments should be validated. If the storage
constraint is not met, more storage resources are planed to be
added to the file system of the VM cluster2 at the site. Note
that the number of virtual CPUs to instantiate in the provision-
ing plan, generated by Algorithm 1, may be smaller than nopt

because the cost (time and monetary costs) to initialize the site
and to transfer data among different sites is considered.

5.3. Cost Estimation
The cost estimation method is used to estimate the cost to

execute a fragment at a site based on the cost model. First,
SSVP is used to generate a provisioning plan. Then, the number
of virtual CPUs, i.e. n, and number of VMs to deploy, namely
m, is known to estimate the time and monetary costs to initiate
a site based on Formulas 5.1.7, 5.1.17. In addition, the time and
monetary costs to execute the fragment are recalculated using
Formulas 5.1.10 and 5.1.19. During scheduling, only available
fragments are scheduled. An available fragment indicated that
its preceding activities are already scheduled, which means that
the location of the input data of the fragment is known. Thus,
Formulas 5.1.8 and 5.1.18 are used to estimate the time and
monetary costs to transfer the input data of Fragment w f to
Site s. Afterwards, the total time and monetary costs can be
estimated by Formulas 5.1.6 and 5.1.16. Finally, the cost of

1All the types (A1, A2, A3 and A4) of VMs mentioned in Section 7 can
execute the activities of SciEvol in terms of memory.

2We assume that a VM cluster exploits a shared file system for fragment
execution. In a shared file system, all the computing nodes of the cluster share
some data storage that are generally remotely located [20].

executing Fragment w f at Site s is estimated based on Formulas
5.1.3, 5.1.4, 5.1.14, 5.1.5, 5.1.15.

6. Fragment Scheduling

In this section, we present our approach for fragment
scheduling, which is the process of scheduling fragments to
sites for execution. First, we present a use case, i.e. the Sci-
Evol SWf, which we will use to illustrate fragment scheduling.
Then, we explain our approaches for SWf partitioning. After-
wards, we present an adaptation of two state-of-the-art algo-
rithms (LocBased and SGreedy) and our proposed algorithm
(ActGreedy).

6.1. Use Case

In this section, in order to illustrate partitioning and schedul-
ing approaches, we present a use case, i.e. SciEvol SWf. Sci-
Evol [25] is a SWf for molecular evolution reconstruction that
aims at inferring evolutionary relationships, namely to detect
positive Darwinian selection, on genome data. It has data and
compute intensive activities with data constraints. These char-
acteristics are important to evaluate our scheduling approaches.
Figure 2 shows the conceptual structure of SciEvol, which is
composed of 13 activities: (1) Multiple Sequence Alignment
(MSA) construction; (2) MSA conversion; (3) pre-processing
PHYLIP file; (4) tree construction; (5) data construction; (6.1 -
6.6) six evolutionary analysis execution; (7) data construction;
(8) data analysis. Let us assume that there are three sites, which
are Site 1, Site 2 and Site 3. Activity 1 constructs MSA by for-
matting the input fasta files stored at site 3. Fasta is a standard
type of files in the field of bioinformatics. Activity 2 converts
the MSA in fasta format to PHYLIP format. Activity 3 formats
the PHYLIP files for evolutionary analysis phase. Activity 4
constructs a phylogenetic tree. Activity 5 is a control activity
for preparing the control data for the execution of six evolu-
tionary analysis phases. Activities 6.1 − 6.6 exploit different
models to analyze the evolutionary relationships. The corre-
sponding data of the models is stored data at Sites 1, 2 and 3.
Activity 7 is a control activity, which gathers the output data
of the six evolutionary analysis phases. Activity 8 analyzes the
output data of evolutionary analyses to generate statistical read-
able data for the scientists. Except Activities 6.1 − 6.6, all the
other activities are data-intensive. However, the time to process
data is small while the time to transfer and store the input or out-
put data takes much time. In Figure 2, “read data” represents
that one activity just reads the stored data without modifying
it and that the activity should be executed at the corresponding
site to read data since the stored data is too big to be moved and
can be accessed only within the corresponding site because of
configurations, e.g. security configuration of a database. The
stored data constraints are defined by the following matrix (the
activities not listed in the matrix are not fixed).

9



Figure 2: SciEvol Scientific Workflow.

s1 s2 s3
a6.1 1 0 0
a6.2 1 0 0
a6.3 0 1 0
a6.4 0 1 0
a6.5 0 0 1
a6.6 0 0 1

6.2. SWf Partitioning
In this section, we present the algorithms to partition a SWf

into fragments. Workflow partitioning is the process of divid-
ing a SWf and input data into several fragments, so that each
fragment can be executed at a site. It can be performed by DAG
partitioning and data partitioning. DAG partitioning transforms
a DAG composed of activities into a DAG composed of frag-
ments while each fragment is a DAG composed of activities
and dependencies. Data partitioning divides the input data of a
fragment generated by DAG partitioning into several data sets,
each of which is encapsulated in a newly generated fragment.
This paper focuses on the DAG partitioning.

The smallest granularity of fragment is an activity. Thus,
we can encapsulate each activity in one fragment. We call this
method activity encapsulation partitioning. The workflow can
also be partitioned according to the structure of the SWf. Our
previous work [21] proposes a workflow partitioning method
that minimizes data transfer among different fragments, i.e.
data transfer minimization workflow partitioning. Algorithm
2 describes the partitioning method proposed in [21].

In Algorithm 2, a set of data dependencies DS are chosen to
be removed from the original SWf in order to partition the SWf.
In this algorithm, the input data is viewed as a fixed activity.
Lines 2 − 10 select the dependencies to be removed in order to
partition the activities of the SWf at each site. Line 4 selects the
fixed activities that are outside of Site s and that the correspond-
ing sites are not processed. If one site is processed in the loop
of Lines 5−11, it is marked as processed. For the two functions
f ixedActivities and f ixedOutsideUnprocessedActivities, each
activity is checked to know if the activity is to be selected. Lines
7 − 10 choose the dependencies to be removed so that the fixed
activities at Site s are not connected with the fixed activities at
other sites. Line 7 finds all the paths that connect two activities

Algorithm 2 Data transfer minimization workflow partitioning

Input: S W f : a SWf; S : a set of sites
Output: DS : a set of dependencies to cut in order to partition

the SWf
begin

1: DS ← ∅
2: for each s ∈ S do
3: A← fixedActvities(S W f , s)
4: A′ ← fixedOutsideUnprocessedActivities(S W f , s)
5: for each a ∈ A do
6: for each a′ ∈ A′ do
7: paths← findPaths(a, a′)
8: for each path ∈ paths do
9: ds← minData(path)

10: DS ← DS
⋃

ds
11: DS ← sort(DS )
12: for each ds ∈ DS do
13: if S W f can be partitioned by DS without ds) then
14: DS ← DS − ds
end

fixed at different sites. A path has a set of data dependencies
that can connect two activities without consideration of direc-
tion. In order to find all the paths, a depth-first search algo-
rithm can be used. For each path (Line 8), the data dependency
that has the least amount of data to be transferred is selected
(Line 9) to DS (Line 10). At the same time, the input activity
and output activity of the selected data dependency are marked.
Line 11 sorts the data dependencies according to the amount of
data to be transferred in descending order. If two or more data
dependencies have the same amount of data, they are sorted ac-
cording to the amount of output data of the following activity
of each data dependency in descending order. This order allows
the activities that have bigger data dependencies with their fol-
lowing activities to be connected with their following activities,
after the removing of dependencies (Lines 12 − 14), in order
to reduce the amount of data to be transferred among different
fragments. For instance, the order enables that Activity 6.5 and
6.6 are connected with their following activity, i.e. Activity 7 in

10



SciEvol shown in Figure 3. We assume that, in Figures 3, 4 and
5, the order of monetary cost to use VMs in each site is: Site 1 <
Site 2 < Site 3. Lines 12 − 14 remove data dependencies from
DS while ensuring that the SWf can always be partitioned with
DS . Checking if SWf can be partitioned by a set of dependen-
cies can be realized by checking if the corresponding input and
output activities of ds are connected with a depth-first search
algorithm (Line 13).

Figure 3: SWf partitioning and data location based scheduling. The number
represents the relative (compared with the input data) amount of output data for
corresponding activities.

6.3. Scheduling approaches

In this section, we propose three multisite scheduling algo-
rithms. The first one, LocBased is adapted from the schedul-
ing algorithm used in our previous work [21], which sched-
ules a fragment to the site that stores the data while reducing
data transfer among different sites. The second one, SGreedy,
is adapted from the greedy scheduling algorithm designed for
multi-objective single site scheduling in our previous work [14],
which schedules the most suitable fragment to each site. The
last one, ActGreedy, which combines characteristics of the two
adapted algorithms, schedules the most suitable site to each
fragment. In addition, we propose that a fixed activity can only
be scheduled and executed at the site where the stored data is
located. This is applied by analyzing the constraint matrix in all
the three algorithms before other steps, which are not explicitly
presented in the algorithms.

6.3.1. Data Location Based Scheduling
We adapt the scheduling approach proposed in [21] to the

multisite cloud environment. Since this approach is based on
the location of data, we call it LocBased (data location based)
scheduling. First, this algorithm partitions a Fragment w f using
the data transfer minimization algorithm (Algorithm 2 in Sec-
tion 6.2). Then, it schedules the fragment to the data site that
stores the required data (i.e. stored data for fixed activity) or
the biggest part of the input data (for normal activities) in order
to reduce the time and monetary costs to transfer data among
different sites. However, the granularity of this scheduling al-
gorithm is relatively big and some activities are scheduled at a
site that incurs high cost. For instance, the result of this algo-
rithm is shown in Figure 3 while Activity 1, 2, 3, 4, 5, 7 and 8
can be scheduled at Site 1, which is less expensive to use VMs
than at other sites.

6.3.2. Site Greedy Scheduling

Figure 4: Site greedy scheduling.

We adapt a Site Greedy (SGreedy) scheduling algorithm pro-
posed by de Oliveira et al. [14], for multiple objectives in a mul-
tisite environment. This algorithm intends to keep all the sites
busy and chooses the best fragment (not necessarily the opti-
mal one, which could be outside the search space) to allocate
for execution at each site. First, this algorithm partitions a SWf
according to the activity encapsulation partitioning method. For
each site, it schedules the best fragment among available frag-
ments (see Section 5.3). The best fragment takes the minimal
cost among all the available fragments for the execution at Site
s according to the cost estimation method presented in Section
5.3. The adaptation of the original algorithm to multisite en-
vironment is done by replacing scheduling cloud activities to
VMs [14] to scheduling fragments to sites with the cost model
presented in Section 5.1. However, as shown in Figure 4, this

11



algorithm may break the dataflow between the preceding activ-
ity and following activity, which may incur a high cost to trans-
fer the data among different sites, e.g. Activities 1, 2, 3, 4, 7, 8.
In addition, in order to avoid useless usage of VMs at Site 1
and Site 2 during the execution of the SWf, the VMs are shut
down after finishing the execution of the corresponding activi-
ties and restarted for the following activities when the input data
is ready. After executing Activities 1, 6.3 and 6.4, the VMs at
Site 1 are shut down. The VMs at Site 2 are shut down after ex-
ecuting Activity 2. Since Activity 5 is a control activity, which
takes little time to be executed, the VMs at Site 1 and 3 are not
shut down after executing Activities 4 and 3. When the execu-
tion of Activities 6.5 and 6.6 are to be finished, the VMs at Site
2 are restarted to continue the execution (since the execution of
Activities 6.5 and 6.6 may take more time because of big work-
load). This process may also incur high cost when there are
many VMs to restart.

6.3.3. Activity Greedy Scheduling
Based on LocBased and SGreedy, we propose the ActGreedy

(Activity Greedy) scheduling algorithm, which is described
in Algorithm 3. In this algorithm, all the fragments of a
SWf are not scheduled, i.e. S ch(S W f , S ) = ∅, at beginning.
During the scheduling process, all the fragments are sched-
uled at a corresponding site, which takes the minimum cost,
namely S ch(S W f , S ) = {S chedule(w f , s)|w f ∈ S W f , s ∈
S } and ∀ w f ∈ S W f ,∃ S chedule(w f , s) ∈ S ch(S W f , S )
while cost Cost(S chedule(w f , s)) is the minimum compared
to schedule Fragment w f to other sites. As a result, the cost
Cost(S ch(S W f , S )) of executing a SWf in a multisite cloud is
minimized. Similar to LocBased, ActGreedy schedules frag-
ments of multiple activities. ActGreedy can schedule a pipeline
of activities to reduce data transfer between different fragments,
i.e. the possible data transfer between different sites. As for-
mally defined in [30], a pipeline is a group of activities with
a one-to-one, sequential relationship between them. However,
ActGreedy is different from LocBased since it makes a trade-off

between time and monetary costs. Similar to SGreedy, Act-
Greedy schedules the available fragments, while ActGreedy
chooses the best site for an available fragment instead of choos-
ing the best fragment for an available site.

ActGreedy chooses the best site for each fragment. First, it
partitions a SWf according to the activity encapsulation parti-
tioning method (Line 3). Then, it groups the fragments of three
types into bigger fragments to be scheduled (Line 6). The first
type is a pipeline of activities. We use a recursive algorithm
presented in [30] to find pipelines. Then, the fragments of cor-
responding activities of each pipeline are grouped into a frag-
ment. If there are stored activities of different sites in a fragment
of a pipeline, the fragment is partitioned into several fragments
by the data transfer minimization algorithm (Algorithm 2) in
the Group function. The second type is the control activities. If
it has only one preceding activity, a control activity is grouped
into the fragment of its preceding activity. If it has multiple
preceding activities and only one following activity, a control
activity (Activity 7) is grouped into the fragment of its follow-
ing activity (Activity 8). If it has multiple preceding activities

Algorithm 3 Activity greedy scheduling

Input: sw f : a scientific workflow; S : a set of sites
Output: S P: scheduling plan for sw f in S

1: S P← ∅
2: S W fCost ← ∞
3: WF ← partition(sw f )
4: do
5: S P′ ← ∅
6: WF ← Group(WF)
7: do
8: WFA← GetAvailableFragments(WF, S P′)
9: if WFA , ∅ then

10: for each w f ∈ WFA do
11: sopt ← BestS ite(w f , S )
12: S P′ ← S P′

⋃
{S chedule(w f , sopt)}

13: update CurrentS W fCost
14: while not all the fragments ∈ WF are scheduled
15: if CurrentS W fCost < S W fCost then
16: S P← S P′

17: S W fCost ← CurrentS W fCost
18: while CurrentS W fCost < S W fCost
end

and multiple following activities, a control activity (Activity 5)
is grouped into the fragment of one of its preceding activities
(Activity 3), which has the most data dependencies among all
its preceding activities, i.e. the amount of data to be transferred
in the data dependency is the biggest. It reduces data trans-
fer among different fragments, namely the data transfer among
different sites, to group the fragments for pipelines and control
activities. The third type is the activities that are scheduled at
the same site and that they have dependencies to connect each
activity of them. Afterwards, Line 8 gets the available frag-
ments (see Section 5.3) to be scheduled to the best site (Line
11 − 12), which takes the minimal cost among all the sites to
execute the fragment. The cost is estimated according to the
method presented in Section 5.3. When estimating the cost, if
the scheduled fragment has data dependencies with fixed activi-
ties, the cost to transfer the data in these data dependencies will
be taken into consideration. The loop (Lines 7 − 14) schedules
each fragment to the best site while the big loop (Lines 4 − 18)
improves the scheduling plans by rescheduling the fragments
after grouping the fragments at the same site, which ensures
that the final scheduling plan corresponds to smaller cost to ex-
ecute a SWf.

As shown in Figure 5, this algorithm has relatively small
granularity compared with LocBased. ActGreedy exploits data
location information to select the best site in order to make a
trade-off between the cost for transferring data among different
sites and another cost, i.e. the cost to provision the VMs and the
cost to execute fragments. Figure 5 shows the scheduling result.
If the amount of data increases and the desired execution time
is small, Activity 7 and Activity 8 may be scheduled at Site 3,
which takes less cost to transfer data. In order to avoid useless
usage of VMs, the VMs at Site 1 are shut down when the site

12



Figure 5: Activity greedy scheduling.

is waiting for the output data of the execution of Site 3, namely
the execution of Activity 6.5 and Activity 6.6.

6.3.4. Solution analysis
Let us assume that we have n activities and s cloud sites

and f fixed activities. The solution search space of a general
scheduling problem is O(sn). The solution search space of a
scheduling problem after fixing the activities becomes O(sn− f ).
Even though the search space is reduced because of stored data
constraints, the problem remains hard since the search space
exponentially increases when n becomes bigger. For instance,
assuming that we have a SWf with 77 activities (6 fixed ac-
tivities) to be schedule at 3 sites, the search space of a gen-
eral scheduling problem is O(377), i.e. O(5.47 ∗ 1036), and that
of the scheduling problem with fixed activities is O(371), i.e.
O(7.51 ∗ 1033). Some input or output activities may be related
to the fixed activities, but they are free to be scheduled at any
site. In general, the number of fixed activities is quite small
compared with the number of other activities. The complexity
of our proposed algorithm (ActGreedy) is O(s ∗ (n− f )), which
is much smaller than O(sn− f ). As a result, our solution can re-
solve the problem within reasonable scheduling time, i.e. the
time to generate scheduling plans.

The knowledge of the location of stored data can be obtained
by the metadata of files stored at each site, which is easy to get
before SWf execution. Then, the knowledge of fixed activities
can be generated with the dependencies between activities and
data. Thus, knowing fixed activities is not a problem.

Our solution generates a scheduling plan that corresponds to
the minimum cost to execute a SWf in a multisite cloud since

all the fragments are scheduled to a site, which takes the min-
imum or near-minimum cost to execute them. The fragments
of small granularity are scheduled to the best site, which takes
the minimum cost to execute the fragments, by the small loop
(Lines 7 − 14) while the scheduling of fragments of big granu-
larity, i.e. the activities of a site, is ensured by big loop (Lines
4 − 18). Thus, our proposed algorithm can generate a schedul-
ing plan which may minimize the cost. Since the weight of
each objective is positive and the generated scheduling plan
may minimize the sum function of multiple objectives, the so-
lution may also be Pareto optimal [38] [24]. Although, in some
rare cases, e.g. the cost to transfer data between different sites
affects the scheduling plans, the cost corresponding to the gen-
erated scheduling plan is not minimum, our proposed solution
generates a near-optimal scheduling plan. Since the experi-
ments presented in this paper are not rare cases, and that the
scheduling plan generated by our algorithm is already Pareto
optimal (no better scheduling plan can be found by estimating
the cost of other scheduling plans), we do not compare it with
another optimal solution, which may not even exist.

Note that the proposed algorithm and the results shown in
Section 7 are sensitive to the cost model. Although the cost
model is mentioned in previous work [14], it is not used in a
multisite environment with stored data constraints. We evalu-
ated all the cost model components in our previous work, which
indicates that it is a suitable model to work with for multi-
objective scheduling.

7. Experimental Evaluation

In this section, we present an experimental evaluation of
the VM provisioning plan generation (SSVP) and fragment
scheduling (ActGreedy) algorithms. All experiments are based
on the execution of the SciEvol SWf in Microsoft Azure mul-
tisite cloud. First, we compare SSVP with GraspCC. Then we
compare ActGreedy with LocBased and SGreedy, as well as
with two general algorithms, i.e. Genetic and Brute-force. In
the experiments, we consider three Azure [2] sites to execute
SciEvol SWf, namely West Europe as Site 1, Japan West as
Site 2, Japan East as Site 3. During the experiments, the the life
circle of VM is composed of creation, start, configuration, stop
and deletion. The creation, start, stop and deletion of a VM is
managed by using Azure CLI [3]. The configuration of VM is
realized by Linux SSH command. In the experiments, workflow
partitioner, multisite scheduler and single site initialization are
simulated, but the execution of fragments is performed in a real
environment by Chiron [26], which is a SWfMS to support the
execution of SWfs using an algebraic approach. We conduct
the experiments with two goals. The first one is to show that
SSVP is suitable to dynamic provisioning of VMs by making a
good trade-off among different objectives for the execution of
fragments. The second goal is to show that ActGreedy takes
the smallest cost to execute a SWf in a multisite cloud within
reasonable time by making a trade-off of different objectives
based on SSVP. Microsoft Azure provides 5 tiers of VM, which
are basic tier, standard tier, optimized compute, performance
optimized compute and compute intensive. Each tier of VM

13



Table 2: Parameters of different types of VMs. Type represents the type of VMs. vCPUs represents the number of virtual CPUs in a VM. RAM represents the
size of memory in a VM. Disk represents the size of hard disk in a VM. CC represents the computing capacity of VMs. MC represents Monetary Cost.

Type vCPUs RAM Disk CC MC @ WE MC @ JW MC @ JE
A1 1 1.75 70 9.6 0.0447 0.0544 0.0604
A2 2 3.5 135 19.2 0.0894 0.1088 0.1208
A3 4 7 285 38.4 0.1788 0.2176 0.2416
A4 8 14 605 76.8 0.3576 0.4352 0.4832

contains several types of VMs. In one Web domain, users can
provision different types of VMs at the same tier. In our ex-
periments, we consider 4 types, namely A1, A2, A3 and A4, in
the standard tier. The features of the VM types are summarized
in Table 2. In Azure, the time quantum is one minute. In ad-
dition, the average time to provision a VM is estimated as 2.9
minutes. Each VM uses Linux Ubuntu 12.04 (64-bit), and is
configured with the necessary software for SciEvol. All VMs
are configured to be accessed using Secure Shell (SSH).

Table 3: Workload Estimation.

Activity
Number of Fasta Files

100 500 1000
Estimated Workload (in GFLOP)

1 1440 10416 20833
2 384 2778 5556
3 576 4167 8333
4 1440 10416 20833

6.1 5760 41667 83334
6.2 10560 76389 152778
6.3 49920 361111 722222
6.4 59520 430556 861111
6.5 75840 548611 1097222
6.6 202560 1465278 2930556
8 6720 48611 97222

In the experiments, we use 100, 500, 1000 fasta files gen-
erated from the data stored in a genome database [7][8]. The
programs used are: mafft (version 7.221) for Activity 1, Read-
Seq 2.1.26 for Activity 2, raxmhpc (7.2.8 alpha) for Activity
4, pamlX1.3.1 for Activities 6.1 − 6.6, in-house script for Ac-
tivity 3 and Activity 8, and Activity 5 and Activity 7 exploit
a PostgreSQL database management system to process data.
The percentage of the workload, i.e. α in Formula 5.1.10, that
can be parallelized is 96.43%. In addition, the input data of
the SWf is stored at a data server of Site 3, which is accessi-
ble to all the sites in the cloud using SCP command (a Linux
command). The estimated workload (in GFLOP) of each activ-
ity of SciEvol SWf for different numbers of input fasta files is
shown in Table 3 and the estimated amount of data transferred
in each dependency of SciEvol SWf is listed in Table 4. In
Table 4, ei, j represents the data dependency between Activity
i and Activity j while Activity j consumes the output data of
Activity i. Let DataSize(ei, j) represent the estimated amount
of data in dependency ei, j. Then, we have DataSize(e2,3) =

DataSize(e2,4); DataSize(e4,5) = DataSize(e3,5); DataSize(e5,6.1)
= DataSize(e5,6.2) = DataSize(e5,6.3) = DataSize(e5,6.4) =

DataSize(e5,6.5) = DataSize(e5,6.6).

Table 4: Estimated amount of data transferred in a dependency. Input data
represents the number of input fasta files for executing SciEvol SWf.

Dependency
Number of Fasta Files

100 500 1000
Estimated Amount of Data

Input Data 1 5 10
e1,2 6 32 67
e2,3 5 24 52
e3,5 3 17 39
e4,5 3 16 37

e5,6.1 6 33 76
e6.1,7 16 85 174
e6.2,7 20 100 201
e6.3,7 28 140 285
e6.4,7 23 118 240
e6.5,7 24 125 255
e6.6,7 34 175 348
e7,8 120 605 1215

In the tables and figures, the unit of time is minute, the unit of
monetary cost is Euro, the unit of RAM and Disk is Gigabytes,
the unit of data is MegaByte (MB), the computing capacity of
VMs is GigaFLOPS (GFLOPS) and the unit of workload is Gi-
gaFLOP (GFLOP). ωt represents the weight of time cost. A1,
A2, A3 and A4 represent the types of VMs in Azure. [Type of
VM] * [number] represents provisioning [number] of VMs of
[Type of VM] type, e.g. A1 * 1 represents provisioning one
VM of A1 type. WE represents West Europe; JW Japan West
and JE Japan East. The cost corresponds to the price in Euro of
Azure on July 27, 2015.

7.1. VM Provisioning

This section presents the experimental results to compare the
performance of SSVP over GraspCC in two aspects. The first
aspect is that SSVP can estimate cost more accurately based on
our proposed cost model than GraspCC. The second aspect is
that the provisioning plans generated by SSVP incur less cost
than that generated by GraspCC. In this section, the cost is for
the execution of fragments, which is calculated based on For-
mulas 5.1.3, 5.1.4, 5.1.14, 5.1.5, 5.1.15 while the time and mon-
etary costs are obtained from the real execution with the desired
time, desired monetary cost and estimated workload configured
by a user.

We execute a fragment (Activities 1, 2, 3, 4, 5, 6.5 and 6.6 of
SciEvol) with 100 fasta files, at Site 3 for different weights of

14



Table 5: VM Provisioning Results.

Algorithm SSVP GraspCC
ωt 0.1 0.5 0.9 0.1 0.5 0.9

Provisioning Plan A3 ∗ 1 A4 ∗ 1 A4 ∗ 3 A1 ∗ 6 A2 ∗ 3

Estimated
Execution Time 95 55 34 60
Monetary Cost 0.38 0.44 0.75 0.36

Cost 1.3094 1.1981 0.7631 1.1882 1.104 1.0208

Real
Execution Time 98 54 35 113 100
Monetary Cost 0.40 0.43 0.81 0.64 0.60

Cost 1.3472 1.1748 0.7879 2.1181 1.8199 1.6973

execution time and monetary costs. We assume that the lim-
itation of the number of virtual CPUs is 32. The estimated
workload of this fragment is 192, 000 GFLOP. The desired ex-
ecution time is set as 60 minutes and the maximum execution
time is defined as 120 minutes. The desired monetary cost is
configured as 0.3 Euros and the maximum monetary cost is 0.6
Euros. The deployment plans presented in Table 5 are respec-
tively generated by SSVP, and GraspCC [13]. Table 5 shows the
result of the experiments to execute the fragment with different
weights of execution time and monetary costs. The execution
time, monetary cost and cost is composed of the time or the cost
of VM provisioning and fragment execution. For SSVP, the dif-
ference between estimated and real execution time ranges from
1.9% to 3.1%, the difference for monetary cost ranges from
2.0% to 6.5% and the difference for the cost is between 2.0%
to 3.2%. In fact, the difference between the estimated and real
values also depends on the parameters configured by the users.
Table 5 shows that SSVP can make an acceptable estimation
based on different weights of objectives, i.e. time and monetary
costs.

GraspCC is based on three strong assumptions. The first as-
sumption is a single site, i.e. GraspCC is not designed for mul-
tisite clouds. The second assumption is that the entire workload
of each activity can be executed in parallel, which may not be
realistic since many activities cannot be parallelized. The third
assumption is that more VMs can reduce execution time with-
out any bad impact on the cost, e.g. higher monetary cost, for
the whole execution of a fragment. These three assumptions
lead to inaccuracies of the estimation of execution time and
monetary costs. In addition, as it is only designed for the time
quantum of one hour, GraspCC always generates a provisioning
plan that contains the possible largest number of virtual CPUs
to reduce the execution time to one time quantum, namely one
hour. In Azure, since the time quantum is one minute, it is al-
most impossible to reduce the execution time to one time quan-
tum, namely one minute. In order to use GraspCC in Azure, we
take the time quantum of one hour for GraspCC. GraspCC does
not take into consideration the cost (time and monetary costs) to
provision VMs, which also brings inaccuracy to the estimated
time. Moreover, GraspCC is not sensitive to different values of
weight, which are ωt and ωm. But SSVP is sensitive to different
values of weight because of using the optimal number of virtual
CPUs calculated based on the cost model. The final provision-
ing plan of GraspCC is listed in Table 5. GraspCC generates

the same provisioning plan for different values of ωt (0.5 and
0.9). In addition, the difference between the estimated time and
the real time is 88.3% (ωt = 0.1) and 66.7% (ωt = 0.5 and
ωt = 0.9). However, the difference corresponding to the cost
model of SSVP is under 3.1%. Finally, compared with SSVP,
the corresponding real cost of the GrapsCC algorithm is 57.2%
(ωt = 0.1), 54.9% (ωt = 0.5) and 115.4% (ωt = 0.9) bigger.

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

0 5 10 15 20 25

Co
st

Number of virtual CPU cores

ωt = 0.1
ωt = 0.5
ωt = 0.9

Figure 6: Cost for different values of ωt with three provisioning plans. The
circled points represents the number of virtual CPUs corresponding to the pro-
visioning plan generated by SSVP and the corresponding cost of the execution
of fragment.

Figure 6 shows the cost for different provisioning plans and
different weights of execution time and monetary costs. Ac-
cording to the provisioning plan generated by SSVP, 4, 8 and
24 virtual CPUs are instantiated when ωt is 0.1, 0.5 and 0.9.
The corresponding cost is the minimum value in each poly-
line. The three polylines show that SSVP can generate a good
VM provisioning plan, which reduces the cost based on the cost
model. The differences between the highest cost and the cost of
corresponding good provisioning plans are: 56.1% (ωt = 0.1),
26.4% (ωt = 0.5) and 122.1% (ωt = 0.9).

We also execute SciEvol with 500 and 1000 fasta files at site
3. The setup parameters are listed in Table 6 and the results are
shown in Table 7. Since it needs bigger computing capacity to
process more input fasta files, we increase the limitation of the
number of virtual CPUs, i.e. 64 virtual CPUs for 500 fasta files
and 128 virtual CPUs for 1000 fasta files. From the tables, we
can see that as the estimated workload and desired monetary
cost of the SWf grow, more virtual CPUs are planed to be de-

15



Table 6: Setup Parameters. “Number” represents the number of input fasta
files. “Limit” represents the maximal number of virtual CPUs that can be in-
stantiated in the cloud. Maximum values are twice the desired values.

Number 500 1000

Desired Execution Time 60 60
Monetary Cost 2 6

Maximum Execution Time 120 120
Monetary Cost 4 12

Limit 64 128
Estimated Workload 1, 401, 600 2, 803, 200

ployed at the site. SSVP generates different provisioning plans
for each weight of time cost. However, for the same number
of input fasta files, GraspCC generates the same provisioning
plan for different weights of time cost, namely A1 ∗ 1, A3 ∗ 10
for 500 fasta files and A2 ∗ 1, A4 ∗ 10 for 1000 fasta files. The
execution time corresponding to both SSVP and GraspCC, ex-
ceeds the maximum execution time. However, SSVP has some
important advantages, e.g. precise estimation of execution time
and smaller corresponding cost.

1

10

100

100 500 1000

D
iff

er
en

ce
(%

)

Number of fasta files

GraspCC ωt = 0.1
GraspCC ωt = 0.5
GraspCC ωt = 0.9

SSVP ωt = 0.1
SSVP ωt = 0.5
SSVP ωt = 0.9

Figure 7: Difference between estimated time and real time.

The difference between estimated time and real time is cal-
culated based on Formula 7.1.1. As shown in Figure 7, the
difference between estimated execution time and real execution
time corresponding to GraspCC is much higher than that cor-
responding to the cost model of SSVP, which ranges between
66.7% and 328.3%. As the number of fasta files increases,
the difference goes up, i.e. it is more difficult to estimate the
time. However, the difference corresponding to the cost model
of SSVP is always under 11%.

Di f f erence =
EstimatedT ime − RealT ime

RealT ime
∗ 100% (7.1.1)

The cost corresponding to different numbers of fasta files are
shown in Figure 8. It can be seen from Figure 8(a), Figure
8(b) and Figure 8(c) that the cost corresponding to GraspCC is
always higher than that corresponding to SSVP with different

amounts of input data because SSVP is based on a more accu-
rate cost model and is designed for the quantum of one minute.
Based on Formula 7.1.2, compared with SSVP, the cost cor-
responding to GraspCC is up to 115.4% higher. The cost for
GraspCC is a line in Figures 8(b) and 8(c), since GraspCC is
not sensitive to the weights of time cost and it generates the
same VM provisioning plans, the cost of which is a line. How-
ever, since SSVP is sensitive to different values of the weights
of execution time, it can reduce the cost at large.

Di f f erence =
Cost(GraspCC) −Cost(S S VP)

Cost(S S VP)
∗ 100%

(7.1.2)
From the experimental results, we can get the conclusion that

SSVP can generate better VM provisioning plans than GraspCC
because of accurate cost estimation of the cost model.

7.2. Scheduling Approaches

Table 8: Setup parameters. “Number” represents the number of input fasta
files. “Limit” represents the maximal number of virtual CPUs that can be in-
stantiated in the cloud. “DET” represents Desired Execution Time and “DMC”
represents Desired Monetary Cost.

Number 100 500 1000
Limit 350 350 350

Estimated workload 414, 720 3, 000, 000 6, 000, 000
DET 60 60 60
DMC 0.3 3 6

Table 9: VM Provisioning Plans (100 fasta files).

Algorithm Site ωt

0.1 0.5 0.9

LocBased
WE A3 ∗ 1 A4 ∗ 1 A4 ∗ 2
JW A3 ∗ 1 A4 ∗ 1 A4 ∗ 1
JE A1 ∗ 1, A2 ∗ 1 A4 ∗ 1 A4 ∗ 3

SGreedy
WE A3 ∗ 1 A4 ∗ 1 A4 ∗ 2
JW A2 ∗ 1, A3 ∗ 1 A4 ∗ 1 A4 ∗ 1
JE A1 ∗ 1, A2 ∗ 1 A4 ∗ 1 A4 ∗ 3

ActGreedy
WE A2 ∗ 1 A2 ∗ 1; A3 ∗ 1 A4 ∗ 2
JW A3 ∗ 1 A4 ∗ 1 A4 ∗ 1
JE A1 ∗ 1, A2 ∗ 1 A4 ∗ 1 A4 ∗ 2

In this section, we present the experimental results to show
that our proposed scheduling algorithm, i.e. ActGreedy, leads
to the least cost for the execution of SWf in a multisite cloud en-
vironment. We schedule the fixed activities at the site where the
data is stored and use the three scheduling algorithms, namely
LocBased, SGreedy and ActGreedy, to schedule other activi-
ties of SciEvol at the three sites. In addition, we implemented a
genetic algorithm and a brute-force algorithm that generate the
best scheduling plans similar to those generated by ActGreedy.
Brute-force measures the cost of all the possible scheduling
plans and finds the optimal one, corresponding to the minimum
cost to execute SWfs in a multisite cloud. The principle of a ge-
netic algorithm [35] is to encode possible scheduling plans into

16



Table 7: VM Provisioning Results. “Number” represents the number of input fasta files. The provisioning plan represents the plan generated by the corresponding
algorithms.

Number 500 1000
ωt 0.1 0.5 0.9 0.1 0.5 0.9

SSVP

Provisioning Plan A2 ∗ 1, A4 ∗ 1 A4 ∗ 3 A4 ∗ 7 A4 ∗ 2 A4 ∗ 6 A4 ∗ 11

Estimated
Execution Time 328 194 150 473 290 260
Monetary Cost 3.29 4.60 7.93 7.59 13.62 21.70

Cost 2.0263 2.7640 2.6419 1.9271 3.5462 4.2602

Real
Execution Time 299 177 136 424 294 244
Monetary Cost 2.99 4.42 8.34 6.90 14.71 23.21

Cost 1.8438 2.5800 2.4572 1.7417 3.6758 4.0468

GraspCC

Provisioning Plan A1 ∗ 1, A3 ∗ 10 A2 ∗ 1, A4 ∗ 10

Estimated
Execution Time 60 60
Monetary Cost 2.48 4.95

Cost 1.2144 1.1191 1.0238 0.8429 0.9127 0.9825

Real
Execution Time 166 257
Monetary Cost 6.19 22.43

Cost 3.06 2.93 2.80 3.79 4.01 4.23

0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2

0 0.2 0.4 0.6 0.8 1

Co
st

ωt

100 fasta files

SSVP
GraspCC

(a) Cost for 100 fasta files.

1.8

2

2.2

2.4

2.6

2.8

3

3.2

0 0.2 0.4 0.6 0.8 1

Co
st

ωt

500 fasta files

SSVP
GraspCC

(b) Cost for 500 fasta files.

2

3

4

5

6

0 0.2 0.4 0.6 0.8 1

Co
st

ωt

1000 fasta files

SSVP
GraspCC

(c) Cost for 1000 fasta files.

Figure 8: Cost for different number of fasta files.

0

1

2

3

4

5

6

7

8

0.1 0.5 0.9

Co
st 

fo
r D

iff
er

en
t A

pp
ro

ac
he

s

ωt

LocBased
SGreedy

ActGreedy

(a) Comparision for 100 fasta files.

0

5

10

15

20

0.1 0.5 0.9

Co
st 

fo
r D

iff
er

en
t A

pp
ro

ac
he

s

ωt

LocBased
SGreedy

ActGreedy

(b) Comparision for 500 fasta files.

0

5

10

15

20

25

30

35

40

0.1 0.5 0.9

Co
st 

fo
r D

iff
er

en
t A

pp
ro

ac
he

s

ωt

LocBased
SGreedy

ActGreedy

(c) Comparision for 1000 fasta files.

Figure 9: Cost for different scheduling algorithms. The cost is calculated according to Formula 5.1.2.

17



Table 10: VM Provisioning Plans (500 fasta files).

Algorithm Site ωt

0.1 0.5 0.9

LocBased
WE A3 ∗ 1, A4 ∗ 1 A4 ∗ 4 A4 ∗ 7
JW A4 ∗ 1 A4 ∗ 2 A4 ∗ 3
JE A1 ∗ 1, A4 ∗ 1 A4 ∗ 3, A3 ∗ 1 A4 ∗ 8

SGreedy
WE A3 ∗ 1, A4 ∗ 1 A4 ∗ 4 A4 ∗ 7
JW A4 ∗ 1 A4 ∗ 2 A4 ∗ 3
JE A1 ∗ 1, A3 ∗ 1 A3 ∗ 1, A4 ∗ 3 A4 ∗ 8

ActGreedy
WE A4 ∗ 1 A2 ∗ 1; A4 ∗ 2 A4 ∗ 5
JW A4 ∗ 1 A4 ∗ 2 A4 ∗ 3
JE A1 ∗ 1, A4 ∗ 1 A3 ∗ 1, A4 ∗ 3 A4 ∗ 9

Table 11: VM Provisioning Plans (1000 fasta files).

Algorithm Site ωt

0.1 0.5 0.9

LocBased
WE A2 ∗ 1, A4 ∗ 1 A4 ∗ 6 A4 ∗ 9
JW A4 ∗ 2 A4 ∗ 3 A4 ∗ 4
JE A2 ∗ 1, A3 ∗ 1, A4 ∗ 1 A4 ∗ 5 A4 ∗ 11

SGreedy
WE A4 ∗ 2 A4 ∗ 6 A4 ∗ 10
JW A4 ∗ 2 A4 ∗ 3 A4 ∗ 4
JE A2 ∗ 1, A3 ∗ 1, A4 ∗ 1 A4 ∗ 5 A4 ∗ 11

ActGreedy
WE A2 ∗ 1, A4 ∗ 1 A4 ∗ 4 A4 ∗ 8
JW A4 ∗ 2 A4 ∗ 3 A4 ∗ 4
JE A2 ∗ 1, A3 ∗ 1, A4 ∗ 1 A4 ∗ 6 A4 ∗ 12

a population of chromosomes, and subsequently to transform
the population using standard operations of selection, crossover
and mutation, producing successive generations, until the con-
vergence condition is met. In the experiments, we set the con-
vergence condition so that the cost of scheduling plans should
be equal or smaller than that generated by ActGreedy. We use
100 chromosomes and set the number of generations as 1 for
the experiments of different numbers of input files and differ-
ent values of α. We choose a random point for the crossover
and mutation operation. The experimental results1 are shown in
Figure 9. The setup parameters are shown in Table 8 and provi-
sioning plans, which are generated by SSVP, are listed in Table
9, Table 10 and Table 11. We assume that the data transfer rate
between different sites is 2MB/s. The monetary cost to trans-
fer data from Site 1 to other sites is 0.0734 Euros/GB and the
monetary cost for Site 2 and Site 3 is 0.1164 Euros/GB [5]. In
the experiments, the critical path of SciEvol SWf is composed
of Activities 1, 2, 4, 5, 6.6, 7, 8.

LocBased is optimized for reducing data transfer among dif-
ferent sites. The scheduling plan generated by this algorithm
is shown in Figure 3. However, the different monetary costs of
the three sites are not taken into consideration. In addition, this
algorithm directly schedules a fragment, which contains mul-
tiple activities. Some activities are scheduled at a site, which
is more expensive to use VMs, e.g. Site 3. As a consequence,

1In the experiments, in order to facilitate the data transfer of many small
files, we use the tar command to archive the small files into one big file before
data transferring.

the scheduling plan may correspond to higher cost. SGreedy
schedules a site to the available activity, which takes the least
cost. The corresponding scheduling plan is shown in Figure 4.
SGreedy does not take data location into consideration and may
schedule two continuous activities, i.e. one preceding activity
and one following activity, to two different sites, which takes
time to transfer data and to provision VMs. As a result, this al-
gorithm may lead to higher cost. ActGreedy can schedule each
fragment to a site that takes the least cost to execute it, which
leads to smaller cost compared with LocBased and SGreedy. In
addition, ActGreedy can make adaptive modification for differ-
ent numbers of input fasta files. For instance, there are three
situations where Activity 7 and Activity 8 are scheduled at Site
3 to reduce the cost of data transfer while the other scheduling
plans are the same as shown in Figure 8(c). The three situations
are when there are 500 input fasta files and ωt = 0.9 and when
there are 1000 input fasta files and ωt = 0.5 or ωt = 0.9.

0

20

40

60

80

100

120

140

0 200 400 600 800 1000

Co
m

pa
ris

io
n(

%
)

Number of fasta files

ωt = 0.1
ωt = 0.5
ωt = 0.9

Figure 10: Comparision of cost between SGreedy and ActGreedy for differ-
ent number of input fasta files. The cost is calculated according to Formula
5.1.2.

First, we analyze the cost based on Formula 5.1.2 and For-
mula 5.1.3. The time and monetary costs to execute a frag-
ment at a site are measured during execution. Both the time
and monetary costs are composed of three parts, i.e. site execu-
tion, data transfer and fragment execution. Based on Formulas
5.1.3, 5.1.4, 5.1.14, 5.1.5, 5.1.15, the cost to execute a fragment
is calculated. Based on Formula 5.1.2 and Formula 5.1.3, the
cost to execute a SWf is calculated. The cost corresponding
to 100 fasta files is shown in Figure 9(a). In order to execute
SciEvol SWf with 100 fasta files, ActGreedy can reduce 1.85%
(ωt = 0.1), 7.13% (ωt = 0.5) and 13.07% (ωt = 0.9) of the
cost compared with LocBased. Compared with SGreedy, Act-
Greedy can reduce 3.22% (ωt = 0.1), 12.80% (ωt = 0.5) and
26.60% (ωt = 0.9) of the cost. Figure 9(b) shows the cost for
different values of ωt for processing 500 fasta files. The experi-
mental results show that ActGreedy is up to 13.15% (ωt = 0.9)
better than LocBased and up to 50.57% (ωt = 0.9) better than
SGreedy for 500 fasta files. In addition, Figure 9(c) shows the
experimental results for 1000 fasta files. The results show that
LocBased takes up to 21.75% (ωt = 0.1) higher cost than Act-
Greedy and that SGreedy takes up to 74.51% (ωt = 0.9) higher

18



cost than ActGreedy when processing 1000 fasta files. Figure
10 describes the difference between the worst case (SGreedy)
and the best case (ActGreedy). In Figure 10, the Y axis rep-
resents the advantage1 of ActGreedy compared with SGreedy.
It can be seen from Figure 10 that ActGreedy outperforms
SGreedy and its advantage becomes obvious when ωt grows.
When there are more input fasta files, the advantage is bigger
at first. But it decreases when the number of fasta files grows
from 500 to 1000 since the cost corresponding to ActGreedy
increases faster.

Accordingly, the cost calculated according to Formula 5.1.1
is shown in Figure 11. In the real execution, the time and mon-
etary costs for the whole execution of a SWf are measured and
the real cost can be calculated by Formula 5.1.1. From Figures
11(a), 11(b) and 11(c), we can see that the cost correspond-
ing to ActGreedy is smaller than that of SGreedy at all the
situations. Except in one situation, ActGreedy performs bet-
ter than LocBased. When the number of input fasta files is
500 and ωt = 0.5, the cost for the data transfer becomes im-
portant. In this case, LocBased performs slightly better than
ActGreedy. However, the advantage of LocBased (0.03%) is
very small and this may be because of the dynamic changing
environment in the Cloud. As the number of input fasta files
increases, the advantage of ActGreedy becomes obvious. Com-
pared with LocBased, ActGreedy is up to 4.1% (100 fasta files
and ωt = 0.9), 7.4% (500 fasta files and ωt = 0.9) and 10.7%
(1000 fasta files and ωt = 0.1) better. Compared with SGreedy,
the advantage of ActGreedy can be up to 7.5% (100 fasta files
and ωt = 0.5), 17.2% (500 fasta files and ωt = 0.9) and 8.8%
(1000 fasta files and ωt = 0.5).

Figures 12 and 13 show the execution and the monetary costs
for the execution of SciEvol with different amounts of input
data and different values of ωt. When ωt increases, the exe-
cution time is largely reduced and the monetary cost increases.
When the weight of execution time cost is low, i.e. ωt = 0.1,
Compared with LocBased and SGreedy, ActGreedy may cor-
respond to more execution time while it generally takes less
monetary cost. When the weight of execution time cost is
high, ωt = 0.9, ActGreedy corresponds to less execution time.
The execution with ActGreedy always takes less monetary cost
compared with LocBased (up to 14.12%) and SGreedy (up to
17.28%). The reason is that ActGreedy can choose a cheap site
to execute fragments, namely the monetary cost to instantiate
VMs at that site is low. As a result, ActGreedy makes a good
trade-off between execution time and monetary costs for the ex-
ecution of SciEvol at a multisite cloud.

Furthermore, we measured the amount of data transferred
among different sites, which is shown in Figure 14. Since
LocBased is optimized for minimizing data transferred be-
tween different sites, the amount of intersite transferred data
with LocBased remains minimum when the number of input

1The advantage is calculated based on the following formula:

Advanage =
CostS Greedy(ωt) −CostActGreedy(ωt)

CostActGreedy(ωt)
∗ 100% (7.2.1)

fasta files varies from 100 to 1000. The amount of transferred
data corresponding to ActGreedy is slightly bigger than that
of LocBased and the difference is between 1.0% and 13.4%.
SGreedy has the biggest amount of intersite transferred data.
Compared with ActGreedy, the amount of intersite transferred
data of SGreedy is up to 122.5%, 139.2% and 148.1% bigger
when the number of input fasta files is 10, 500 and 1000. In
addition, the amount of data transfer with ActGreedy decreases
for the three cases, i.e. 500 input fasta files with ωt = 0.9 and
1000 input fasta files with ωt = 0.5 or ωt = 0.9. The rea-
son is that Activities 7 and 8 are scheduled at the same site as
Activities 6.5 and 6.6, namely Site 3, which reduces data trans-
fer. Furthermore, when the data transfer rate between differ-
ent sites decreases, the performance of SGreedy will be much
worse since the time to transfer big amounts of data will be
much longer.

In addition, we measure the idleness of the virtual CPUs ac-
cording to following formula:

Idleness =

∑n
i=1 IdleT ime(CPUi)∑n

i=1 TotalT ime(CPUi)
∗ 100% (7.2.2)

where n represents the number of virtual CPUs, IdleT ime rep-
resents the time when the virtual CPU is not working for the
execution of the programs of SciEvol SWf. TotalT ime repre-
sents the total time that the virtual CPU is instantiated. Figure
15 shows the idleness of virtual CPUs corresponding to differ-
ent scheduling algorithms and different amounts of fasta files.
From the figure, we can see that as ωt increases, the idleness
becomes bigger. When ωt increases, the importance of exe-
cution time becomes bigger and more VMs are provisioned to
execute fragments. In this case, the time to start the VMs be-
comes higher compared with execution time. As a result, the
corresponding idleness goes up. In addition, when the amount
of input files, i.e. fasta files, rises, the idleness decreases. The
reason is that at this situation, more time is used for the ex-
ecution of SWf for the increased workload. The figure also
shows that LocBased has the smallest idleness while SGreedy
has the biggest idleness. This is expected since the VMs at
Sites 1 and 2 need to be shut down and restarted during the ex-
ecution with SGreedy and that the VMs at Site 1 needs to be
shut down and restarted during the execution with ActGreedy.
The time to restart VMs at a site may consume several minutes
while the virtual CPUs are not used for the execution of frag-
ments. Figure 15(a), Figure 15(b) and Figure 15(b) show the
experimental results for the corresponding idleness of virtual
CPUs. From the figures, we can see that the idleness of Act-
Greedy is generally bigger than that of LocBased while it is al-
ways smaller than that of SGreedy. The idleness of ActGreedy
is up to 38.2% (ωt = 0.5) bigger than that of LocBased and up
to 37.8% (ωt = 0.1) smaller than that of SGreedy for 100 fasta
files. The idleness of ActGreedy is up to 12.4% (ωt = 0.1) big-
ger than that of LocBased and up to 38.0% (ωt = 0.5) smaller
than that of SGreedy for 500 fasta files. For 1000 fasta files, the
idleness of ActGreedy is 18.6% (ωt = 0.1) and 1.0% (ωt = 0.9)
bigger than that of LocBased. When ωt = 0.5, the idleness
of ActGreedy is 20.9% smaller than that of LocBased. In ad-

19



0

0.5

1

1.5

2

2.5

3

0.1 0.5 0.9

Co
st 

fo
r D

iff
er

en
t A

pp
ro

ac
he

s

ωt

LocBased
SGreedy

ActGreedy

(a) Comparision for 100 fasta files.

0

0.5

1

1.5

2

2.5

3

3.5

0.1 0.5 0.9

Co
st 

fo
r D

iff
er

en
t A

pp
ro

ac
he

s

ωt

LocBased
SGreedy

ActGreedy

(b) Comparision for 500 fasta files.

0

1

2

3

4

5

0.1 0.5 0.9

Co
st 

fo
r D

iff
er

en
t A

pp
ro

ac
he

s

ωt

LocBased
SGreedy

ActGreedy

(c) Comparision for 1000 fasta files.

Figure 11: Cost for different scheduling algorithms. According to Formula 5.1.1.

0.5

1

1.5

2

2.5

3

3.5

0.1 0.5 0.9Ex
ec

ut
io

n 
Ti

m
e 

fo
r D

iff
er

en
t A

pp
ro

ac
he

s

ωt

LocBased
SGreedy

ActGreedy

(a) Execution time (100 fasta files).

2

2.5

3

3.5

4

4.5

5

5.5

0.1 0.5 0.9Ex
ec

ut
io

n 
Ti

m
e 

fo
r D

iff
er

en
t A

pp
ro

ac
he

s

ωt

LocBased
SGreedy

ActGreedy

(b) Execution time (500 fasta files).

4

4.5

5

5.5

6

6.5

7

7.5

0.1 0.5 0.9Ex
ec

ut
io

n 
Ti

m
e 

fo
r D

iff
er

en
t A

pp
ro

ac
he

s

ωt

LocBased
SGreedy

ActGreedy

(c) Execution time (1000 fasta files).

Figure 12: Execution time of SciEvol with different scheduling approaches.

0.7

0.8

0.9

1

1.1

1.2

0.1 0.5 0.9M
on

et
ar

y 
Co

st 
fo

r D
iff

er
en

t A
pp

ro
ac

he
s

ωt

LocBased
SGreedy

ActGreedy

(a) Monetary cost (100 fasta files).

4
5
6
7
8
9

10
11
12

0.1 0.5 0.9M
on

et
ar

y 
Co

st 
fo

r D
iff

er
en

t A
pp

ro
ac

he
s

ωt

LocBased
SGreedy

ActGreedy

(b) Monetary cost (500 fasta files).

10

15

20

25

30

0.1 0.5 0.9M
on

et
ar

y 
Co

st 
fo

r D
iff

er
en

t A
pp

ro
ac

he
s

ωt

LocBased
SGreedy

ActGreedy

(c) Monetary cost (1000 fasta files).

Figure 13: Monetary cost of SciEvol execution with different scheduling approaches.

0

500

1000

1500

2000

2500

3000

100 500 1000

In
te

rs
ite

 D
at

a 
T

ra
ns

fe
r(

M
B

)

Number of Input Fasta Files

LocBased
SGreedy

ActGreedy

(a) Intersite data transfer (ωt = 0.1).

0

500

1000

1500

2000

2500

3000

100 500 1000

In
te

rs
ite

 D
at

a 
T

ra
ns

fe
r(

M
B

)

Number of Input Fasta Files

LocBased
SGreedy

ActGreedy

(b) Intersite data transfer (ωt = 0.5).

0

500

1000

1500

2000

2500

3000

100 500 1000

In
te

rs
ite

 D
at

a 
T

ra
ns

fe
r(

M
B

)

Number of Input Fasta Files

LocBased
SGreedy

ActGreedy

(c) Intersite data transfer (ωt = 0.9).

Figure 14: Intersite data transfer for different scheduling algorithms.

20



0

0.2

0.4

0.6

0.8

1

0.1 0.5 0.9

id
le

ne
ss

 fo
r 1

00
 fa

st
a 

fi
le

s

ωt

LocBased
SGreedy

ActGreedy

(a) Idleness of virtual CPUs for 100 fasta files.

0

0.2

0.4

0.6

0.8

1

0.1 0.5 0.9

id
le

ne
ss

 fo
r 5

00
 fa

st
a 

fi
le

s

ωt

LocBased
SGreedy

ActGreedy

(b) Idleness of virtual CPUs for 500 fasta files.

0

0.2

0.4

0.6

0.8

1

0.1 0.5 0.9

id
le

ne
ss

 fo
r 1

00
0 

fa
st

a 
fi

le
s

ωt

LocBased
SGreedy

ActGreedy

(c) Idleness of virtual CPUs for 1000 fasta files.

Figure 15: Idleness of virtual CPUs for different scheduling algorithms. According to Formula 7.2.2.

Table 12: Number of generations.

Number of sites 3 4 5 6 7 8 9 10 11
Number of generations 1 1 3 10 28 71 162 337 657

Number of activities 13 14 15 16 17 18 19 20 21 22 23
Number of generations 1 1 1 2 6 18 54 162 484 1450 4349

dition, the idleness of ActGreedy is up to 50.9% (ωt = 0.5)
smaller than that of SGreedy.

Finally, we study the scheduling time of different algorithms.
In order to show the effectiveness of ActGreedy, we compare it
with our two other algorithms, i.e. SGreedy and LocBased, and
two more general algorithms, i.e. Genetic and Brute-force.

Table 13: Comparison of scheduling algorithms.

Algorithms Scheduling time (ms)
LocBased 0.010
SGreedy 0.014

ActGreedy 1.260
Genetic 727

Brute-force 161

An example of scheduling time corresponding to 3 sites and
13 activities is shown in Table 13. This is a small example since
the time necessary to schedule the activities may be unfeasible
for Brute-force and Genetic when the numbers of activities or
sites become high. Then, we vary the numbers of activities or
sites. When we increase the number of sites, we fix the number
of activities at 13 and when we increase the number of activi-
ties, we fix the number of sites to 3. The number of generations
for different numbers of activities or different numbers of sites
is shown in Table 12. Since the search space gets bigger when
the number of activities or sites increases, we increase the num-
ber of generations in order to evaluate at least 30% of all the
possible scheduling plans for Genetic. We add additional con-
trol activities in the SciEvol SWf, which have little workload
but increase the search space of scheduling plans. The mod-
ified SciEvol SWf is shown in Figure 16 and the scheduling
time corresponding to different numbers of activities is shown
in 17(a). In addition, we measure the scheduling time corre-
sponding to different numbers of sites while using the original

SciEvol SWf, as shown in Figure 17(c). The unit of schedul-
ing time is millisecond. The data constraint remains the same
while the number of input files is 100 and α equals to 0.9. In
the experiments, only ActGreedy generates the same schedul-
ing plans as that of Brute-force. Since the point of mutation
operation and the points of crossover operation of Genetic are
randomly selected, the scheduling plans generated by Genetic
may not be stable, i.e. the scheduling plans may not be the
same for each execution of the algorithm. Both LocBased and
SGreedy cannot generate the optimal scheduling plans as that
of Brute-force.

Table 13 shows that the scheduling time of Genetic and
Brute-force is much longer than ActGreedy (up to 577 times
and 128 times). Genetic may perform worse than Brute-force
for a small number of activities or sites with the specific con-
figuration. The scheduling time of Genetic is smaller than that
of Brute-force when the number of activities or sites increases
as shown in Figure 17(a) and 17(c). Figure 17(b) shows the
scheduling time of different algorithms zooming on 13 − 18
activities, which reveals that Brute-force and Genetic always
takes more time to generate scheduling plans than LocBased,
SGreedy and ActGreedy. Figures 17(a) and 17(c) show that the
scheduling time of ActGreedy, SGreedy and LocBased is much
smaller than that of Genetic and Brute-force. The scheduling
time of ActGreedy, SGreedy and LocBased is represented by
the bottom line in Figures 17(a)17(b)17(c). Even when the
number of activities and the number sites is small, the schedul-
ing time is negligible compared with the execution time, it be-
comes significant when the numbers of activities or sites in-
crease. For instance, with more than 22 activities or 6 sites,
the scheduling time of Brute-force exceeds the execution while
the scheduling time of ActGreedy remains small. This is be-
cause of the high complexity of Brute-force, which is O(sn− f ).
With more than 22 activities or 10 sites, the scheduling time
of Genetic is bigger than the execution time. Because of long

21



Figure 16: SciEvol Scientific Workflow. Activities 9 − n are added control activities, which have no workload.

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

12 14 16 18 20 22 24

Sc
he

du
lin

g 
tim

e 
(m

s)

Number of activities

SGreedy
LocBased

ActGreedy
Genetic

Brute Force
SWf Execution Time

(a) Scheduling time corresponding to different
numbers of activities.

0

5000

10000

15000

20000

25000

30000

12 13 14 15 16 17 18 19

Sc
he

du
lin

g 
tim

e 
(m

s)

Number of activities (zoom on 13 - 18)

SGreedy
LocBased

ActGreedy
Genetic

Brute Force

(b) Scheduling time (zoom on 13 − 18 activities).

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

4e+06

4.5e+06

2 4 6 8 10 12

Sc
he

du
lin

g 
tim

e 
(m

s)

Number of sites

SGreedy
LocBased

ActGreedy
Genetic

Brute Force
SWf Execution Time

(c) Scheduling time corresponding to different
numbers of sites.

Figure 17: Scheduling time.

scheduling time, Genetic and Brute-force are not suitable for
SWfs with a big number of activities, e.g. Montage [6] may
have 77 activities. In addition, according to [19], 22 activities
are below the average number of SWf activities. As a result,
Genetic and Brute-force are unfeasible for multisite scheduling
of most SWfs. These two algorithms are not suitable for SWf
scheduling with a big number of sites. For instance, Azure has
15 sites (regions).

The experimental results show that although ActGreedy may
yield more data transferred among different sites and higher
idleness (compared with LocBased), it generally yields smaller
cost compared with both LocBased and SGreedy and the
scheduling time of ActGreedy is much lower than that of Ge-
netic and Brute-force.

8. Conclusion

Scientists usually make intensive usage of parallelism tech-
niques in HPC environments. However, it is not simple to
schedule and manage executions of SWfs, particularly in multi-
site cloud environments, which present different characteristics
in comparison with single site clouds. To increase the uptake of
the cloud model for executing SWfs that demand HPC capabili-
ties provided by multisite clouds and to benefit from data local-
ity, new solutions have to be developed, especially for schedul-
ing SWf fragments in cloud resources. In previous work [14]
we have addressed workflow execution in single-site clouds us-
ing a scheduling algorithm but these solutions are not suitable

for multisite clouds.
In this paper, we proposed a new multi-objective schedul-

ing approach, i.e. ActGreedy, for scientific workflows in a
multisite cloud (from the same provider). We first proposed
a novel multi-objective cost model, based on which, we pro-
posed a dynamic VM provisioning approach, namely SSVP, to
generate VM provisioning plans for fragment execution. The
cost model aims at minimizing two costs: execution time and
monetary costs. Our proposed fragment scheduling approach
that is ActGreedy, allows for considering stored data constraints
while reducing the cost based on the multi-objective cost model
to execute a SWf in a multisite cloud. We used a real SWf
that is SciEvol, with real data from the bioinformatics do-
main as a use case. We evaluated our approaches by execut-
ing SciEvol in Microsoft Azure cloud. The results show that
since ActGreedy makes a good trade-off between execution
time and monetary costs, ActGreedy leads to the least total nor-
malized cost, which is calculated based on the multi-objective
cost model, than LocBased (up to 10.7%) and SGreedy (up to
17.2%) approaches. In addition, compared with LocBased (up
to 14.12%) and SGreedy (up to 17.28%), ActGreedy always
corresponds to less monetary cost since it can choose cheap
cloud sites to execute SWf fragments. Furthermore, compared
with SGreedy, ActGreedy corresponds to more than two times
smaller amounts of transferred data. Additionally, ActGreedy
scales very well, i.e. it takes a very small time to generate the
optimal or near optimal scheduling plans when the number of
activities or sites increases, compared with general approaches,

22



e.g. Genetic and Brute-force. The results also show that the
cost model can estimate the cost within an acceptable error limit
and that the provisioning approach (SSVP) generates better pro-
visioning plans for different weights of time cost to execute a
fragment at a site, compared with other existing approaches,
namely GraspCC. The advantage of SSVP can be up to 115.4%.

Acknowledgment

Work partially funded by EU H2020 Programme and
MCTI/RNP-Brazil (HPC4E grant agreement number 689772),
CNPq, FAPERJ, and INRIA (MUSIC project), Microsoft
(ZcloudFlow project) and performed in the context of the
Computational Biology Institute (www.ibc-montpellier.fr). We
would like to thank Kary Ocaña for her help in modeling and
executing the SciEvol SWf.

References

[1] Amazon ec2, amazon elastic compute cloud (amazon ec2). http://aws.
amazon.com/ec2/.

[2] Microsoft Azure. http://azure.microsoft.com, .
[3] Azure cli. https://azure.microsoft.

com/en-us/documentation/articles/

virtual-machines-command-line-tools/, .
[4] Computing capacity for a CPU. http://en.community.dell.com/

techcenter/high-performance-computing/w/wiki/2329.
[5] Data transfer price. https://azure.microsoft.com/en-us/

pricing/details/data-transfers/.
[6] Montage. http://montage.ipac.caltech.edu/docs/gridtools.

html.
[7] Oma genome database. http://omabrowser.org/All/eukaryotes.

cdna.fa.gz, .
[8] Sequence identifier. http://omabrowser.org/All/oma-groups.

txt.gz, .
[9] C. Anglano and M. Canonico. Scheduling algorithms for multiple bag-of-

task applications on desktop grids: A knowledge-free approach. In 22nd
IEEE Int. Symposium on Parallel and Distributed Processing (IPDPS),
pages 1–8, 2008.

[10] S. Blagodurov, A. Fedorova, E. Vinnik, T. Dwyer, and F. Hermenier.
Multi-objective job placement in clusters. In Proceedings of the Int. Conf.
for High Performance Computing, Networking, Storage and Analysis, SC,
pages 66:1–66:12, 2015.

[11] D. Chang, J. H. Son, and M. Kim. Critical path identification in the con-
text of a workflow. Information & Software Technology, 44(7):405–417,
2002.

[12] W. Chen, R.F. Da Silva, E. Deelman, and R. Sakellariou. Balanced task
clustering in scientific workflows. In IEEE 9th Int. Conf. on e-Science,
pages 188–195, 2013.

[13] R. Coutinho, L. Drummond, Y. Frota, D. de Oliveira, and K. Ocana.
Evaluating grasp-based cloud dimensioning for comparative genomics:
A practical approach. In 2014 IEEE Int. Conf. on Cluster Computing
(CLUSTER), pages 371–379, 2014.

[14] D. de Oliveira, K. A. C. S. Ocaña, F. Baião, and M. Mattoso. A
provenance-based adaptive scheduling heuristic for parallel scientific
workflows in clouds. Journal of Grid Computing, 10(3):521–552, 2012.

[15] E. Deelman, D. Gannon, M. Shields, and I. Taylor. Workflows and e-
science: An overview of workflow system features and capabilities. Fu-
ture Generation Computer Systems, 25(5):528–540, 2009.

[16] R. Duan, R. Prodan, and X. Li. Multi-objective game theoretic schedulin-
gof bag-of-tasks workflows on hybrid clouds. IEEE Transactions on
Cloud Computing, 2(1):29–42, 2014.

[17] K. Etminani and M. Naghibzadeh. A min-min max-min selective algori-
htm for grid task scheduling. In The Third IEEE/IFIP Int. Conf. in Central
Asia on Internet (ICI 2007), pages 1–7, 2007.

[18] H. Mohammadi Fard, R. Prodan, and T. Fahringer. Multi-objective list
scheduling of workflow applications in distributed computing infrastruc-
tures. Journal of Parallel and Distributed Computing, 74(3):2152–2165,
2014.

[19] R. Littauer, K. Ram, B. Ludäscher, W. Michener, and R. Koskela. Trends
in use of scientific workflows: Insights from a public repository and rec-
ommendations for best practice. International Journal of Digital Cura-
tion (IJDC), 7(2):92–100, 2012.

[20] J. Liu, E. Pacitti, P. Valduriez, and M. Mattoso. Parallelization of scientific
workflows in the cloud. Research Report RR-8565, 2014.

[21] J. Liu, V. Silva, E. Pacitti, P. Valduriez, and M. Mattoso. Scientific work-
flow partitioning in multi-site clouds. In BigDataCloud’2014: 3rd Work-
shop on Big Data Management in Clouds in conjunction with Euro-Par
2014, page 12, 2014.

[22] J. Liu, E. Pacitti, P. Valduriez, and M. Mattoso. A survey of data-intensive
scientific workflow management. Journal of Grid Computing, pages 1–
37, 2015.

[23] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. F. Freund. Dy-
namic matching and scheduling of a class of independent tasks onto het-
erogeneous computing systems. In 8th Heterogeneous Computing Work-
shop, page 30, 1999.

[24] R.T. Marler and J.S. Arora. Survey of multi-objective optimization meth-
ods for engineering. Structural and Multidisciplinary Optimization, 26
(6):369–395, 2004.

[25] K.A.C.S. Ocan̄a, D. de Oliveira, F. Horta, J. Dias, E. Ogasawara, and
M. Mattoso. Exploring molecular evolution reconstruction using a par-
allel cloud based scientific workflow. In Advances in Bioinformatics and
Computational Biology, volume 7409 of Lecture Notes in Computer Sci-
ence, pages 179–191. 2012.

[26] E. S. Ogasawara, J. Dias, V. Silva, F. S. Chirigati, D. de Oliveira, F. Porto,
P. Valduriez, and M. Mattoso. Chiron: a parallel engine for algebraic
scientific workflows. Concurrency and Computation: Practice and Expe-
rience, 25(16):2327–2341, 2013.

[27] D. De Oliveira, K. A. C. S. Ocaña, E. Ogasawara, J. Dias, J. GonçAlves,
F. Baião, and M. Mattoso. Performance evaluation of parallel strategies in
public clouds: A study with phylogenomic workflows. Future Generation
Computer Systems, 29(7):1816–1825, 2013.

[28] M. T. Özsu and P. Valduriez. Principles of Distributed Database Systems.
Springer, 2011.

[29] M. Rahman, M. R. Hassan, R. Ranjan, and R. Buyya. Adaptive workflow
scheduling for dynamic grid and cloud computing environment. Con-
currency and Computation: Practice and Experience, 25(13):1816–1842,
2013.

[30] M. A. Rodriguez and R. Buyya. A responsive knapsack-based algo-
rithm for resource provisioning and scheduling of scientific workflows
in clouds. In 44th Int. Conf. on Parallel Processing, ICPP, 2015.

[31] I. Sardiña, C. Boeres, and L. de A. Drummond. An efficient weighted bi-
objective scheduling algorithm for heterogeneous systems. In Euro-Par
2009 – Parallel Processing Workshops, volume 6043, pages 102–111.
2010.

[32] S. Smanchat, M. Indrawan, S. Ling, C. Enticott, and D. Abramson.
Scheduling multiple parameter sweep workflow instances on the grid. In
5th IEEE Int. Conf. on e-Science, pages 300–306, 2009.

[33] X. Sun and Y. Chen. Reevaluating amdahl’s law in the multicore era.
Journal of Parallel and Distributed Computing, 70(2):183–188, 2010.

[34] H. Topcuouglu, S. Hariri, and M. Wu. Performance-effective and low-
complexity task scheduling for heterogeneous computing. IEEE Trans.
on Parallel and Distributed Systems, 13(3):260–274, 2002.

[35] M. Wieczorek, R. Prodan, and T. Fahringer. Scheduling of scientific
workflows in the ASKALON grid environment. SIGMOD Record, 34
(3):56–62, 2005.

[36] J. Yu, R. Buyya, and C. K. Tham. Cost-based scheduling of scientific
workflow applications on utility grids. In First Int. Conf. on e-Science
and Grid Computing, pages 140–147, 2005.

[37] Z. Yu and W. Shi. An adaptive rescheduling strategy for grid workflow
applications. In IEEE Int. Parallel and Distributed Processing Symposium
(IPDPS), pages 1–8, 2007.

[38] L. Zadeh. Optimality and non-scalar-valued performance criteria. IEEE
Transactions on Automatic Control, 8(1):59–60, 1963.

23

http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
http://azure.microsoft.com
https://azure.microsoft.com/en-us/documentation/articles/virtual-machines-command-line-tools/
https://azure.microsoft.com/en-us/documentation/articles/virtual-machines-command-line-tools/
https://azure.microsoft.com/en-us/documentation/articles/virtual-machines-command-line-tools/
http://en.community.dell.com/techcenter/high-performance-computing/w/wiki/2329
http://en.community.dell.com/techcenter/high-performance-computing/w/wiki/2329
https://azure.microsoft.com/en-us/pricing/details/data-transfers/
https://azure.microsoft.com/en-us/pricing/details/data-transfers/
http://montage.ipac.caltech.edu/docs/gridtools.html
http://montage.ipac.caltech.edu/docs/gridtools.html
http://omabrowser.org/All/eukaryotes.cdna.fa.gz
http://omabrowser.org/All/eukaryotes.cdna.fa.gz
http://omabrowser.org/All/oma-groups.txt.gz
http://omabrowser.org/All/oma-groups.txt.gz

